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SOME REMARKS ON REPRODUCING
KERNEL KREIN SPACES
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ABSTRACT. The one-to-one correspondence between pos-
itive functions and reproducing kernel Hilbert spaces was ex-
tended by L. Schwartz to a (onto, but not one-to-one) corre-
spondence between difference of positive functions and repro-
ducing kernel Krein spaces. After discussing this result, we
prove that a matrix valued function K(z,w) symmetric and
jointly analytic in z and @ in a neighborhood of the origin is
the reproducing kernel of a reproducing kernel Krein space.
We conclude with an example showing that such a function
can be the reproducing kernel of two different Krein spaces.

1. Introduction. In this paper we study some points in the theory
of reproducing kernel Krein spaces, namely existence theorems and
a nonuniqueness counterexample. We begin with a brief review of
reproducing kernel spaces, which helps setting the framework and gives
some motivation.

Let K(z,w) be a C,,xp-valued function for z and w in some set (2, and
let V' be a vector space of C,,-valued functions defined on (2, endowed
with some hermitian form [, ]y. The function K is a reproducing
kernel for V if the following two conditions hold:

(a) for any w in Q and ¢ in C,,, the function K,c : z - K(z,w)c
belongs to V.

(b) for any fin V, w in Q and ¢ in C,,
(1.1) [f, Kucly = ¢ f(w)

(C xi denotes the vector space n-rows [-columns matrices with complex
entries, C,,«1 is written C,, and A* denotes the adjoint of the matrix

A)

It is easy to check that (V,[, ]y ) has at most one reproducing kernel,
which is moreover a symmetric function (also called hermitian)

(1.2) K(z,w) = (K(w,z))".
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Conversely, given a C,,x,-valued symmetric function K(z,w) on €,

let IC denote the vector space spanned by the functions K,c, w € Q,
c € C,, and let [, ]l% denote the hermitian form defined by

(1.3) [K,c, K,,d]’oC =d*K(v,w)c.

It is also easy to check that the form [, |o is well defined and that
any other reproducing kernel space (V,[, ] ) with reproducing kernel

K contains isometrically IC that is, V' D IC and

[fag]}% = [fag]V

for f and g in IOC

[e]
In general, the space K has no nice topological structure, and the

case where one can find a reproducing kernel Krein space V (D K)
with reproducing kernel K is of interest.

If the function K is positive: for any integer r, points wi,... ,w, in
Q and vectors ¢y, ... ,c. in C,, the hermitian forms
(1.4) Z ;o ¢ K (wi, wj)e; (; €Cyi=1,...,7)
i,j=1

are positive, the K is a prehilbert space and can be completed in a
unique way into a reproducing kernel Hilbert space with reproducing
kernel K. Conversely, a reproducing kernel Hilbert space has a repro-
ducing kernel which is a positive function (see [3]).

This one-to-one correspondence between positive functions and re-
producing kernel Hilbert spaces has been extended by L. Schwartz [10,
Proposition 40] and P. Sorjonen [11] to the case of functions which
have a finite number v of negative squares, that is, such that all the
hermitian forms defined in (1.4) have at most v negative squares and
at least one of them has exactly v negative squares. The corresponding
reproducing kernel spaces are then Pontryagin spaces.

When K is the reproducing kernel of a reproducing kernel Krein
space, it is not difficult to show that K can be written as a difference
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of two positive functions. This condition is also sufficient, as proved
in [10]. A proof of this result will be recalled in Section 2, since L.
Schwartz’s study does not seem to be widely known among people
working in reproducing kernel spaces.

It may happen that a given function is the reproducing kernel of two
different reproducing kernel Krein spaces [10].

It may be difficult to check in general that a given symmetric function
can be written as a difference of two positive functions, and sufficient
conditions which insure the existence of an associated reproducing
kernel Krein space are called for. In the third section we prove that
a Cpxpn-valued function K(z,w) jointly analytic for z and @ in a
neighborhood of the origin is the reproducing kernel of an associated
reproducing kernel Krein space.

Analyticity is a strong requirement and one could think that the
associated Krein space is then unique. The fourth section presents an
example of a function K, jointly analytic in z and @ in a neighborhood
of the origin and which is the reproducing kernel of two different
reproducing kernel Krein spaces.

To conclude this introduction, we recall a few facts on positive
functions and on Krein spaces. Let K(z,w) be a C,,xp-valued function
positive for z and w in Q. The associated reproducing kernel Hilbert
space will be denoted by H(K), the inner product by (, )k and the
associated norm by || || k.

One introduces a partial ordering on positive functions on 2 by

K < K, if and only if K; — K is a positive function.

It is an easy exercise to check that K < K; if and only if H(K) is
contractively included in H(K}), that is, if and only if H(K) C H(K;)
and the inclusion map is a contraction from H(K) into H(K;) [3].

A space K endowed with an hermitian form [, ] is a Krein space if it
admits a decomposition K = K4 + K_, where

(1) K4 endowed with [, | is a Hilbert space;
(2) K_ endowed with —[, ] is a Hilbert space;
(3) KiNnK_={0} and [k4,k_] =0 for kg € K.
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Let f = f1 + f— be the decomposition of f € K along X +K_. The
hermitian form

<f7f> = [f+7f+] _[ffvf*]

is positive and (K( , )) is a Hilbert space.

The map
of =fr—f
is both selfadjoint and unitary in (KC( , )), and

(1.5) [f.9] = (f,09).

Conversely, every Krein space can be obtained in such a way: starting
from a Hilbert space (K, (, )) and an operator o both selfadjoint and
unitary in KC, the space K endowed with the form defined in (1.5) is a
Krein space.

Krein spaces were introduced in the fifties by Ginzburg and appear
in an implicit way in the work of Nevanlinna and Pesonen (see [5, p.
118] for references). They were rediscovered independently by Schwartz
[10], who called them hermitian spaces.

We refer to Bognar’s book [5] for further information on Krein spaces.

2. Characterization of kernel functions. This section is of
a survey nature, and results are mostly due to L. Schwartz [10]. It
is included because, to the best of our knowledge, the results are not
widely known. Moreover, since [10] is written in the language of Hilbert
subspaces of topological vector spaces, we have chosen to provide proofs
as well.

Lemma 2.1 appears in Ando’s lecture notes [2].

The main result is

Theorem 2.1 (Schwartz). Let K(z,w) be a C,,xy-valued symmetric
function defined for z and w in some set 2. Then there is an associated
reproducing kernel Krein space if and only if K = K; — Ky where
Ky and Ky are positive functions on 2. When K admits such a
decomposition, one can choose K1 and Ko such that H(K1)NH(K>) =
{0}. If Ky and K> satisfy this condition, the set of functions of the
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form f = fi + fo, fi € H(K;) i = 1,2, with indefinite inner product

[fvf] = <f1af1>K1 - <f25f2>K27

s a reproducing kernel Krein space with reproducing kernel K.
In order to prove this theorem, we need the following two lemmas.

Lemma 2.1 (Ando). Let Ky and Ko be two C,,xn-valued functions,
positive on Q. Then the intersection H(K;) N H(K2) endowed with the
inner product

<f7f>:<f7f>K1+<faf>Kz

is a reproducing kernel Hilbert space contractively included in H(K.)
and H(K3).

Lemma 2.2 (Schwartz). Let K; and Ky be two C,,xp-valued func-
tions, positive on ), and let I1(Ky, K3) denote the set of all functions
K positive on 2 and such that K < K1 and K < K. Then I(K;, K>)
is inductive.

Proof of Lemma 2.1. The intersection H = H(K1) N H(K3) endowed
with the inner product ( , ) is clearly a pre-Hilbert space. Let (f,) be
a Cauchy sequence in H. Then it is also a Cauchy sequence in H(K7)
and H(K3), and thus there exists f in H(K;) and g in H(K>5) such
that

Jin gy = S
in the H(K;) norm, and

lim f, =g

p—ro0

in the H(K3) norm.
Let w be in Q and ¢ be in C,,,

fw) = (£, Ki(hw)or, = lm (fp, Ki(hw)e)k, = lim " fp(w)

p—+oo p—+oo

and, similarly,
c'g(w) = lim c*fp(w).

p——+oo
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Hence, f = g, and f belongs to H. It is easy to check that lim f, = f
in H, and so H is a Hilbert space. Moreover, by the definition of its
norm, H is contractively included in H(K;) and H(K3).

Finally, the inequalities
[ F W) < NIfllk, - Ki(w,w)e < ||f[fice" Ki(w,w)e

express that H is a reproducing kernel Hilbert space. u]
Let K be the reproducing kernel of H. By the contractive inclusions,
we have
(2.1) K <K,
K < K,.

In some special cases, the space H(K;) N H(K>) is closely related to
the overlapping subspaces defined by de Branges (see [6], [7]).

Proof of Lemma 2.2. Let (K;);cs be an ordered subset of I(Ky, K»).
We first remark that, for each z in Q and ¢ in C,, (¢*Kj(z,2)c)jcs is
an increasing bounded sequence of positive numbers.

Let w be in Q, d in C,, and i < j (4,7 € J). Then, H(K;) is
contractively included in H(K;) and, in particular,

(2.3) 1Ki( w)dl[%, < 1Ki(-w)dllk, = d"K;(w,w)d.
Moreover,

C*Ki(sz)d - C*Kj (z,w)d = <Kl(’w)d - Kj('a w)da Kj('a Z)C>K

i
and the Cauchy Schwartz inequality and (2.3) lead easily to

|c* K; (2, w)d—c* K;(z,w)d|* < (c* K;(z, 2)c) (d* K; (w, w)d—d* K j (w, w)d).

Hence, K(z,w) = lim; K;(z,w) exists for any z and w in Q. It is
clearly positive and in I(K7, K2), and hence this latter is inductive.
O

By Zorn’s lemma, the set I(Kj, K3) admits a maximum element
Kpfax - Suppose that H(K; — Kyax) N H(K2 — Kyax ) # {0}. By
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Lemma 2.1, this intersection is then a reproducing kernel Hilbert space
with a nonzero reproducing kernel K satisfying

K < Ky — Kyax

and
K S K2 - KMaxa

contradicting the maximality of Kyjax -

As a corollary, we have

Corollary 2.1. Let K be a difference of two positive functions:
K = K; — Ky. Then, without loss of generality, one can choose K;
and Ky such that H(K;,) N H(K3) = {0}.

The kernels K; and K5 are then called “étrangers” in [10].

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. One direction is clear. Suppose that K (z,w) is
the reproducing kernel of some reproducing kernel Krein space (I, [, ])
and let X = K, [+]K_ be a decomposition of K into a direct and
orthogonal sum of a Hilbert space K and of an antiHilbert space K_
(i.e., K_ endowed with —[ , ] is a Hilbert space); let P, (respectively,
P_) denote the orthogonal projection from C onto Ky (respectively,
K-).

f*K(ZM)?? = [Kwna Kzg] = [P+Kw777 P+Kz£] - (—[P—KMI, P—Kzé-])

exhibits K as a difference of two positive functions.

To prove the converse statement, let K = K;— K5 be a decomposition
of the symmetric function K into a difference of two positive functions.
By Corollary 2.1, we can suppose that H(K;) N H(K2) = {0}. Then
the space

K={f=fi+fsfie HK;),i=1,2},

endowed with the inner product

(f, [y = (f1, f1) K1 + (fa, f2) K2,
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is a Hilbert space. Moreover, the map o defined by
of =fi—fa

is easily seen to be selfadjoint and unitary from K to K, K,c belongs
to K for any w in Q and ¢ in C,,; with

[faf]K:<f70f>a

we have

¢ f(w) = [f, Kuc],
and so K is a reproducing kernel Krein space with reproducing kernel
K. o

We now give an example, due to L. Schwartz, of a symmetric function
which cannot be written as a difference of two positive functions.

Theorem 2.2. Let B be a reflexive real Banach space with a norm
|| l|B not equivalent to a quadratic norm and let B’ be its dual. Let
E = B x B, endowed with the norm || ||k,

I, o) = llzll% + llellB,
and the hermitian form [, |g,

[(z, ), (¥, V)] e = o(y) + ¥ ().

Then [ , |g cannot be represented as a difference of two positive
functions on E.

Proof of Theorem 2.2. We proceed in a number of steps and denote
by capital letters X,Y, ... the elements of E.

Step 1. The space E endowed with [, |z is not decomposable and

the norm || ||g is an admissible majorant for [ , |g (i.e., the form
(X,Y) = [X,Y]g is jointly continuous in X and Y in the topology
induced by || ||z and any continuous linear functional on E has the

form X — [X,Y]g for some Y in E).
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Proof of Step 1. See [5; Example 5.6, p. 90].

We can thus identify E with its dual E’ and with K = L.s.{Ky,Y €
E} where ls. stands for linear span and Ky denotes the function
X = [X,Y]g.

Suppose that the function K(X,Y) = [X,Y]g can be written as a
difference of two functions positive on . Then, by Theorem 2.1, there
exists a reproducing kernel Krein space /I with reproducing kernel K,
and thus,

[X,Y]E:[Kx,Ky] <UKX7Ky>K;

’% —
where (, )x makes K into a Hilbert space and o is both selfadjoint
and unitary in the Hilbert space (K, (, )x).

Step 2. There exists M < oo such that

(2.4) IKx|le < M||X][g, XeFE

Proof of Step 2. We show that the map 7 : i(X) = Kx is closed. The
inequality (2.4) will follow by the closed graph theorem.

Let X, be a sequence in E which converges in F (to X) and such
that Kx, converges in K (to an element Y in K). Then each Kx
defines a linear continuous functional in X, namely, X — [X, X,,]x, and
these functionals converge to some linear continuous function which, by
the Riesz representation theorem, is of the form X — [X, Y]k for some
Y in K. We show that Y = X,. Let U be in F,

Y — X, Ul = [Y, Ul — [X,Ulx
=[Y,Ulx — [X,Ulg
:hm[Xn,U];C — [Xn,U]E;

hence, Y = X, since FE is dense in I, which ends the proof of Step 2.

By inequality (2.4), each element Y in K defines a linear continuous
functional on E by X — [X,Y]g, and, thus, after identification of the
functional with Y,

EcCcKcCE.

Since E = E', we deduce E = K, a contradiction, since F is not
decomposable. a
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About spaces with two norms, we refer to the paper [9].

3. An existence theorem. In this section we consider the special
case where the function K(z,w) is jointly analytic in z and @ for z and
w in a neighborhood of the origin. The following theorem improves a
result of [1] where functions K(z,w) of a certain type (displacement
kernels) were considered. As in [1], the associated reproducing kernel
Krein space is described as an operator range. The characterization
of reproducing kernel Krein spaces as operator range goes back to
Schwartz [10]. About operator ranges and reproducing kernel Hilbert
spaces, we also mention [4] and [8].

Theorem 3.1. Let K(z,w) be a C,xn-valued function symmetric
and jointly analytic in z and @ for |z| <r, |w| < r. Then, there exists
a reproducing kernel Krein space of C,-valued functions analytic for
|z| < r' (where r' < 1), with reproducing kernel K.

Proof. We proceed in a number of steps and first suppose r > 1. We
will denote by H?2 the space of n x 1 vectors with entries in H?2, the
classical Hardy space of the circle, with inner product

1 o * (it it
o) =50 [ gt
Step 1. If r > 1, the operator P defined by
1 2 ) )
(P)(2) = o= | K(ze")f(e")adt
271' 0

is bounded and selfadjoint from H? into itself; moreover, for any w in
the unit disk D and any ¢ in C,,, the function K,c belongs to Ran P,
the range of P.

Proof of Step 1. The function Pf is analytic in D. Let M =
sup || K(z,w)||, where the supremum is on z and w of modulus less
than r. By the Cauchy-Schwartz inequality,

1PfII(2) < MI[f]|az,
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and, hence, Pf belongs to H2 and ||P|| < M.

Moreover, for f and g in H2,

1 2T 27 . ) , ,
(Pfygluz = (f, Pg)nuz = 4—7r2/ / g (e )K (e, e ) f(e™ ) dt dt',
o Jo

and, hence, P is selfadjoint.

Finally, for f(z) = ¢/(1 — 2w*), |w| < 1, the Cauchy’s formula leads
to
(Pf)(z) = K(z,w)e
which ends the proof of Step 1.

The Steps 2 and 3 are taken from [1]. Proofs are provided for
completeness.

Before proceeding to Step 2 we define on Ran P two hermitian forms
<7 >Pand[a ]Pby

(Pu, Pu)p = {|Plu,v) s

and
[P’U,,P’U]p = <Pu7 ’U>H7217
where |P| is the absolute value of the selfadjoint operator P.

These two forms are easily seen to be well defined, and Ran P endowed
with (, )p is clearly a prehilbert space.

Step 2. Let KC denote the closure of Ran P in the (, )p inner product.
Then, K endowed with [, ]p is a Krein space.

Proof of Step 2. Let o denote the signum of P and note that
o(Ran P) C Ran P. For u and v in H2, we have

(cPu,0Pv)p = (Pu, Pv)p
(cPu, Pv)p = (Pu,0Pv)p

so that o extends to a continuous operator both self adjoint and unitary
from K into K. Moreover, the equality

[Pu, Pv]p = (0 Pu, Pv)p
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expresses that K endowed with [, ]p is a Krein space.

Step 3. The space K defined in Step 2 is a reproducing kernel Krein
space included (in general nonisometrically) in H2 with reproducing
kernel K(z,w).

Proof of Step 3. Let p,(z) = 1 — zw*. Then, as seen in Step 1,
Pec/p, = K,ec,

[Pu, K,c]p = (Pu,c/pu) 2 = c*(Pu)(w),

which permits one to conclude that K is a reproducing kernel Krein
space of functions analytic in D with reproducing kernel K (z,w).

To show that K C H2, we use the easily checked inequality
(Pu, Pu) gz < || |P|? ||*(Pu, Pu)x,

where || |P|'/?|| is the norm of |P|'/? as an operator from H? into
H2. Hence, a Cauchy sequence in K is a Cauchy sequence in H2. Let
(Pu;)i>0 be a Cauchy sequence of elements in Ran P in the K-norm,
and let f and g be the limit of this sequence in the L norm and in the
H? norm, respectively. Then, for w in D,

¢* f(w) = im[Pu;, K,c|p
= lim[Pu;, Pc/py,|p
= lim(Puy, ¢/ pw) o2
= (9, C//’W>H$1
= c*g(w).

Thus, f = g, which concludes the proof of Step 3.

To conclude the proof of the theorem, it remains to consider the case
where r < 1. If the function K (z,w) is jointly analytic in z and w in the
disk of radius r, the function K,(z,w) = K(pz, pw) is jointly analytic
for z,w of modulus strictly bigger than 1, if p is small enough.

Let K, be the reproducing kernel Krein space with reproducing kernel
K, built as in Steps 1-3, and let K be defined by

K=A{f;f(z) = F(z/p); F € K,}
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with inner product

[f, 9l = [F, Gk,
if 9(2) = G(2/p).
The function z — K(z, pw) belongs to K, and, for

[, K (s pw)clic = [F, K (p-, pw)clic, = ¢"F(pw) = c* f(w)

which concludes the proof. u]

4. A nonuniqueness counterexample. The fact that different
Krein spaces may be associated to the same reproducing kernel function
was first noted by L. Schwartz, who called such kernels multiplicity
kernels and gave criteria for multiplicity and uniqueness, and also
presented an example of a multiplicity kernel. We here present another
example of a multiplicity kernel.

Let 7 < 1 and let I, be the space of functions which are restrictions
to |z| < r of an element of H2 with norm

(4.1) 11, = 1F]lm2
if
f=Fp,.
The norm (4.1) is well defined since the restriction of an element of
HZ to D, uniquely characterizes this element.

The space K, is in fact easily seen to be the reproducing kernel Hilbert
space with reproducing kernel

Iy

1— zw*’

where z and w are restricted to D,., and where I, = ((1) ?)

Let us define on /C, the indefinite inner product

[f’g]}Cr = <F7 JG>H§7

=0 5)

where
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The space K, with the hermitian form [, |k, is also easily seen to be
a reproducing kernel Krein space with reproducing kernel

J

b)
1— zw*

(4.2)

with z and w in D,..

We now construct another Krein space with the same reproducing
kernel. Let us first define

chf shé
T_<sh0 ch6>’

where 6 € R is such that e ? = 7.

The matrix T satisfies

(4.3) eI, <T <l
and
(4.4) TJT* =J

(this latter property being called J-unitarity).

Theorem 4.1. Let K denote the set of Cq-valued power series
f(2) =320 faz™ such that

(4.5) 1F11% =D ST fa < o0,
0

and define on K the indefinite inner product

(oo}

(4'6) [faf]IC:Zf:an

0

Then K is a reproducing kernel Krein space of Cy-valued functions
analytic in D, with reproducing kernel (4.2).
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Proof of Theorem 4.1. To ease the presentation, the proof is divided
in steps.

Step 1. K is a Hilbert space of functions analytic in D,..

Proof of Step 1. From (4.3) one sees that elements of IC are analytic
in D,; (K,(, )x) is clearly a prehilbert space. Let us show that it
is complete. Let (f(P)) be a Cauchy sequence of elements of ; the
sequences

n— T f{P)

then form a Cauchy sequence in the Hilbert space 12 of Cs-valued
sequences (fio, pt1,...) such that > 0% ukp, < co. There thus exists
an element (g,,) of I3 such that

= lim T"f® (limit in the I3 norm).
p—00

Let f(z) = > o T "gnz". One shows without difficulty that f is in K
and that
lim || — f*||x = 0,

hence, the completeness of K.
Step 2. Let o be defined by

— Z T72n an e
0
Then o is both unitary and selfadjoint from /C into .

Proof of Step 2. To compute (of,0f)x, one makes use of the J-
unitarity of the matrix 7"

(cf,of)c =Y fJT > T*"T*"Jf,
0

= i JTJf,
0

:Z Tann_ 7f>KZ
0

since JT 2" J = T2,
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From Steps 1 and 2 it follows that I endowed with [, | (defined in
(4.3)) is a Krein space.

Step 3. Let w € D, and ¢ be in Cy. The function K,c : z —
Jc/(1 — zw*) belongs to K and, for f in K,

[f Kud] = ¢ f(w).

Proof of Step 3. The power expansion

[e'S)
1—Z(,d* Z cw* "

leads to -

(Kye, Kyc)x = Z|w\2"c*JT2"Jc
0
o0

S Z |w‘2nC*C€29n
0
c*c <
——— < 0
~ 1 (jwle?)? ’

and, thus, K c belongs to .
Let f: f(z) =3 fnz"™ be in K. Then

[f, Kuc] Zw"c*Jan—c f(w),

which concludes the proof of Step 3.

To conclude the proof, it remains to show that indeed K and /C, are
different Krein spaces.

Take f(2) = Y. n ( )z where a > 0. Then f belongs to K
since

oo

(f, Flx= Z(l, —-1)T*" <_11> n2® — anzae—mo < .

0

On the other hand, f does not belong to X, since

Zf;fn:Zana:—i—oo
0 0
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Similarly, the function f(z) = >.7° & (i) 2™ is in H2, and, thus, its
restriction to D, is in /C,. It is not in K since

oo o0 1
*r2n _ 2nf __
;fnT fn—221:ﬁ6 = +00.
So, neither X C K, nor K, C K. O
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