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CONVOLUTION OF SET FUNCTIONS
WEI-SHEN HSIA, JAE HAK LEE, AND TAN-YU LEE

ABSTRACT. In this paper we study a class of functional
operators under which the convexity of convex set functions is
preserved. In particular, convolution of convex set functions
is defined and its convexity verified.

1. Introduction. The study of set functions has been motivated by
recent theoretical results (e.g., [3-8]) and many applications in different
fields (e.g., [1, 2, 10]). Since the definition of the convexity for set
functions is given in a more general form than that of the ordinary one,
it is expected that not all functional operators defined in [9; Part I,
Section 5] will preserve the convexity of set functions. However, one of
the most significant operators, convolution, does preserve the convexity
of set functions. The main purpose of this paper is to prove that fact.
Some other basic facts concerning the algebra of convex set functions
are also explored.

Throughout this paper, it is assumed that (X,.4,m) is an atomless
finite measure space with L;(X,.4,m) separable. For Q € A, Xq
denotes the characteristic function of Q, I the interval [0,1], and
R = RU{-00,+00}. We adopt the convention rules as in [9; Part
I, Section 4] for arithmetic calculations involving +00 and —oo. In [8]
Morris showed that for any given 2, A € A and )\ € I, there exists a
sequence {I',} C A such that

Xr, 5 AXa + (1 — A)Xa,

where s denotes weak* convergence of elements in L,,. We shall call
such a sequence a Morris-sequence associated with (A, Q,A). Using
Morris-sequence instead of usual convex combinations, a subfamily
S C A is said to be convex if, for every (A\,,A) € I x S x § and
every Morris-sequence {I',} associated with (A, 2, A) in S, there exists
a subsequence {I',, } of {T',} in S.
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Let S be a convex subfamily of A and F : S — R be a set function
defined on S. Let § = {Q € S | F(2) < oo} be the effective domain of
F. F is said to be convex on S if, given any (\,Q,A) € I x S x S and
any Morris-sequence {I',} C S associated with (\, €, A), we have

limsup F(T,) < AF(Q)+ (1 = A\)F(A).
n—ro0

A convex set function F on S is proper if F(Q) < +oo for at least one
Q€S and F(Q) > —oo for every Q € S. The epigraph of F over S,
[F': S], is defined as the set {(r,2) e RxS|Q e S, F(Q) <r}. A
subset C' C R x A is said to be convex if, given (r,Q), (s,A) € C and
A € I, then, for every Morris-sequence {I',,, } of {I',} and a sequence
{t} such that t;, = A\r+(1—A)s and {(tx,I'y,)} C C. It was shown in
[4, Theorem 3.3] that F': S — R is convex if and only if its epigraph
is a convex subset of R x A, and this result can be easily extended to
the extended real valued set functions. We shall conclude this section
with a theorem which demonstrates that a convex set function can be
generated by a convex subset of R x A in a natural way.

Theorem 1.1. Let C be a convex subset of R x A. Let § = {Q €
A | (u,Q) € C, for some u € R}. Define a set function F on S by
F(Q) =inf{u: (u,Q) € A}; then S is a convez subfamily of A and F
is a convex set function on S.

Proof. The convexity of S follows directly from the definitions. Let
QA € S\ € I, and {I',} be a Morris-sequence associated with
(A Q,A)in S.

Case (i). Assume F(Q2) = —oo and F(A) is finite. Then for all small
enough ¢ < 0, we may assume (g,(2) € C. Let 7 be a number such that
(n,A) € C. The convexity of C implies that there exists a sequence
{tr} and a subsequence {I';,, } of {T',,} such that t;, — Ae+(1—A)n and
(tx,Tpn,) € C. The latter implies that F(T',, ) < t; for all k. Therefore,
limsup F(T',,,) < limsup,_,tx = Ae + (L —A)n. If A > 0, then
limsup;,_, ., F(I'n,) = —oo since € < 0 is arbitrarily small. If A = 0,
then limsup,_, . F(T'n,) < n and, therefore, limsup,_, . F(I'y,) <
F(A)=0F(Q)+ (L - 0)F(A).

Case (ii). If both F(Q) = —oo and F(A) = —o0, following the similar
arguments given in Case (i), we can prove that limsup F(T',,, ) = —oc.
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Case (iii). Assume that both F(Q2) = « and F(A) = § are finite.
Then, there exist sufficiently small ¢,7 > 0, such that (a +¢,Q) € C
and (8+n,A) € C. Since C is convex, there exists a subsequence {I',, }
of {T',} and sequence {¢;} such that

tk — Ma+e)+ (1 —=A)(B+n)
=AF(Q)+ (1 —-NFA)+Xe+(1—XN)n
and
{(tk, L)} €C, lLe., F(Ty,) < tg.

Therefore,

limsup F(Ty,, ) < limsup{ts}
k—o0

k—o0

— AF(Q) + (1~ NF(A) +Ae + (1 N,
Since Ae + (1 — A)n can be made arbitrarily small, we have
limsup F(T'p,) < AF(Q) + (1 — XN)F(A).

This completes the proof. a

2. Some basic functional operators on convex set functions.
In this section we shall explore some basic functional operations that
preserve the convexity of set functions.

Theorem 2.1. Let C be a convex subfamily of A.

(i) If F is a convex set function on C and ¢ > 0 is any scalar, then
cF' is convez on C.

(ii) If both F,G are proper convez set functions on C, then F + G is
convez on C.

(iil) If F is a convex set function on C, then F + ¢ is convex on C
for any constant c.

The proof of this theorem is trivial.

Remark . The properness in the hypothesis of (ii) is for the sake of
avoiding co — oo when F' + G is formed.
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Theorem 2.2. Let F be a proper convexr set function on A, and
let ¢ be an upper semi-continuous, nondecreasing convex function from
R to (—o0o,400]. Then H(Q) = ¢(F(Q)) is conver on A (where one
defines ¢(+00) = +00).

Proof. Given Q,A € A and X € I, let {T',,} be a Morris-sequence
associated with (A, Q, A). We need to show that

(1) lim sup ¢(F(I')) < A(F()) + (1 = A)@(F(A)).

n—o0

Case (i). limsup,_,,, F(I'y) = —oco. Then lim, - F(I';,) = —c0
and, for sufficiently large n, F(T',) < AF(Q) + (1 — A)F(A). Since ¢ is
nondecreasing and convex, we have for sufficiently large n, ¢(F(T',,)) <
AG(F(2)) + (1 — N)@(F(A)), and thus (1) is satisfied.

Case (ii). limsup,_,., F(I'y) > —oco. Invoking the convexity of F,
we have

(2) limsup F(T,) < AF(Q)+ (1= A\)F(A).

n—o0

Applying the nondecreasing and convex function ¢ to both sides of (2),
we have

(3) ¢(limsup F(I',)) < Ap(F(2)) + (1 — A)p(F(A)).

n— oo

Now, since ¢ is upper semi-continuous,

(4) limsup ¢(F(I'y)) < ¢p(limsup F(I'y,)).

n—roo n— oo

Combining (3) and (4), (1) follows. O

Example. If u is a nondecreasing, upper semi-continuous convex
function, then

F(Q)_u(/fdm>, feLi(X,Am)

is convex.
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Theorem 2.3. Let F; : A — R be conver set functions for
i=1,...,m. Then F(Q) = max{F;(Q) : i =1,... ,m} is convex.

Proof. The theorem follows from the fact that [F': A] = N, [F; : A]
which again is convex in R x A. O

3. Convolution of set functions. In this section we shall introduce
a functional operational which corresponds to the addition of epigraphs.

Definition 3.1. Let F; and F5 be two set functions. The convolution
of Fy and Fy, Fy0F5, is defined by

(F1 [:IFQ)(Q) = 1nf{F1(Ql) + FQ(QQ) Oy UQQ = Q,Ql,QQ S ./4},

where U denotes the disjoint union.

Lemma 3.1. [8, Lemma 3.3]. Let (X, A,m) be a finite atomless
measure space with L1(X, A, m) separable. Then for Q@ € A and A € I,
it follows that A\Xq is in the weak* closure of X = {Xa : A € A} C
L (X,A,m).

Theorem 3.2. Let C1,C> be two sets in R x A. We define

0201+02:{(U,Q) ERXA:u1+u2:u,thQg:Q,(ui,Qi) c
Ciyi=1,2}.

If both C; and Cy are convez in R x A, then Ci+ Co is convez in
R x A.

Proof. Let (r,Q),(s,A) € C, A € I, and let {I',} be any Morris-
sequence associated with (), Q,A). Since (r,Q) € C, there exist

r1,72, Q' and Q2 such that 1 +ry = r, Q' Q2 = Q and (r;, %) € C;
for i = 1,2. Also, (s,A) € C implies the existence of s, sy, A' and A?

such that s; + sy = s, A! LJA2 = A, and (s;,A%) € Cy, i = 1,2.
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Let {A,,} be a sequence in Q! N A% with

XA, — AXoinaz,
and let {A/} be a sequence in Q2 N A! with

XlA'n, = (1 - )\)XAIQQZ.

The existence of such sequences is given by Lemma 3.1. Therefore,
X(@nazna, = Xainaz — XA, — Xoinaz — AXoinaz
= (]. — A)X910A2

and

X(@inazpar = Xa2nat — Xar, — Xazaar — (1= A)Xgzna
== )\XQZQAL

Now, define sequences {Q}L}, {AL}, {02} and {AZ} by
Q=N UA,, AL=(ANAYUA],

Q2 = (2, NAHU{(Q' NA%) - AL,
A2 = (A, NA?)U{(Q*NnAY) - ALL

Then
Xar = Xa,nat + XA, — X(Q,n01)NA,>

XAL = XA, nar +Xar, — X(A,nAL)NA? -

Note that, since Q! N A, is a subset of A, for any f € Li(x,.A,m),
(f, Xa.nar) = (fXar, Xa,) = A{(fXar, Xava) = A (f, Xa\a)
and

(f:Xa,nena,) = (FXaina,, Xa,) = (FXarna,, Xava) =0,

SO

Xay Rl )\XQl\A + MXainaz = /\(Xﬂl\A + XQl\A2) = >\X91\A1-
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Similarly,
Xaz ~— (1= A)Xane.

Define a Morris sequence {I'}}, where {T'L.} = QL UAL N (Q! N AY)
is associated with (), Q', A1), In the same manner, we have a Morris-
sequence {I'2}, where I'2 = Q2 U A2 N (22 N A?) is associated with
(A, 92, A?). By the definition of I'} and I'2, we also have '} U 2 =r,.
Since (r1,Q'), (s1,A') € C1, there exists a subsequence {I'} } of {T'}}

and a sequence {;, } such that t}, — r1+(1—X)sy with {(¢;,T5, )} € Ci.
Similarly, for (rz, Q?), (s2,A?) € Cy, there exists a subsequence {I';, }

of {I'2 } and a sequence {}} such that

tij — Ara+ (L= A)s2 with {(tij,f‘,%kj)} C Cs.

For convenience, let the index k; = m, and let

T, =T, (JT%, and t,=t), andt},.

Then t,, = Ar + (1 — A)s and {(tm,'n,, )} € C. Hence, C is a convex
subset of R x A, and the proof is complete. o

We now can establish the main result of this paper.

Theorem 3.3. Let F, and F5 be two proper conver set functions on
A. Then the convolution F = FyOFs of Fy and F» is convex on A.

Proof. Note that the epigraph [F; : A] is convex in R x A for i = 1, 2.

Define C = [F; : A] + [F2 : A], and G(Q) = inf{u : (u,Q) € C}. Then
C is convex in R x A by Theorem 3.2 and G is convex by Theorem 1.1.

We shall show that F = G. For given Q € A, let u* = G(Q).
Then, for any € > 0, (u* +¢,Q) € C. That is, we have uy,ua,

and Q9 such that u; +us = u* +¢, UQQ = Q and F;(Q;) < u;,
i = 1,2. Since € > 0 is arbitrary, F(Q) < u* = G(2). Now suppose
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G(Q) > F(Q2). Then there exists 1,0y € A such that O UQQ =0
with Fl(Ql) + F(Qg) < u*. Let Uy = Fl(Ql) and U2 = FQ(QQ) Then
(w1 + ug, Qg Uﬂg) € A, which implies G(Q?) = inf{u : (u,Q) € A} <

up + us < u*. This contradicts the fact that G(Q) = u*. Hence,
GQ)<F(Q). @

Remark 3.1. (i) From Definition 3.1, it can be shown that the
convolution is associative, i.e.,

(F1 DFQ)EIFg = FlE](FQ DF3).
Therefore,
(FioFo---0F,)(Q)

(ii) Let F; and F» be two set functions defined on .A. The convolution
of F} and F3 can be expressed by

(FioF2)(Q) = inf {F1(Q\A) + F2(2NA)},

since (Q\A) U (QNA)=Q.

(iii) Let G = 6(- | A) for a certain A € A, where §(2 | A) = o©
if @ # A and 6(A | A) = 0. Then (FoG)(Q) = F(Q\A) since
O\A = Q\(2NA). It follows that for a certain A € A the set function
F defined by Fa(Q) = F(Q\A) is convex if F is.

(iv) The convolution operation is commutative since (FyOF3)(2) =
inf{u | (Q,u) € [F1 : A+ [F> : A]} as shown in the proof of Theorem
3.3.
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