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A SKOROHOD REPRESENTATION AND
AN INVARIANCE PRINCIPLE FOR
SUMS OF WEIGHTED i.i.d. RANDOM VARIABLES

EVAN FISHER

ABSTRACT. A Skorohod representation is obtained for
sums of weighted i.i.d. random variables, extending the i.i.d.
case. This leads to a functional law of the iterated logarithm
and other invariance results. In this setting, the results are
not included as special cases of previous martingale results.

1. Introduction. Let {X) : k = 1,2,...} be a sequence of i.i.d.
random variables with EX; =0 and EX? = 1. Let {ax : k=1,2,...}
be a sequence of real numbers. We refer to these as “weights.” Define
the sum, S,,, of weighted i.i.d. random variables as S,, = ZZ=1 apXg.

In Section 2 of this paper a Skorohod representation is obtained for
the sums S,. This is the content of Theorem 2.1 and Theorem 2.2.
These results extend the original representation by Skorohod [11] for
sums of i.i.d. random variables.

Section 3 consists of applications of the Skorohod representation
derived in Section 2. In particular, we obtain a functional law of
the iterated logarithm (Theorem 3.2) and an almost sure invariance
principle for sums of weighted i.i.d. random variables (Theorem 3.3).
These are analogous to the results obtained by Strassen [13] in the i.i.d.
case. A central limit theorem (Theorem 3.1) and a classical law of the
iterated logarithm (Corollary 3.4) are also obtained. We remark that
all the results derived here are extensions of the i.i.d. case, i.e., where
ap = 1.

Since Skorohod and Strassen proved their results for i.i.d. random
variables, analogous results have been obtained for martingales, notably
by Strassen [14], Jain, Jogdeo and Stout [7], Heyde and Scott [6], and
Hall and Heyde [5]. However, the Skorohod representation derived in
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this paper differs from the martingale results. In the specific setting
of weighted i.i.d. random variables, an explicit representation for the
“embedding times” {T},} is obtained (see Theorem 2.2). This is crucial
in obtaining results for weighted i.i.d. random variables that are more
easily accessible and of wider applicability than the martingale results
as applied in this setting. We close the paper with a simple example
illustrating this.

2. A Skorohod representation. We use the construction derived
by Billingsley [1] in his proof of the Skorohod embedding for i.i.d. ran-
dom variables as the basis for the construction used here for weighted
i.i.d. random variables.

Let X be a random variable defined on (Q, F, P) with EX = 0 and
EX? = 1. In [1] it is shown that, on some probability space, a standard
Brownian motion {B(t) : t > 0} and a stopping time 7 exist so that
B(7) = X in dist. (distribution) and ET = 1.

Theorem 2.1. Let a € R. There exists a stopping time o such that
B(o) = aX in dist. and o = a’7 in dist.

Let {Xy}, {ax} and {S,} be as described in Section 1. Theorem
2.2, the Skorohod representation for the sums S,, will follow in the
standard manner.

We note that all Brownian motions described in this paper are
standard Brownian motions.

Theorem 2.2. There exists a probability space with a Brownian
motion {B(t) : t > 0} and nonnegative random variables {T,} defined
on it such that (S1,Ss,...) = (B(T1),B(Tz),...) in dist. and T,, =
Soh_, aimy, with {7} i.i.d. satisfying 7, > 0 and E7, = 1.

Proof of Theorem 2.1. The proof is divided into three parts. We
use as the foundation in the proof a construction used by Billingsley
[1, Theorem 37.6]. There, a martingale {(X%,Gx) : k = 1,2,...} is
defined with X — X a.s. Let {B(¢) : t > 0} be a Brownian motion
on a possibly different probability space. A sequence of stopping times
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71 < 15 <... is obtained such that
(1) (B(Tl),B(TQ),...):(Xl,XQ,...) in dist.

Further, it is shown that

(2) T=lim7, ask — oo exists a.s.
such that
(3) B(r) =X indist. and E7T=1.

In part (i) of the proof we describe the basic construction used by
Billingsley. Refer to [1] for more details.

In part (ii) we show that under this construction the distribution of
7 is uniquely determined independent of the Brownian motion and the
space on which it is defined.

In part (iii) we obtain a stopping time o as described in the statement
of Theorem 2.1.

Part (i). We may assume that X is nondegenerate. Define X =
E[X|Gy] where Gy, is constructed inductively. Define G; to be the o-
field generated by the partition {X € (—o00,0], X € (0,00)}. Denote Gy
as o{X € I ; : j = 1,2} where I ; and I; » are the intervals (—o0, 0]
and (0, c0).

Denote by p the measure on the Borel sets of R induced by X, i.e.,
p=PX~1 For H, an interval in R with u(H) > 0 define M (H) as

M(H) = (1/u(H)) /H z du(z).

Denote the interior of H as H°.
In general, suppose G,, has been defined as

Ghn=o{X€el,,:k=12,... ,k,}

for some set of intervals {I,j} partitioning R. The o-field G, 11 is
defined as

Gn+1 = U{X € In-l—l,k tk= 1a27' .. 7kn+1}
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where {I,, 11} is a set of intervals further partitioning R. In particular,
the set of intervals {I,, 41} is obtained from the set of intervals {I,, 1 }
in the following way: If u(Iy) ;) > 0, subdivide I, x with M (I, ) into
two subintervals I, 11 and It . If u(IS,k) =0, leave I, . intact.

If p(Ing1ke) > 0, let Xpqq(w) = M(Lpyrk) for w € [ X € Ly
If p(Ip+1,k) = 0, we can arbitrarily assign X,41(w) = X,(w) for
we [X € Iyl

For a discrete random variable Z, define R(Z) to be the set of points
where its distribution is concentrated.

Let {B(t) : t > 0} be a Brownian motion on some probability space.
We define a sequence of stopping times {7, : n = 1,2,...} for {B(t)}
inductively. Let 7p = 0. Then, defining 7,, as

(4) o =inf {t > 7_1 : B(t) € R(X,)}

Billingsley [1] obtains (1)—(3).
Part (ii). Let 77 = 7)) and

(5) Tp=1W 4 7@ 47O oy )
where 7(%) is defined by

(6) T =Tk 1+ 7"

Suppose x € R(Xj). Conditional on the set [ X}, = z], the distribution
of X1 is concentrated at the points we denote u, and v,. By (1) and
(4) it follows that the conditional distribution of B(7x,1) on the set
[B(7x) = z] is also concentrated at the points u, and v,.

Define the Brownian motion {B*+1(¢) : ¢ > 0} for k =1,2,... ,n—1
as

B¥D(t) = B(my, +t) — B(r).

Let x € R(Xg). For k = 1,2,...,n — 1, define the stopping time
k4D [z] for {B*+D(£) : t > 0} by

P[] = inf [t 2 05 BEHD () € {(ua — 2), (ve — 2)}]
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Let r; > 0 for: =1,2,... ,n. We obtain

P[("’)<rk-k:12 ]

_Z ZP <rkB(Tk)—9«'k k=12,...,n]
(M —Z anql, (1) = 21, 7* D[] < 7,

B(Hl)(T(kH)) = (@hs1 — @) s k=1,... ,n—1]

(@]

where z; ranges over the set R(X;). Here we are using the fact that on
the set [B(1}) = ] the equality 7*+V[z;] = 7*+1) holds.

Using the independence of the random vectors
{(r1, B(11)), (0" D[], BV (V[ ])) k=1, on — 1}

(see [1, pp. 461-462)) for z, € R(X}), we obtain the equivalence of (7)
to

Z Zpﬁ <r,B H (0D

< Tk+1,B(k+1)(T(k+1) [zk]) = a(zp41 — i)

??‘

The probabilities within this summation are independent of the
Brownian motion [9, 62] and hence the distribution of 7, is uniquely
determined.

Define F(z) = P[Z < z] for a random variable Z. Clearly, 7 1 7 a.s.
Hence, for t € R, we may write (7 < t) = Ny(7, < t) and therefore
obtain

F.(t) = liTILn F, (t).

Hence, the distribution of 7 is uniquely determined, independent of the
Brownian motion and the space on which it is defined.

Part (iii). Define the Brownian motion (B*(t),t > 0) by B*(t) =
(1/a)B(a®t). Let 7* be the stopping time derived using the construction
described in parts (i) and (ii). Then B*(r*) = X in dist. and 7* = 7
in dist.



174 E. FISHER

It follows that B(a?7*) = aX in dist. Let o be the stopping time
for {B(t),t > 0} defined by o = a?7*. This stopping time satisfies the
conditions described by the statement of Theorem 2.1. ]

Proof of Theorem 2.2. A modification of the proof of Theorem 37.7
in [1] is sufficient to prove the result. Let {B(t) : ¢ > 0} be a
Brownian motion on some probability space. Define {BM(t) : ¢t > 0}
by B (t) = B(t). Using the construction described in Theorem 2.1, a
stopping time §; exists such that

BW(4,) =a; X in dist.

and
01 = a%T in dist.
where 7 is a stopping time with E7 = 1.

Proceed inductively, using the construction of Theorem 2.1, to obtain
stopping times {0}, : k = 1,2,...} for Brownian motions {B®)(t) : t >
0}, where

B*tD (1) = B (g, +t) = BW(5;) : k= 1,2,...
such that
(9) B®(§,) = ap X, in dist.

Furthermore, it follows from the remark following the proof of Theorem
2.1 that
Sp = ajT in dist.

The random vectors {(Jx, B*)(6;)) : k = 1,2,...} are independent
[1, 461-462]. Therefore, defining T;, as

Tn:ZJk forn=1,2,...
k=1

it follows that

n
Tn: E airk
k=1
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for {r : k =1,2,...}iid. satisfying 7, > 0 and E7, = 1. We observe
that B(T,,) = >_._, B%)(4;). Hence, by (9), the result follows. o

3. Applications. Let {X} : k = 1,2,...} be a sequence of i.i.d.
random variables with EX; = 0 and EX? = 1. Let the sequence of
real numbers {a, : n =1,2,...} be given. Define A,, by

(10) =34

and define the sum, S,,, of weighted i.i.d. random variables as S,, =
ZZ:l aka.

Consider the form of the random variables {T}, : n = 1,2,...} as
described in Theorem 2.2. In particular, we can write T), as

n
Tnz E aiTk
k=1

where {7 : k = 1,2,...} is a sequence of i.i.d. random variables with
7, > 0 and E7, = 1.

We say that the “strong law holds for {T},}” if
(11) T,/A%2 = 1as. asn— oo.

Lemma 3.1. Sufficient conditions for the strong law, (11), to hold
are that

2
Ay — o0
and
n

(A) a2 /A2 = (1) .

Proof. This follows as a special case in [4] and [8]. u]
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In a paper by Chow and Teicher [2] that is referred to following
Corollary 3.4, it is noted that condition (A) and A2 — oo include the
cases

an = +n”, —(1/2) < B <

and
an = £nP(logn)®, B>—(1/2) or f=-(1/2) <a< oo,
and exclude exponential (geometric) growth.

Note. It is to be pointed out that the conclusions in Theorems 3.1-3.3
and Corollary 3.4 continue to hold if condition (A) in the hypotheses is
replaced by any condition(s) ensuring that the strong law, (11), holds.

Also, we note that the results in this section are extensions of results
for i.i.d. random variables, i.e., for a; = 1.

We first obtain a central limit theorem for weighted i.i.d. random
variables.

Theorem 3.1. If A2 1 0o and condition (A) holds, then
S,
An

where Z is a standard normal random variable.

— Z weakly asn — oo

Proof. Using Theorem 2.2 and Lemma 3.1, the proof follows exactly
that in [1, p. 462]. O

Theorem 3.1 also follows as a special case of the Lindeberg Central
Limit Theorem (see Chow and Teicher [3]).

Let C[0, 1] be the space of continuous functions on the closed interval
[0, 1] with the uniform metric p(z,y) = supg<;<; |2(t) — y(¢)]. Let K
be the set of absolutely continuous z € C[0,1] with z(0) = 0 and
Jy @2(t)dt < 1.

Define the random function S(r) : » > 0 by linearly interpolating S,
on [A2, A2 1] so that

S(T) = Sn + (7‘ - Ai)(AiJrl - Ai)ilanJranJrl

12
(12) for A2 <r < AZ,,.
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Now, define U, (t) € C[0,1] for n =1,2,... as
Un(t) = (242 logy A2)™V/25(420)

We now prove a functional LIL for weighted i.i.d. random variables.

Theorem 3.2. If A2 1 oo and condition (A) holds, then with
probability one the sequence {U, : n = 1,2,...} is relatively compact
and the set of its a.s. limit points coincides with K.

Proof. The theorem may be proved, with some modifications, in the
manner of Strassen [13] or Stout [12, pp. 291-293] in the i.i.d. case.

However, a generalization of the argument has been developed by
Hall and Heyde [5, Theorem B, p. 119]. We will show that their result
can be applied here.

Construct the sequence {U,, } on a possibly different probability space
using the Skorohod representation of Theorem 2.2. In particular,
redefine the sequence {S,, : n = 1,2,...} using {S} : n = 1,2,...}
in its place where S} = B(T3,).

To apply Theorem B in Hall and Heyde [5] it is sufficient to show
that the conditions

(13) T, — 00 a.8.,
(14) T71A2 =1 as.
and

(15) T, 'T, —1as.

hold. It follows immediately that these conditions hold using condition
(A) and its implication that (11) holds and that A2 ,(A2)™' — 1.
O

Note. In the verification that (13)—(15) hold, condition (A) is used
to imply (11) and that A2,,(A2)"* — 1. That A2, (42)"! —» 1
also follows from A2 1 oo and (11) (see Jamison et al. [8, p. 40] for a
standard argument of this).
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An integral part of the proof of Theorem B in [5, p. 120] is the
establishment of an almost sure invariance principle that translates
here to one for weighted i.i.d. random variables.

Theorem 3.3. If A2 1 co and condition (A) holds, then on some
probability space, one can define a Brownian motion {B(r) : r > 0}
and redefine {S(r) : r > 0}, (12), without changing its distribution so

that
L S() - B()

=0 a.s.
r—oo (rlogy r)t/2 a9

The following LIL follows as a corollary of Theorem 3.2.
Corollary 3.4. If A2 1 0o and condition (A) holds, then

Sn
lim sup =1 a.s.

n—oo (247 logy A7)/

Proof. See [5, Theorem 4.8] for a standard proof that the functional
LIL implies the classical LIL. u]

The LIL of Corollary 3.4 has also been obtained through a classical
proof by Chow and Teicher [2, Theorem 1] and can be obtained as a
special case of a classical LIL for martingales proved by Tomkins [16].

As a note of interest, Teicher has shown that the LIL fails for {a,} of
geometric growth (see [15, Theorem 5]). We refer the interested reader
to a paper by Rosalsky [10] where {a,} of this type is considered.

We conclude with a simple example that satisfies the hypotheses of
the results here for weighted i.i.d. random variables but fails to satisfy
those for martingales, as discussed in Section 1.

Example. Let P[X = +/n] = C/(n?logn(logyn)?), for n =
3,4,.... Withar =1for k =1,2,... and {X; : i = 1,2,...} iid.
distributed as X, condition (25) of Theorem 3.1 in [7] fails as does
condition (138) of Theorem 4.4 in [14].



A SKOROHOD REPRESENTATION 179

With X as defined above and with a, = k'/2 for k = 1,2,..., one
can verify that condition (1) of [6, Theorem 1] does not hold.

However, the hypotheses of the theorems in this paper clearly hold
for these examples.
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