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ON CONTINUED FRACTIONS K (a,/1),
WHERE ALL a, ARE LYING ON A CARTESIAN OVAL

HAAKON WAADELAND

ABSTRACT. In a recent paper L. Jacobsen and W.J. Thron
have proved results on oval convergence regions and circular
limit regions for continued fractions. In the present paper
is discussed what happens to the limit region when the oval
region is replaced by its boundary. This extends earlier
results on boundary versions of Worpitzky’s theorem and the
parabola theorem.

1. Introduction. The present paper deals with continued fractions

o0

(1.1) K2

n
n=11"

and the type of problem to be discussed is: What can be said about
the values of (1.1) when all elements a,, are in a prescribed convergence
region E7? For analytic theory of continued fractions generally, as well
as for special concepts like, for instance, “convergence region,” we refer
to the monograph [2]. Following the tradition there, the word “region,”
used in concepts such as “element region,” “convergence region,” “value
region,” “limit region,” simply means a set of complex numbers. The
definition of those concepts are also contained in Section 2 of [1].

Our starting point is one of the theorems in [1]. We first need to
introduce two special types of sets, whose role in continued fraction
theory goes back to Lane [4].

Let I' be a complex number with

(1.2) I < 14T
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(or equivalently ReI' > —1/2), and let p be a positive number < |1+T.
Then V(T p) shall denote the closed circular disk

(13) V(D p) = {w: fw — I < p},

and E(T, p) shall denote the set
(1.4) B
BT, p) o= {w: [w(1+T) — D1+ TP — )| + plu| < p(I1 + TP — p?)}.

We could also call E(T, p) a disk, but not a circular disk. Its boundary,
OE(T,p) is a Cartesian oval, which, at least in the cases we are
interested in here, is a simple, closed curve with some resemblance
to an ellipse.

Theorem 1.1. [1, Theorem 3.1]. If p > ||, then E(T,p) is
a convergence region and V(T,p) a corresponding limit region for
continued fractions (1.1).

Theorem 1.1 tells that any continued fraction (1.1) with all a, in
E(T, p) will converge, and that its value will be located in V(T p). (It
actually tells more, but right now this is what we need.)

We shall here restrict ourselves to a special family of oval convergence
regions, given by the conditions

1
(1.5) I'>0 and p:F+§—€(F),

where ¢ is a positive (continuous) function with the properties
1
(1.6) e(T) =0 when I' -0 and when I — oo, le(T)] < 3

(Actually, we shall always think of ¢ as being “very small.”) We have
in this case that

(1.3) V(I‘,I‘—i—%—s(l‘)) - {w:w—F| §F+%—5(F)}
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and
(1.4")

E(P,r+%s(r)> :{w:(1+r)wr<r+%§> (1+2)

< <F+%—e> <F+%—%> (1+25)}.

Here and in the following we write ¢ instead of ¢(I'). Where no
confusion is possible, we shall also write V instead of V(I',T" + (1/2) —
g(T")) and E instead of E(T',T' + (1/2) — ¢(I)).

The boundary OV of V intersects the real axis at
7—1 + nd at 2" + —1 —
a .
5 € a 5 €

The boundary OF of E intersects the real axis at

1 1
_Z+82 and at <F+Z—%> (14 2¢).

Keeping in mind that € was chosen such that ¢ —+ 0 when I' — 0 or
I' = oo we find in the extreme cases

r=o0

(1.6) P (0.g) = {ws i< g}
(L.7) v (0, %) - {w ol < %}

and Theorem 1.1 is in this case the famous Worpitzky theorem [9].
' = o0

In this case, if we take the closure, the oval region degenerates to the
parabolic region

(18) 8P~ {uw:jul < Rew+ 3 |,
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and the limit region, the circular disk, degenerates to the half plane
1
(1.9) (V:)H:{w:Rewzi}.

The last statement is almost immediate, the first one is not so obvious,
but also not difficult. It is proved in [1, Theorem 8.1] for the case ¢ = 0,
but the e we have here does not make any essential change in the proof.
The case I' — oo thus gives the Scott-Wall parabolic region [6]. Since
this is not a convergence region, only a conditional convergence region,
we do not get a special case of Theorem 1.1 here.

These considerations justify the statement of Jacobsen and Thron
in [1]: “If I' > 0 the ovals represent a connecting link between the
Worpitzky disk and the Scott and Wall parabola.” They actually also
have a bridge [1, Theorem 8.2] between the Worpitzky disk and the
more general parabolic region

: 1
|w| — Re (we™2%*) < 3 cos® a,

[7], but we shall not be needing that in the present paper.

Before presenting the problem to be discussed in this paper we need
to point out two properties of the limit regions in the Worpitzky case
and the Scott-Wall case. In addition to knowing that in the first case
0 < |an| < 1/4 for all n implies 0 < |f] < 1/2 for all values of the
continued fractions we also know that all values in 0 < |w| < 1/2
are taken. In the second case we similarly know that for all a, in
the parabolic region minus the origin any point in the half plane
Rew > —1/2 minus the origin is taken on as a value of some continued
fraction in the family. With E as the element region and V as the set
of values we shall in this paper phrase it as follows: V is the range of
the family of continued fractions (1.1) defined by the condition a,, € E
for all n. The other property to be pointed out is the following, which
is an immediate consequence of the first property in both cases (and
even more generally): The range of the family of continued fractions
(1.1) defined by the condition a, € OF for all n contains OV.

We shall need to know that these properties also hold for the oval-disk
theorems in our case and will return to this later.
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2. The problem. In the paper [8] the following question was raised
and discussed in the Worpitzky case and the Scott-Wall case: What
happens to the range when FE is replaced by 0E? In the first case the
answer was that the range changes from

1
0< <z
ul < 5

to
1 1
= S |U)| S )
6 2
and in the second case the answer was that the range remained un-
changed, i.e., it was the half plane Rew > —1/2 minus the origin.

The problem to be discussed in the present paper is the same type
of question for the oval-disk case in the version defined by (1.3') and
(1.4') in Theorem 1.1. But before this can be raised as a meaningful
question, we need to know the range.

Observation A. Let I' be a fixed positive number. The range of
the family of continued fractions (1.1) defined by the condition that all
an € E(T,T + (1/2) — €) is the closed disk V(I',T + (1/2) — €) minus
the orign.

Proof of Observation A. The oval region is determined as the set of
all a, such that

a
cVv.
1+V —
Simple computation shows that
a
2.1
(2.1) 1+V
is a closed disk with center at
4ar'+-4
2.2
(22) (A0 + 3 — 26)(1 + 2¢)
and radius
41"+ 2 — 4e
(2.3) |lal.

(4T 4+ 3 — 2¢)(1 + 2¢)
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Fixing the argument of a and letting |a| increase until the boundary of
(2.1) hits the circle

1
(2.4) w—T|=T+5-¢

we get a union of disks (2.1). All the circles (boundaries of (2.1)) have
the same two tangents from the origin, and the union consists of all
points on the two tangent line segments to the last (largest) circle and
the largest connecting arc and all points inside. (The origin is not
a point in the set, which looks like a drawing of an ice cream cone.)
If we vary arga over all angles in [0,27) we see that the whole disk
|w—T] <T+(1/2) — ¢ is covered, except the origin. Take an arbitrary
w(©® in the punctured disk

1
(2.5) 0<|w—F\§F+§—s.

Since w(® is covered by some disk (2.1), there must be an a; in the
oval region and a w(!) in the punctured disk, such that

0= __ %
(2.6) w WO
(If w(® happens to be on the boundary, a; is unique and is on the
boundary of the oval region, as seen from the argument above. w)
is thus also unique, and it is easy to see that it cannot be an interior
point of (2.5).) We can continue this process without stopping and will
thus, to any arbitrary point w(® in (2.5), create a continued fraction
(1.1) with the property that for all n

(0 - 941 92 _ Gn

Sl 4+ 141w
Since, according to Theorem 1.1, E(I',T" + (1/2) — ¢) is a convergence
region and V(I',T'+(1/2)—¢) a corresponding limit region the continued
fraction converges and has its value f in (2.5). The question is: Does it
converge to w(®? The answer is yes, and it can be proved in different
ways. Since this paper pretty much is based upon [1], we use that paper
to establish this answer. In [1, Theorem 6.1] is proved an estimate,

which in our case takes the form (with standard notation from [2])
(2.7)

1 AT +1- 2 2% =
) n SQ F o ]-*
|f=Sn(wn) < +2 8)( 14 2¢ >( (2F+%—5)2>

(2.6')
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for any sequence from V, in particular for the sequence we get in
creating the continued fraction (tail sequence). Hence,

(0) = 1 =
(2.8) w nlgr;o Sn(wy) = 1,

and Observation A is proved. a

Observation B. If all a,, are restricted to the boundary OE(L,T +
(1/2) —¢€), the range will contain the whole circle

1
(2.4) w-T|=0+3 ¢

Proof. We know that the circle (2.4) is part of the range when
an, € E(T,T+(1/2) —¢). If K(a,/1) = f, where f is on (2.4), then no
an can be an interior point of the oval region, since then a neighborhood
of f would have to be in V, contradicting the assumption that f € V.
O

3. Some results. The basic principle for handling the problem in
the previous section is as follows.

Since the circle (2.4) is contained in the range of the family given by
1
(3.1) an € OFE <F,F + 3 e)

any circle

an

1+0V(I,T +1—¢)

1
an68E<F,F+§5>,

and hence the set
(3.2)

an

U ;
0, COE l+6V(F,F+ 3 *E)

is in the range of the family of continued fractions (1.1) given by (3.1).
On the other hand, the disk V(I',T" + (1/2) — ¢) contains the range of
this family, and hence

Qa
(3.3) U n
0 COE 1+V(F,F+ 3 *E)
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contains the range. Since the center moves on a simple, closed con-
tinuous curve surrounding the origin, and the radii are less than the
absolute value of the centers, then the sets (3.2) and (3.3) are the same.
Hence, (3.2) is actually the range we are looking for.

In order to handle this computationally, it seems to be of advantage
to represent the oval in polar coordinates. This is done in [1] more
generally. In our case, where I' > 0 and p > T (actually p =
'+ (1/2) — ¢), the formula (4.4) in [1] takes the form

r(8) = /[0 = T(T + L) cos 6% + (1 + T)2 — p?)(p? — T?)

(3.4) )
—[p* —T(T + 1) cos b, 0<6<2m.

Another useful form is

_ (1+1)% - p*)(p* - T?)
v+ -T(T+1)cosb]’
where /7 is the same square root as in (3.4). For later use,

we make the observations: When 6 increases from 0 to =, then r(6)
decreases from

(3.4") r(6)

1 ¢ 1 9
<F+Z§>(l+2&‘) to Z*S

(when we insert p =T + (1/2) —¢).

We find in the two extreme cases when we take into account the
e-conditions (1.6) (and maintain p =T + (1/2) —¢):

I'=0

1
r(6) = 7 0<0<2r (Worpitzky circle).

I' -

We divide numerator and denominator in (3.4') by I'Z, and let I' — oo.
This gives

r() = — 0<f<2m (Scott-Wall parabola).
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Back to the general case: From what is said before the range of the
family of continued fractions (1.1) with all a,, € dE(T,T + (1/2) — ¢)
is the set of all points (values) on all circles with center at

4T+ 4
(4T 4+ 3 —2¢)(1 + 2¢)

r(0)e

and radius
aI' + 2 — 4¢

(40 4+ 3 — 2¢)(1 + 2¢)

r(0),

when 6 varies in the interval [0, 27) (see (2.2) and (2.3)). If we choose
to describe the circles in cartesian coordinates we get

(3.5)

(4T + 4)r(f) cosf \* (4T + 4)r(f) sinf >
<°’”‘(4r+3—2e)(1+2e)> +<y_(4r+3—26)(1+25)>

AT +2 — 4e SR
- <(4F+325)(1+25)> r(6)"

One way of approaching the problem of determining the union of a
certain one-parameter family of “nice” sets (provided that they depend
sufficiently smoothly upon that parameter) is to find the envelope of
the family of curves bounding the sets. This is done by eliminating
between the equation for the curve family and the partial derivative
with respect to the parameter. The role of the envelope is that part of
it (or all of it) often is the boundary of the union set we are trying to
determine. We can in principle do this with (3.5), but essentially it will
not lead us to results we cannot obtain more easily. It is, in particular,
easy to carry it out in the two extreme cases and thereby reestablish
the results on boundary versions of the (Scott-Wall) parabola theorem
and Worpitzky’s theorem. However, for space reasons we shall leave
this out.

We already know that the set (3.3) must be contained in the disk
V(I, T + (1/2) — €) and that the circles in (3.2) must touch the circle
(2.4). This means that the circle (2.4) must be part of the envelope
of (3.5), we could call it “outer envelope.” This may be written in the
following way.
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Observation C. Let 0 < T' < oo, and let r(0) be given as in (3.4).
Then the following holds for all 6.

AT + 4 " AT +2 — de

3.6 f)ei® — T 9

B8 a3 _2oarze Ve tarss_oaso
1

Some words on computational verification. Without any computation
we already know, from the construction, that this is true. The easiest
way to check it computationally is to move the second term on the left
to the right hand side and square on both sides. Some rearranging gives
the quadratic equation for the right (). The logic of the argument is
taken care of.

We conclude this section by a descriptive theorem for the range.

Theorem 1. Let I' be a nonnegative number, 0 < € < 1/2, and let
F be the family of all continued fractions

(3.7) nIng"

which are such that for all n

()

(3.8) ‘(1+F)anI‘<F+%§> (1 + 2¢) +<I‘+%s> |

- <I‘+%—s> (F+Z—%> (1+2e).

Let L be the range of this family, i.e., the set of all possible values f a
continued fraction in F can take on.

Then

a) L is contained in the disk, given by

1
(3.9) w-T/<T+3 e

b) L contains the annulus, given by

1 (20 + 1 — 2¢)(1 — 2¢)
(3.10) F+2 € T 13-2%

1
Slw-T|<T+5 e
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c) The disk, given by

1—4¢?

3.11 _1-d4e
(3.11) vl < 5 sr— 22

does not overlap L.

The bounds in a), b), c) are best.

Proof. a) The inclusion statement is already proved, since we know
that the larger family, where all a,, are in an oval region (where = is
replaced by < in (3.8)), has a range contained in (3.9). The bestness
follows from the fact that any value on |w —T'| =T + (1/2) — ¢ is
taken at least once by some continued fraction (1.1) with all a, €
OE(I,T' 4 (1/2) —¢).

b) The circles (3.5) all touch the circle jw —T'| =T+ (1/2) —e. Let
d be the minimum diameter of the circles. Once we have found this
minimum and seen that it conforms with the left-hand side of (3.10),
b) is proved. The diameter is (see (3.5))

I'+ 2 — 4¢

@rs-2war2e)

Since the minimum value of r(#) is r(8) = (1/4) — 2, b) follows by
simple verification.

¢) The shortest distance from the origin to any point on a fixed circle
(3.5) is

4I' + 4 ) 4 4+ 2 — 4¢ ) 2
r(6) — r(f)=-——=——r
(AT +3—2¢)(1+2¢) (AT +3—2¢)(1+2¢) 4r'+-3—2¢

(6)-

Since the minimum of r(#) is (1/4) — 2 the shortest distance to any
point on any circle is
1 —4¢?
6+ 8 — 4e’

This proves c). (The bestness in b) left and c) follows from the fact
that any point on any circle (3.5) is in the range, in particular the ones
for = .) o
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Remarks. 1. Observe that for I' = 0 the theorem gives back the result
on the boundary version of Worpitzky’s theorem. (Keep in mind, here
and in Remark 2, the property (1.6).)

2. Observe that for I' — oo the disk in c) shrinks to the origin
(Scott-Wall parabola case). We also see from b) that the parallel strip
—(1/2) < Rew < 0 is in £ in this case, but this is not a very good
result.

3. Finally, observe that the disk (3.11) touches the inner circle of the
annulus (3.10) in the point

1 —4¢?
6+ 8 — 4e”

(Common point of “bestness.”)

We present some computer graphics illustrations of the way the range
is obtained as a union of circles. In the illustrations ¢ is so small that
it is negligible.

FIGURE 1. T'=0.
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FIGURE 2. T =0.3.

4. The significance of a;. By analyzing the method to establish
the range, we find exactly the same range by requiring

1
a1 € OF (F,F+§E)
1
a, € E I‘,F+§—s forn > 2
as the one we get if the condition is
1
a, € OF I‘,F—i—ﬁfa for all n.

Compared to the case a, € E(I,T" + (1/2) — &) we may therefore say
that a; alone decreases the range from the disk V(T',T + (1/2) —¢) to
the “disk with a hole.”
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FIGURE 3. I' = 2.

On the other hand, if
1
a EE(F,F+§ E)
whereas

1
an66E<F,F+§—5>,

then the range is again all of V(I',T"' 4 (1/2) — ¢), a new illustration of
the significance of the first parameter.
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