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THE SWAP CONJECTURE

RAYMOND F. TENNANT AND EDWARD C. TURNER

Introduction. We are interested in studying relationships among
the various generating sets for a finitely generated group. All groups
considered in this paper are assumed to be finitely generated.

Definition. Let Γn(G) = {(g1, . . . , gn)| the set {g1, . . . , gn} gener-
ates G} r(G) = rank of G = min{n|Γn(G) �= ∅}.

The generating sets γ1 and γ2 are Nielsen equivalent, written γ1 ∼N

γ2, if there is a sequence of Nielsen transformations, without deletions
or insertions, leading from γ1 to γ2. The generating sets γ1 and γ2 are
swap equivalent if there is a sequence of elementary swaps leading from
γ1 to γ2, where an elementary swap changes one element of Γn(G) to
another by changing a single entry.

It is easily checked that Nielsen equivalence implies swap equivalence
but not conversely and examples abound of groups with many, even
infinitely many, Nielsen classes. We are unaware of any group with
more than one swap class, motivating the conjecture of the title.

The swap conjecture. Any two finite generating sets for G
of the same cardinality are swap equivalent.

In this paper, we relate these notions to two well-studied invariants
of a generating set, namely the relation module and the relation space
group (our terminology), and verify the conjecture for certain classes
of groups. In Section 1 we give topological proofs of several known
properties of relation modules and relation space groups.

1. Definitions and basic properties.

Definition. For γ = (g1, . . . , gn) ∈ Γn(G), the associated epi-
morphism εγ from the free group F [x1, . . . , xn] to G is defined by
εγ(xi) = gi. Then N(γ) = ker (εγ), iγ : N(γ) ↪→ F (γ) = F [x1, . . . , xn],

N(γ) = N(γ)/[N(γ), N(γ)] and F (γ) = F (γ)/[N(γ), N(γ)].
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N(γ) is the relation module of γ and F (γ) is the relation space group
(our terminology).

Thus F (γ) is an extension of the abelian group N(γ) by G and the
action of G on N(γ) is the ZG-module structure.

These objects, which we think of as invariants of γ, have been studied
by a number of authors. In particular, Gruenburg [6], Linnell [9] and
Williams [16] have studied the case of finite G and proved in particular
that if n > r(G), then all elements of Γn(G) yield isomorphic relation
modules and relation space groups. Their methods rely heavily on
the finiteness of G. It is our hope to develop tools to study these
issues for finitely generated G. Our basic point of view is geometric,
focusing on the Cayley graph Cγ corresponding to γ; see the Definition
and Proposition below, both standard. (One motivation for studying
swap equivalence is the standard proof of the Tietze theorem [11, p.
89] which shows that two n-generator presentations of a group are
related by a sequence of Tietze transformations in such a way that
all the intermediate groups have at most 2n generators; the swap
conjecture states that this can be improved to n+1.) For completeness
and to establish the geometric point of view, we include proofs of all
statements, although many are in the literature. The term relation
space group is used for F (γ) because in the case of finite G, F (γ) is a
Bieberbach group (see, e.g., Charlap [1]) and can be considered a space
group in the classical sense.

Definition. The Cayley graph Cγ has a vertex v(g) for each g ∈ G
and an edge e(g, gi) for each pair (g, gi) ∈ G × γ with e(g, gi) joining
v(g) to v(ggi) as indicated below.

G acts on Cγ by g(v(h)) = v(gh) and g(e(h, gi)) = e(gh, gi).

v(g) v(ggi)

e(g, gi)
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Proposition. N(γ) ∼= π1(Cγ , v(1)) as groups and N(γ) ∼= H1(Cγ ,Z)
as ZG modules.

Proof. Cγ/G ∼= S1 ∨ · · · ∨ S1, a wedge of n circles, so π1(Cγ/G) ∼=
F [x1, . . . , xn] where the projected image of e(g, gi) is the ith circle.
The projection map p : Cγ → Cγ/G is a regular covering with the
action of G as the covering translations. Furthermore, since a path in
Cγ starting at v(1) is closed if and only if the product of its edge labels
is 1 in G, this is the covering corresponding to N(γ). Thus,

π1(ρ) : π1(Cγ , v(1)) → F [x1, . . . , xn]

is an isomorphism onto N(γ). The second isomorphism follows on the
group level since first homology is the abelianization of first homotopy.
The action of G on N(γ) can be described as follows: choose any setwise
splitting σγ of εγ :

1 → N(γ) → F (γ)
εγ

�
σγ

G → 1

and let
g · [n] = [σγ(g)nσγ(g)−1].

This is a well-defined action modulo [N(γ), N(γ)]. Thus, in particular,
gi[n] = [xinx−1

i ]. But this is clearly the map induced on H1(Cγ ,Z) by
the action of gi, which is to move forward along the ith edge.

Theorem 1. [8, 15] F (γ) is torsion free. If n ≥ 2 and γ is not a
free basis for G, then the action of G on N(γ) is effective.

Proof. Suppose Cγ is the Cayley graph of G corresponding to the set
γ, so N(γ) = π1(Cγ , ∗) and N(γ) = H1(Cγ ,Z). For any maximal tree
in Cγ , the edges of Cγ \T determine a free generating set for N(γ) and
a free abelian generating set for N(γ). To analyze possible torsion in
F (γ), we consider a particular 2-cocycle f̄T : G×G → N(γ) determined
by a maximal tree T in Cγ as follows. Let sT : G → F (γ) be the setwise
splitting of εγ given by; sT = the label on the path in T from the base
point to the vertex labeled by g. {The splitting sT is another name for
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a Schreier system for N(γ)}. Then

G
sT−→ F (γ) and īγ f̄T (g, h) = s̄T (g)s̄T (h)[s̄T (gh)]−1

s̄T ↘ ↓
F (γ)

F (γ) is then isomorphic to the set N(γ)×G with multiplication given
by

(n̄, g) · (m̄, h) = (n̄ + g · m̄ + f̄T (g, h), gh)

so for any k,

(n̄, g)k = ((1 + g + · · · + gk−1)n̄ + f̄T (g, g) + · · · + f̄T (gk−1, g)gk).

If F (γ) has torsion, it is possible to choose a torsion element (n̄, g) of
order k, with g of order m dividing k, and a word w representing g so
that the loop in Cγ labeled by wm is a simple closed curve �. (This is
guaranteed, for example, if (n̄, g) has minimal order k in F (γ) and w
is the shortest representative of any g′ for which (n̄′, g′) is conjugate to
(n̄, g).) Now choose the tree T to include all but the last arc of �. It
follows that f̄T (gj , g) = 0 for j < m− 1 and f̄T (gm−1, g) = [wm] is the
homology class [�] represented by �. Thus, k = mm′ for some m′ and

(n̄, g)k = (m′(1 + g + · · · + gm−1)n̄ + m′[�], 1)

so
[�] = (1 + g + · · · + gm−1[−n̄] in H1(Cγ ,Z).

This contradicts the following claim, which completes the proof that
F (γ) is torsion free.

Claim. If T is a graph on which the cyclic group Cm = {1, g, . . . ,
gm−1} acts freely and � is an invariant circle, then the equation

[�] = (1 + g + · · · + gm−1)[μ]

has no solution [μ] in H1(Γ,Z).

Proof. We have a map of coverings

S1 = � ↪→ Γ
pm ↓ ↓ ↓

S1 = �/Cm ↪→ Γ/Cm
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where pm is the unique connected m-fold cover of S1 ·Γ/Cm retracts to
�/Cm (any connected graph retracts to any connected subgraph) and
this retraction lifts to a Cm invariant retraction of Γ to �. Thus, any
solution in Γ gives one in �, a clear impossibility.

We now suppose that γ has at least two elements and is not a free
basis for G and prove that the G-action on N(γ) is effective; it is easy
to check that, in the excluded cases, the action is not effective.

There are two cases to consider. The first is a presentation of the
form 〈x1, . . . , xn|xk

1〉 of Zk ∗ F [x2, . . . , xn] which is characterized by
the property that all elements of N(γ) are conjugates of powers of a
single letter. In this case, N(γ) has generators corresponding to the
simple closed curves in Cγ , all of which are disjoint and labeled by xk

1 .
Algebraically, these generators correspond to symbols gw, w a standard
normal form in Zk ∗ F [x2, . . . , xn] not ending in x1, and the action is
given by u · gw = g

ũw
, ũw = uw with any terminal x′

is deleted. Thus,
gw is fixed only by u = wx±1

1 w−1 so the action is effective.

The second case includes all other presentations; thus Nγ contains a
cyclically reduced element involving at least two different generators,
say x1x2w. At each vertex of Cγ there is a closed loop labeled by
x1x2w the loops S1 and S2 shown below are then distinct loops in Cγ

that meet. (We can easily arrange that S1 and S2 are simple closed
curves.) We can then choose a maximal tree T so that two edges α1 and
α2 in C\T share a vertex. Suppose now that g ∈ G acts as the identity
on N(γ), so that in particular g fixes [α1] and [α2], the homology classes
corresponding to α1 and α2. Geometrically, [αi] is represented by the
simple closed curve Si; since the action of g on N(γ) = H1(Cγ ,Z) is
induced by covering translations and Si is the only simple closed curve
in Cγ representing [αi], g must act as a nontrivial rotation on each of
S1 and S2.

This is clearly impossible, establishing the effectiveness of the action
in the second case.
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x2

S1 S1S2 S2x1 x1

x1x2 x2

x2x1

or

Definition. i) If γ1 ∈ Γn(G) and γ2 ∈ Γn+k(G), then γ1 ↗
k

γ2 if

γ1 ⊂ γ2 : γ1 ↗ γ2 means γ1 ↗
1

γ2. Also γ∗ = {γ, 1}.

ii) If H acts on K (both groups) then K � H is the split extension
of K by H corresponding to this action.

Remark. The order of the elements of γ is important in defining εγ

but not otherwise, as all reorderings of γ are Nielsen equivalent to γ.

Theorem 2. [7, Section 9.5] If γ1 ↗ γ2, then

(i) N(γ2) ∼= ZG ⊕ N(γ1) as ZG-modules, and

(ii) F (γ2) ∼= ZG�F (γ1) as groups where F (γ1) acts on ZG through
εγ : F (γ1) → G.

Proof. Statement (i) is, of course, the relation module theorem which
says that H1(Cγ∗) ∼= H1(Cγ) ⊕ ZG as ZG-modules. Geometrically,
Cγ∗ is obtained by adding a G-invariant family of edges to Cγ , one
emanating from each vertex. The maximal tree T for Cγ serves for Cγ∗

as well and the added edges generate the extra factors of Z that fit
together under the G-action to form the copy of ZG.

Now F (γ) = N(γ) × G and F (γ∗) = N(γ∗) × G with multiplication
as described in the proof of Theorem 1. From (i) we have πN and σN

so that

1 → ZG → N(γ∗)
πF

�
σF

N(γ) → 1
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and using a common tree

N(γ)
f̄T↗

G × G πN ↑↓ σN

↘̄
f∗

T

N(γ∗).

Then πF = πN × id and σF = σN × id are homomorphisms and

1 → ZG → N(γ∗) × G
πF

�
σF

N(γ) × G → 1.

(Note. πF and σF are induced by the maps

F [X, y]
π̃F

�
σ̃F

F [X]

where σ̃F is the obvious inclusion, π̃F is the identity on X and
π̃F (y) = w, where w is a word in X representing the same element
in g as does y.)

Theorem 3.

(i) If γ1 ∼N γ2, then γ1 ∼S γ2.

(ii) If γ1 ↗ γ2, then γ2 ∼N γ∗
1 .

(iii) If γ1 ∼S γ2, then γ∗
1 ∼N γ∗

2 .

(iv) If γ1 ∼N γ2, then N(γ1) ∼= N(γ2) and F (γ1) ∼= F (γ2).

(v) If γ1 ∼S γ2, then ZG⊕N(γ1) ∼= ZG⊕N(γ) and ZG � F (γ1) ∼=
ZG � F (γ2).

Proof. Elementary Nielsen transformations give elementary swaps,
proving (i). (ii) follows from the fact that the added element in γ2 is
expressible as a word in the elements of γ1. It suffices to prove (iii)
for γ1 and γ2 related by an elementary swap, but then if γ = γ1 ∪ γ2,
γ1 ↗ γ and γ2 ↗ γ and (ii) implies that γ∗

1 ∼N γ ∼N γ∗
2 . (iv) is clear

and (v) follows from Theorem 2.
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2. Primitive properties.

Definition. An element g of G is primitive if it is part of a
minimal (cardinality) generating set and Prim(G) is the set of primitive
elements of G. G has the primitive property if for εγ : Fn → G,
ε(Prim(Fn)) = Prim(G). More generally, a primitive set {g1, . . . , gk}
in G is a subset of a minimal generating set and PrimkG is the set
of primitive sets of cardinality k. G has the k-primitive property if
εγ : Primk(Fn) → Primk(G) is surjective.

Proposition. The k-primitive property of G does not depend on the
choice of generating set γ. Furthermore, G has the k-primitive property
if and only if for any γ, γ′ ∈ Γn(G), there is a γ′′ ∼N γ′ so that γ′′

agrees with γ in the first k entries.

Proof. We use the standard fact that γ1 ∼N γ2 if and only if there is
an automorphism α of Fn so that the following diagram commutes

Fn �
α

�
�
�
��εγ1

Fn
�
�
�
��

εγ2

G

It follows easily that the k-primitive property of G relative to γ depends
only on the Nielsen class of γ. Now let γ1 and γ2 be elements of Γn(G),
γ1 = (g1, . . . , gn) and suppose that G has the k-primitive property
relative to γ2. Choose a primitive set {w1, . . . , wn} ∈ Γ(Fn) with
εγ2(wi) = gi for 1 ≤ i ≤ k, define α ∈ Aut (Fn) by α(xi) = wi and
let γ′

2 = (εγ2(α(xi)). Then γ′
2 agrees with γ1 in the first k entries and

since γ′
2 ∼N γ2, G has the k-primitive property relative to γ′

2. For
any {h1, . . . , hk} ⊂ {h1, . . . , hn} = χ ∈ Γn(G), we can similarly get
an automorphism β so that in the following diagram, the right hand
triangle commutes on the subgroup F [x1, . . . , xk].
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Fn �
α

�
�
�
��εγ1

Fn

�

εγ′
2

�
β

Fn
�
�
�
��

εχ

G

But since α is the identity on F [x1, . . . , xk], the large triangle commutes
as well; thus {h1, . . . , hk} = εγ1{x1, . . . , xk} and G has the k-primitive
property relative to γ1.

Remarks. 1) The preceding proposition says that in a group with
the k-primitive property, any two generating sets are partially Nielsen
equivalent. In particular, if r(G) = n, then the G has the n-primitive
property if and only if it has just one Nielsen class of minimal generating
sets.

2) In general, εγ(PrimFn) may depend on γ. For example, in C5 =
{1, a, a2, a3, a4} with γ1 = {a} and γ2 = {a2}, εγ1(Prim(F1)) = {a, a4}
and εγ2(PrimF1) = {a2, a3}.

Theorem 4. If r(G) = n and G has the (n − 1) primitive property,
then any two minimal generating sets are swap equivalent.

Proof. Suppose γ1 and γ2 are two minimal generating sets. The
preceding proposition says that γ2 is Nielsen equivalent (and so swap
equivalent) to γ′

2 so that γ′
2 agrees with γ1 in all but the last entry.

Then γ′
2 is swap equivalent to γ1.

Remarks. 1) This theorem can be particularly useful in studying
the swap conjecture for groups of rank 2 since Cohen, Metzler and
Zimmermann [2] give a nice method for recognizing primitive elements
in F2. However, many rank 2 groups having only one swap equivalence
class of generating pairs do not have the primitive property, see Section
3.

2) It is known that there are groups with nonminimal generating sets
not Nielsen equivalent to any set containing a minimal generating set
(see Noskov [13]). It would be interesting to know if this is possible
with swap equivalence in place of Nielsen equivalence.
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3. Some examples. In this section we verify the swap conjecture
for certain classes of groups. G will be said to be a swap group if any
two sets of generators of the same cardinality are swap equivalent.

Example 1. Free groups, free abelian groups and surface groups
are swap groups. These are examples of groups with a single Nielsen
class of generators of a given cardinality. That surface groups are swap
groups follows from Zieschang’s generalization of the Nielsen method
to amalgamated free products [15].

Example 2. Finitely generated abelian groups are swap groups. A
finitely generated abelian group G has a canonical representation as

G ∼= Zr ⊕ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk
mi+1|mi

and r(G) = r + k. A generating set γ can be thought of as a matrix
M(γ) whose rows (perhaps more than r + k of them) are vectors with
coordinates from Z or Zmi

as appropriate. We proceed to row reduced
M(γ). Assuming r �= 0, we perform row operations on M(γ) (i.e.,
Nielsen transformations on γ) to get

M(γ′) =

⎡
⎢⎢⎢⎢⎣

1 p2 p3 · · · pr+k

0 · · · · · · · · ·
0 · · · · · · · · ·
... · · · · · · · · ·
0 · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ .

Since γ′, defined as the set of rows in this matrix, generates G,
[ 0 p2 p3 ··· pr+k ] is a combination of the rows of M(γ′). Clearly, the
coefficient of row 1 is zero. It follows that M(γ′) further reduces to

M(γ′′) =

⎡
⎢⎢⎣

1 0 · · · 0
0 · · · · · · · · ·
... · · · · · · · · ·
0 · · · · · · · · ·

⎤
⎥⎥⎦ .

Inductively, we get

M(γ′′′) =
[

Ir 0
0 M ′′′

]
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where the rows of M ′′′ generate Zm1 ⊕· · ·⊕Zmk
. We now proceed with

the same notation assuming r = 0 so G ∼= Zm1 ⊕· · ·⊕Zmk
. (Note that

the preceding argument proves that Zr has one Nielsen class.)

Now M(γ) reduces to

M(γ′) =

⎡
⎢⎢⎣

a p2 · · · pk

0 · · · · · · · · ·
... · · · · · · · · ·
0 · · · · · · · · ·

⎤
⎥⎥⎦

where a generates Zm1 . Since the rows of M(γ′) generate G,

[ 0 p2 · · · pk ] = �1g
′
1 + · · · + �kg′k, γ′ = (g′1 · · · g′k).

Considering the first coordinate, 0 ≡ �1a (mod m1). But then �1 ≡ 0
(mod m1) and so �1 ≡ 0 (mod mi), 1 ≤ i ≤ k. Thus, we can assume
that � = 0 and further reduce M(γ′) to

M(γ′′) =

⎡
⎢⎢⎣

a 0 · · · 0
0 · · · · · · · · ·
...
0 · · · · · · · · ·

⎤
⎥⎥⎦ .

At this point we can swap the first row [ 1 0 ··· 0 ] and proceed as before,
completing the proof by induction. This swap may be necessary. If
m �= 2, 3, 4 or 6, then Zm has a generator a �= ±1 and {1} and {a} are
not Nielsen equivalent.

Example 3. For G = 〈x, y|xp = yq〉 any two generating pairs
are swap equivalent. According to McCool and Pietrowski [12] every
Nielsen class of generators of G includes one of the form {xr, ys}, and
any two such pairs are obviously swap equivalent.

Example 3′. For

G = 〈a1, a2, . . . , an|ap1
1 = aq1

2 , ap2
2 = aq2

3 , . . . , a
pn−1
n−1 = aqn−1

n 〉

with pi, qi ≥ 2, i = 1, . . . , n − 1 and gcd (q1 · · · qi, pi+1 · · · pn−1) = 1,
any two generating pairs are swap equivalent. This group arises in
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the study of one-relator groups with center. It is relatively easy to
check that G is generated by a1 and an, so r(G) = 2, and according
to Collins [3] every generating pair is Nielsen equivalent to one of the
form {ar

1, a
s
n} and clearly any such pair is swap equivalent to {a1, an}.

Example 4. For Fuchsian groups

G = 〈q1, . . . , qm, a1, b1, . . . , ag, bg|qα1
1 , . . . , qαm

m , q1q2 · · · qm

q∏
1

[ai, bi]〉,

r(G) = 2g+m−1 and any two minimal generating sets are swap equiv-
alent. Rosenberger [13] showed that any minimal generating set for G
is Nielsen equivalent to one of the form {qν1

1 , . . . , q
νi−1
i−1 , q

νi+1
i+1 qνm

m , a1, b1,
. . . , ag, bg} and any two such are clearly swap equivalent.

Example 5. The finite group describe by Dyer [5]

〈A, B|B55
= B54

A−53
= A25[B, A] = 1〉

∼= 〈C, D|D55
= D2·54

C53
= C25[D−2, C] = 1〉

has nonisomorphic relation space groups corresponding to the gener-
ating pairs {A, B} and {C, D}. But A = C and B = D−2 so these
presentations are clearly swap equivalent.
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