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MEAGER-NOWHERE DENSE GAMES (I): n-TACTICS

MARION SCHEEPERS

ABSTRACT. In the introduction to this article we give
a brief survey of a problem in the theory of Banach-Mazur
games. We introduce two games, M G(J) and SMG(J) (where
J is a free ideal on some set), which evolved from a study
of an example relevant to this problem. The second player
has a winning perfect information strategy in both of these
games and we examine under what conditions it suffices for
the second player to remember only the most recent n or fewer
moves of the opponent (n some fixed positive integer) in order
to insure a win. Strategies depending on only this information
are called n-tactics.

The subject of this article belongs to the areas of combinatorial
games and of topological games of length w. In this rather lengthy
introduction we give a short survey of the problem that motivated
the work to be presented here. Readers who are interested in more
details could consult Telgarsky’s survey paper [11] and its extensive
bibliography to the source literature.

The Scottish Book [14, Prob. 3] is probably the earliest popular
record of the Banach-Mazur game. This game on a topological space
(X, 7) is denoted by BM (X, 7) and is played as follows. First, player
ONE picks a nonempty open subset £ of X, after which TWO picks
a nonempty open subset V7 of F;. Next, ONE picks a nonempty open
subset F5 of N3 and TWO responds with a nonempty open subset No
of E5, and so on. In this manner, the players construct a sequence
(E1,Ny,...,Eg, Ng,...) where for each positive integer k,

(i) Ey denotes ONE’s k’th move and N, TWO’s k’th move.

(ii) Ek41 is a subset of Ny which in turn is a subset of Ej, and these
are all nonempty open subsets of X.
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Such a sequence is called a play of BM (X, 7). This play is won by
TWO if the intersection of the Nj’s is nonempty, and otherwise it is
won by ONE.

A strategy, F', for TWO is a function whose domain is the set of finite,
monotonically nonincreasing (with respect to set inclusion) sequences
of nonempty open sets, and F' has the property that if (Uy,... ,Ug) is
such a finite sequence, then F(Uy,...,Uy) is a subset of Uy and is a
nonempty open subset of X. Such a strategy F' for TWO is a winning
perfect information strategy if each play (Fy,Ni,...,Ek,Ng,...) of
BM (X, ) for which N, = F(En, ..., E})) for each positive integer k,
is won by TWO.

The notions of a strategy and of a winning perfect information
strategy for player ONE are defined analogously.

It is part of the folklore of the subject that there are spaces (X, 7) such
that ONE has a winning perfect information strategy in BM (X, ),
there are spaces (X, 7) such that TWO has a winning perfect informa-
tion strategy in BM (X, 1), and, with the aid of the axiom of choice,
there are spaces (X, 7) such that neither player has a winning perfect
information strategy in BM (X, 7), in which case we say BM (X, 7) is
undetermined.

Consider a space (X, 7) for which BM(X,7) is not undetermined.
These games, being infinite, already put severe requirements on the
endurance and patience of the players. To compound things, a perfect
information strategy in BM (X, ) has severe requirements on the
memory of a player, and one might wonder if a player with a winning
perfect information strategy doesn’t perhaps have a winning strategy
requiring less memory. Fix a positive integer k. A strategy of a player
which requires knowledge of only at the most the & most recent moves
of the opponent is called a k-tactic (we are extending the terminology
of Choquet [1, p. 116, Definition 7.11] who calls a 1-tactic a tactic).

The situation for player ONE is as simple as possible due to the
following theorem of Oxtoby, dating back to the 1950’s [9].

Oxtoby’s theorem. The following statements are equivalent for
topological space (X, T):

(a) ONE has a winning perfect information strategy in BM (X, ).
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(b) (X,7) is not a Baire space.

It then follows from (b) that ONE in fact has a winning 1-tactic in
BM(X,T).

In the 1970’s Fleissner and Kunen [3, p. 238, Question 3] asked if it is
also true that if player TWO has a winning perfect information strategy
in BM(X,7), then TWO has a winning 1-tactic in BM (X, 7). In the
early 1980’s Debs [2] answered this question in the negative. It turns
out (in one instance under an additional set theoretic hypothesis which
is known to be independent of ZFC) that in each of Debs’ examples,
TWO has a winning 2-tactic. As far as we know, this is the present
state of knowledge concerning Telgarsky’s conjecture [11, p. 236]. This
conjecture states that for every positive integer k there is a topological
space (X, 7%) such that TWO does not have a winning k-tactic in
BM (X}, 1), but does have a winning (k + 1)-tactic.

Other kinds of winning strategies for TWO which require less than
perfect information have also been studied by Debs [2] and by Galvin
and Telgarsky [4].

As we mentioned, in one of Debs’ examples, TWO has a winning 2-
tactic if an additional set theoretic hypothesis is assumed. Thus, this
example is a candidate for giving (via consistency results, perhaps)
more insight into Telgarsky’s conjecture. We now briefly describe the
example, an analysis of which led to the work to be presented here.

The underlying set for our topological space is R, the real line. ¢ will
denote the usual topology on R. Whenever we talk about an “open
subset of R” or a “meager subset of R” or a “nowhere dense subset of
R” without further qualifying “open,” “meager” or “nowhere dense,”
these properties are to be understood in the sense of o. Define a new
topology, 7, on R by putting a set V in 7, if it is of the form V = U\M
where U is an open subset of R and M is a meager subset of R. Player
TWO has a winning perfect information strategy in BM (R, 7), but
does not have a winning 1-tactic in BM (R, 7). Under an additional
assumption about the collection of meager subsets of R, it follows that
TWO has a winning 2-tactic in BM(R, 7).

When reconstructing the proofs of these facts, it seemed to us that
BM(R, ) is in some sense a combination of two games being played
simultaneously, namely, BM (R, o) and “some game in which the two
players do various things with meager and nowhere dense subsets of
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R,” and that it was the part in quotation marks and the way these
games combine to give BM (R, 7) that must be understood better.

The game MG(J) (defined and discussed in part 1 of the paper)
was our first attempt at making the part in quotation marks precise.
The game SMG(J) (defined and discussed in part 2 of the paper)
turned out, as explained in part 2, to be a more successful attempt and
recaptured the abovementioned facts about BM (R, 7).

Aside from the potential application to Banach-Mazur games, we
consider the problem of existence of winning k-tactics for player TWO
in the games M G(J) and SM G(J) interesting in their own right. Other
strategies of TWO (requiring less than perfect information) have been
studied, but since the techniques involved are significantly different
from those for k-tactics, these results will be presented elsewhere.

Our notation and terminology is standard. The reader is assumed
to be familiar with basic facts about sets, cardinal numbers, partial
orders, topology and the partition calculus. Beyond possibly consulting
[6, 12, 13] on these matters, the reader should also consult [10]
for the definitions and proofs of various partition relations which will
be used in this article. Except where we explicitly make additional
assumptions, we work in the framework of the traditional Zermelo-
Fraenkel set theory, including the axiom of choice. We denote this
theory by ZFC.

The article is divided into two parts which can be read independently
without much loss of crucial information. We recommend though that
part 1 be read first. It introduces the game MG(J) and various
examples that are used throughout to illustrate various aspects of the
theory. In the introduction to part 1, we explain how this part is
organized and give some samples of results we obtain.

Part 2 introduces the game SMG(J) and contains the application
to BM(R, 7). The introduction to part 2 explains how this part is
organized and gives some samples of results obtained there.

Thirteen open problems are mentioned at appropriate places through-
out the text.

The article is a modified version of Chapter 2 of the author’s disser-
tation, written at the University of Kansas under the supervision of
Professor Fred Galvin. We thank Professor Galvin for introducing the
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theory of Banach-Mazur games to us and for his enthusiastic guidance
during this project.

Part 1—The game MG(J). Let (S,7) be a Ti-space without
isolated points. J denotes the collection of nowhere dense subsets of S
and (J) denotes the collection of meager (also known as first category)
subsets of S. MG(J), which we call “the monotonic meager-nowhere
dense game on J,” is played as follows.

First, player ONE picks a meager set M, then player TWO picks
a nowhere dense set N;. Then, in the second inning, ONE picks
a meager set Mo with My C My (unless explicitly indicated other-
wise, “C” means “is a proper subset of”) and TWO responds with a
nowhere dense set N3, and so on. The players construct a sequence
(My, N1, M3, Na, ..., My, N, ...) where for each positive integer k

(i) My denotes ONE’s meager set picked during the kth inning,

(ii) Ny denotes TWO’s nowhere dense set picked during the kth
inning, and

(i) Mg C Mpyq.

Such a sequence is a play of MG(J) and TWO wins this play if
Up2 , M}, is contained in UR2;N;. The notions of a winning perfect
information strategy and of a winning k-tactic for TWO are defined as
before. We will often use the easily verified fact that player TWO has
a winning perfect information strategy in M G(J).

We used topological terminology to describe M G(J) only because it
was convenient. The mathematical structure which is really relevant
here is the notion of a free ideal and its o-completion. Let S be a set.
Recall that a family J of subsets of S is a free ideal on S if: S is not in
J, every finite subset of S is in J, if A is in J and B is a subset of A,
then B is in J, and if A and B are both in J, then AU B is in J. We
let (J) denote the smallest family of subsets of S which contains J and
which is closed under countable unions. We call (J) the o-completion
of J. Note that if J is a free ideal on S and if S is not in (J), then (J)
is also a free ideal on S. Also note that the following statements are
equivalent for a family J of subsets of S:

(a) Jis a free ideal on S,

(b) There is a Ti-topology 7 on S such that
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(i) (S,7) has no isolated points and
(ii) J is the collection of nowhere dense subsets of S.

(J,C) and ({(J), C) are partially ordered sets and hence we will freely
use concepts defined for partially ordered sets in this context.

For the remainder of this article, we will talk about MG(J) in the
language of free ideals and their o-completions. Here is a sample of
results.

Theorem 1. The following statements are equivalent for a free ideal
J on a set S:

(a) J={J)

(b) TWO has a winning 1-tactic in MG(J).

Let J be a free ideal on S and let X be a subset of .S which is not in

J. Then Jx denotes the collection of sets in J which are subsets of X,
and we call Jx the relativization of J to X.

Theorem 2. Let k > 1 be an integer and let J be a free ideal on a set
S such that J # (J) and the cofinality of ((J),C) is Ry. The following
statements are equivalent:

(a) TWO has a winning k-tactic in MG(J)

(b) For each X in (J) but not in J, TWO has a winning k-tactic in
MG(Jx).

For distinct elements f and g of “w, we put f < g if there is an n
in w such that f(m) < g(m) whenever m is an integer larger than n.
(Yw, <) is a partially ordered set. We denote the cardinality of the
continuum by c. We need the following hypothesis in the statement of
our next result. We call it “the embedding hypothesis” and denote it
by EH.

EH: for every partially ordered set (P, <) of cardinality at the most
¢, there is an order preserving function from (P, <) into (Yw, <).

Theorem 8. Let S be a set of cardinality at the most c.
(a) Assume that 2<¢ = ¢ and that EH holds. If J is a free ideal on
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S and the cofinality of ((J), C) is at most Ny, then player TWO has a
winning 3-tactic in MG(J).

(b) If there is a real-valued measurable cardinal k less than or equal
to the cardinality of S, then there is for each cardinal A below K a free
ideal J on S such that the cofinality of ((J),C) is at least A, and TWO
does not have a winning k-tactic in MG(J) for any positive integer k.

Part 1 is organized as follows. Theorems 1 and 2 are proven in the
first two sections. In section 3 we consider free ideals J with S in (J)
and find necessary (but not sufficient) and sufficient (but not necessary)
conditions for the existence of a winning k-tactic for TWO. Theorem 8
is proven and discussed in section 4. In section 5 we make some remarks
about free ideals for which there would be winning k 4 1-tactics but
not winning k-tactics. Section 6 contains some closing remarks about
Theorems 2 and 8.

1. 1-Tactics. The situation for 1-tactics in MG(J) is particularly
nice.

Theorem 1. The following statements are equivalent for a free ideal
J on a set S.

(a) Player TWO has a winning 1-tactic in MG(J).
(b) J = (J).

Proof. Statement (b) clearly implies statement (a). Assume that (b)
is false, and pick a set X in (J) which is not in J. Write X = AU B
where A and B are pairwise disjoint sets of the same cardinality.
Without loss of generality, B is not in J. Suppose now that F'is a
1-tactic of TWO.

Define @ : p(A) — B so that ®(Y) is in B\ F(BUY') for each subset Y’
of A. By Corollary 8 of [12], (p(A), C) — (|A])% (which means that for
each function which assigns points of B to subsets of A, there will be a
collection of subsets of A, linearly ordered by C in order type |A|, such
that the same point of B got assigned to each set in this well-ordered
chain). Pick an increasing w-chain X; € Xo C...C X, C...C A
and a point b in B so that for each positive integer n, ®(X,) = b. For
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each positive integer n, put M,, = BU X,, and N,, = F(B,).

The sequence (My,Ny,...,Mp,,N,,...) then is a play of MG(J)
during which TWO used the 1-tactic F' and yet it is lost by TWO since
b is in each M,, but in no N,. Since F was arbitrary, TWO does not
have a winning 1-tactic in MG(J). o

2. Proof of Theorem 2. Let k be a positive integer. If TWO has
a winning k-tactic in MG(J), then TWO necessarily has a winning
k-tactic in MG(Jx) for each subset X of S which is not in J. This is,
in particular, true if X is in (J) but not in J. Theorem 2 states that
under certain additional assumptions on (J), this necessary condition
is also sufficient.

Theorem 2. Let k > 1 be an integer and let J be a free ideal on
S for which J # (J) and the cofinality of (J) is V1. The following
statements are equivalent:

(a) TWO has a winning k-tactic in MG(J).

(b) For each X in (J) but not in J, TWO has a winning k-tactic in
MG(Jx).

Proof. We have to show that (b) implies (a). So, assume that (b) is
true. By the cofinality assumption on (J), fix a family {S, : @ < w1}
such that if « < 8 < w1, then S, C Sp are both in (J) and not in J, and
for each B in (J) there is an o with B a subset of S,,. Fix, furthermore,
for each 3 < w; a winning k-tactic Fg of TWO in MG(Js,) and let G
be a winning perfect information strategy of TWO in M G(J).

Let (<,:n € w) be a sequence of binary relations on wy such that
(a) T, = (w1,<p) is a tree of height at most n + 2 for each n in w,
(b) for m < n in w, <, is contained in <, and

(¢) for a < B in wy, there is an n in w with a <, 8.

(The reader could consult [5, pp. 85,86] for a proof that these exist.)
For a < 8 < wy, we let ¢(a, B) be the smallest n in w so that o <, B.
For B in (J) we let «(B) be the smallest 8 below w; such that B is a
subset of Sg. We are now ready to define a k-tactic, F', for TWO. So
let (X1,...,X) be given with each X; in (J) and let o; = a(X;) for
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1<t <k

Casel. @ # X1 C --- C Xk.

(i) a1 < ag. Pt T = {8 < wy : ¢(8,ax) < ¢(ag_1,01)} and
define F(Xy,...,Xk) to be the union of the finite (by (a) and (b))
collection {G(Ss,,...,S5s,) : 01 < --- < 6, and {61,...,0,} is a subset
of T}.

(ii) ag_1 = a. Then put F(Xy,...,Xg) = Fu, (X1,..., Xk).

Case 2. In all other cases put F(Xy,...,X;) = @.

This defines a k-tactic F' for TWO and we now show that F' is winning
for TWO. So let (M, N1,... , My, Ny,...) be a play of MG(J) during
which TWO used the k-tactic F. For each positive integer n, let
an = a(My). Since My C ... C M, C ...,an < a4 for each
positive integer n.

Possibility 1. {«, : n a positive integer} is finite.

Then choose the smallest n > k such that o, = «, for all integers
m bigger than n. We evidently have that

N,, contains F, (9,...,d,M,)

Nn+j+k contains Fan (Mn+j+1; e aMn+j+k) for allj n w.

But (Mn) Fan (Qa - 9, Mn)7 v 7Mn+j+k7 Fa'n, (Mn+j+1’ v ,Mn+j+k:);

..) is a play of MG(Js,, ) during which TWO used the winning k-
tactic F,, and hence is won by TWO. Thus, the play of M G(J) which
is under consideration is won by TWO.

Possibility 2. {«, : n a positive integer} is infinite.

Let o, < oy, < oy, < ... be a strictly increasing infinite subse-
quence. For j > 2, let m; = ¢(a;_1,;); thus, mj = 0 when o1 = ;.
The sequence mg,ms,... must be unbounded since there are no infi-

nite chains in (w;, <,). Let r be a positive integer. Choose n so that
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o1 <p ag <y - <5 . Choose the least j such that m; > n and put
m = m]-.

Then a; <, a2 <o - S @j—1<m@j and 2, < j, so we have
Qi < Oy < Oz < vt g O, g O

Because of the way F was defined in Case 1, it follows that
G(Sai,»--++5a;,) is contained in N;. We have shown that for each
positive integer 7, G(Sa,,,--- ,Sa,, ) is a subset of U2 N,,. Since G is
a winning perfect information strategy for TWO in M G(J) it follows
that TWO has won the play of M G(J) under consideration.

This covers all possible plays of MG(J) in which TWO has used the
k-tactic F. Thus, F is a winning k-tactic for TWO in MG(J). o

This theorem suggests that we study k-tactics for those free ideals
J on S for which S is in (J), i.e., the cofinality of ((J),C) is 1. We
also should study k-tactics for those free ideals J on S for which the
cofinality of ((J), C) is at least Ns.

3. Free ideals J with cofinality of ((J),C) equal to 1. The
following cardinal functions are useful in our discussions.

Definition. Let J be a free ideal on S with J # (J).

(a) w(J) is the smallest cardinality of a set which is in (J) but not
in J. We call u(J) the minimality number of J.

(b) d(J) is the smallest cardinal number, &, for which J is a union
of a family {J, : @ < Kk} where each J, is an ideal with (J,) # (J).
We call d(J) the decomposition number of J.

(c) dir(J) is the smallest cardinal number, , for which J is a union
of a family {J, : @ < k} which is up-directed by C and where each J,
is an ideal with (J,) # (J). We call dir(J) the directedness number of
J.

The following relationships among these cardinals are easily verified:
(1) Ro <d(J) < u(J)
(2) d(J) < dir(J)
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(3) dir(J) < min {cofinality (Jx,C) : X a subset of S not in J} <
ou(J),

There are examples showing that the strict inequalities d(J) < dir(J),
dir(J) < cof(J,C) < 2*9) and d(J) < u(J) are possible.

In this section we use a partition relation which is studied in [10].
This partition relation was invented to discuss k-tactics in M G(J). We
recall the definition for the convenience of the reader.

Definition. Let (P, <) be a partially ordered set, let k be a positive
integer and let xk be an infinite cardinal number. The symbol

(P, <) = (w-path),

abbreviates the statement: for every partition of [P]™ into disjoint

classes {K,}a<k, there is an increasing w-sequence p; < py <
- < pj < ... in P for which the members of the infinite set
{{Pj+1s---»Pjtn} : § <w} belong to finitely many K,’s.

The symbol (P, <) 7 (w-path);, _ abbreviates the negation of this
statement.

Proposition 3. Let k > 1 be an integer and let J be a free ideal
on S with S in (J). If (p(5),C) 4 (w—path)5/<w, then player TWO
has a winning k-tactic in MG(J). If, in addition, k > 2, TWO has a
winning 3-tactic in MG(J).

Proof. Since S is in (J), we can write S = Uy <, S, where for each n
in w, S, C Spy1 and Sy, is in J. We also recall from [10, Proposition
36] that if (p(S5),C) 4 (w—path)fzkw for some integer k > 2, then we
have that (p(S),C) # (w-path),_ . Thus, k in this proof will be 2
or 3. In either case, we proceed as follows. Let [p(S)]F = U, <, K, be

a partition witnessing that (p(S), C) 4 (w—path)"f}/<w.

We define a k-tactic, F, of TWO as follows. Let (Xi,...,X})) be
a k-tuple from (J). If X; C ... C X, we let F(Xy,...,Xg) = S,
where n < w is minimal with {X;,..., X} in K,. Otherwise, we
set FI(Xy,...,Xg) = @. It follows from the properties of the given
partition that F is a winning k-tactic for TWO in MG(J). O
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In the example below, we show that the w-path hypothesis in Propo-
sition 3 is sufficient but not necessary.

Example 1. The ideals J(x). Let x be an infinite cardinal number,
and let S be the set of finite subsets of & (i.e., S = [k]<®°). For each «
in k we let Y, be the collection of those Z in S with « not in Z. The
family {Y,, : @ in k} has the following properties:

(i) S\Y, has cardinality ~ for each « in &,
(ii) U{Y, :a in F} # S for each finite subset F' of x and
(i) U{Y, : ain F} = S for each infinite subset F of k.

Let J(k) be the smallest hereditary family of subsets of S which
includes {Y, : ain k} and which is also closed under finite unions.
Then J(k) is a free ideal on S and

Claim. Player TWO has a winning 2-tactic in MG(J(k)).

Proof. For A and B in (J(k)) with A a proper subset of B, pick
2(a,B) from B\ A. Define F(A, B) as the union of {Y, : « is in 2(4,p)}-
Since this union is finite, F(A, B) is in J(k) for each such A and B.
It follows from property (iii) that F' is a winning 2-tactic for TWO in
MG(J(k)). O

However, for £ > ¢ (p(S5),C) — (w—path)ﬁkw for every positive

integer k [10, Proposition 1 and Corollary 10].

Note that Proposition 3 implies that if J is a free ideal on w, then
player TWO has a winning 2-tactic in MG(J). Using this fact in
conjunction with Theorem 2, we get that

Corollary 4. If J is a free ideal on wy, each element of which is at
most countable, then player TWO has a winning 2-tactic in MG(J).

If the free ideal J of Proposition 3 has additional structure, the
condition in that proposition is also necessary.
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Proposition 5. Let k > 1 be an integer. For a free ideal J on S
for which Ry = dir(J) and (J) = p(S), the following statements are
equivalent:

(a) (p(S), C) 7 (w-path)5/<w,
(b) TWO has a winning k-tactic in MG(J).

If, in addition, k > 2, the following statement is also equivalent to (b):
(¢) TWO has a winning 3-tactic in MG(J).

Proof. (a) = (b) follows from Proposition 3.

(b) = (a). Write J = U ,J, where each J, is a free ideal,
(Jn) # p(S) and J,, is contained in J, ;. Write S = AU B where A
and B are pairwise disjoint sets of equal cardinality. We may assume
without loss of generality that A is not in (.J,,) for each positive integer
n. Let F be a winning k-tactic for TWO in MG(J). We define a
partition [p(B)]* = U2, K,, as follows. Let {Xi,... , X} be a k-tuple
of subsets of B. If X; C --- C Xy, we put {X1,..., Xy} in K,,, where
m is minimal with F(AU Xy,...,AU X}) in J,,. Otherwise, we put
{Xl, e ,Xk} in Kl.

Since F' is a winning k-tactic for TWO in M G(J), it follows that this

partition witnesses that (p(B), C) 4 (w—path)fzkw and since S and B

have the same cardinality, that (p(S),C) 4 (w-path)£/<w. The proof
of (b) = (a) is complete.

The equivalence of (c) with the other statements when k > 2 follows
from the fact that then, if (p(S5), C) A (w—path)f)/<w we also have that

(p(S),C) A~ (w—path)z/<w [10, Proposition 36]. o

In general, we have the following necessary condition for the existence
of a winning k-tactic in MG(J).

Proposition 6. Let k > 1 be an integer and let J be a free ideal
on S with S in (J). If player TWO has a winning k-tactic in MG(J),
then (p(S),C) 4 (w—path)giru)Kw.
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Proof. Assume that (p(5), C) 7 (w-path)y;, )/, By [10, Proposi-
tions 1 and 36] it then follows that (p(S), C) — (w—path)ZiT(J)Kw. Let
F be a k-tactic of TWO in MG(J) and let J = Uq<gir(s)Ja be a de-
composition of J as in the definition of dir(J). By the up-directedness
of the family {J, : a < dir(J)} we write S = AU B where A and B
are pairwise disjoint sets of equal cardinality and A is not in (J,) for
each a below dir(J). We define a partition [p(B)]* = Uy<air(s)Ka as
follows.

Let {Xi,...,Xx} be a k-tuple of subsets of B. If X; C --- C X, we
put {Xy,---, Xx} in K, where « is minimal with F(AUX},... , AUX})
in J,. Otherwise, we put {Xy,..., X} in Kp.

(p(B),C) — (w—path)ZiT(J)Kw since S and B have the same cardinal-
ity. Thus, pick a finite subset H of dir(J) and an increasing sequence
XiCc...c Xy C...CX,, C...C Bsuch that each element of the in-
finite set {{Xl, ce ,Xk;}, {XQ, ce ,Xk;+1}, ey {X]'+1, . 7Xj+k:}7 . }
is in K, for some o in H. Put M,, = BUX,, for each positive integer n.
By our partition we get that F'(M;y1,... , M) isin J, for some a in
H. Since the family {J, : o < dir(J)} is up directed, we find a 8 below
dir(J) such that each response of player TWO (using k-tactic F') in the
play of the game where ONE consecutively moves M, My, M3, ... , is
in Jg. Since the union of TWO’s moves is in (J3), A, a set covered by
ONE, is not covered by TWO. Thus, TWO loses this play of MG(J),
and F could not have been a winning k-tactic. The proposition follows
by contraposition. ]

In Example 2 we will illustrate that this necessary condition is not
sufficient.

Corollary 7. Let k > 1 be an integer and let J be a free ideal on S
with S in (J). If player TWO has a winning k-tactic in MG(J), then
the cardinality of S is at the most 2%"() and the cardinality of S is
less than 2477 if k = 2.

Proof. 1t follows from [10, Proposition 1 and Corollary 10] that
if the cardinality of S is bigger than 2%7(Y) then (p(S),C) —
(w-path)gir( 1)/ <w for every positive integer k. Now apply Proposition
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6. When k& = 2 [10, Corollary 28] and Proposition 6 similarly imply
that the cardinality of S is below 247(J), o

4. The proof of Theorem 8. It is a well-known fact that both the
hypotheses 2<¢ = ¢ and EH are consequences of CH, the continuum
hypothesis. Laver [7] showed that the theory “ZFC + -CH + EH +
2<¢ = ¢” is consistent relative to the consistency of ZFC. Thus, the
assumption that both EH and 2<¢ = c¢ are true is weaker than the
assumption that CH is true.

Theorem 8. Let S be a set of size at the most c.

(a) Assume that 2<¢ = ¢ and that EH holds. If J is a free ideal on
S and the cofinality of ((J),C) is at most Ny, then player TWO has a
winning 3-tactic in MG(J).

(b) If there is a real-valued measurable cardinal & less than or equal
to the cardinality of S, then there is for each infinite cardinal A below
K a free ideal J on S such that the cofinality of ((J),C) is at least A
and TWO does not have a winning k-tactic in MG(J) for any positive
integer k.

Proof. (a) As noted in [10, discussion after Corollary 31], it follows
from the assumption that 2<¢ = ¢ and that EH holds that the partition
relation (p(c),C) 4 (w—path)i’)/<w holds. Thus, for each X in (J)
player TWO has a winning 3-tactic in MG(Jx) (by Proposition 3).
Since, furthermore, the cofinality of ((J), C) is at most Ny, it follows
from Theorem 2 that TWO has a winning 3-tactic in MG(J). This

completes the proof of (a).

(b) Let x be a real-valued measurable cardinal less than or equal to
the continuum. Let S be a set of cardinality x and write S = AU B
where A and B are pairwise disjoint and the cardinality of A is AT.
Let J be the collection of subsets of S which have finite intersection
with A. Then J Is a free ideal on S and (J) is the collection of subsets
of S which intersect A in a countable set. The cofinality of ((J), C) is
at least AT. We show that TWO does not have a winning k-tactic in
MG(J) for every positive integer k.
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Let C be a countably infinite subset of A and enumerate C bijectively
as {c1,¢2,... ,Cn,... t. For each positive integer n, we let J,, be those
sets in J whose intersection with C'is contained in {c;, ¢3,... ,¢,}. The
collection {J, : n a positive integer} witnesses that dir(Jpuc) = No.
By [10, Proposition 19], (p(B U C),C) — (w-path)f)/<w for every
positive integer k. By Proposition 5, player TWO does not have a
winning k-tactic in M G(Jpyc) for any positive integer k. Thus TWO
does not have a winning k-tactic in M G(J) for any positive integer k.
This completes the proof of the theorem. o

We now give some criteria for the nonexistence of winning k-tactics
of TWO in MG(J) and use these to discuss the optimality of the con-
clusion in Theorem 8(a) and to discuss some points about Proposition
6.

Proposition 9. Let J be a free ideal on S. If there is a set of
cardinality 2*7) in (J), then player TWO does not have a winning
2-tactic in MG(J).

Proof. Pick a set A in (J) of size u(J) and which is not in J. Let V'
be a set in (J) of size 2#(/), and which is disjoint from A. It follows

2
from [10, Corollary 28] that (p(V),C) — (w)j;s)-

Let F be a 2-tactic of TWO, and define a partition of [p(V)]* =
U{K, : z in A} as follows. Let {B,C} be in [p(V)]2, and let ay be some
element of A which we fix in advance. If {B, C} is linearly ordered by
set inclusion we may assume that B is a proper subset of C' and we
pick an z in A\(F(9, AUB)UF(AUB,AUC)) and put {B,C} in K.
Otherwise, we put {B,C} in K,,.

By (p(V),C) — (w)i(J) we get a point = in A and a sequence
C;cCycC--CCpCCpy1 C--- CV such that {Cp,Cr} is in
K, for m and n distinct integers. Put M, = AU C,, for each positive
integer n. Put Ny = F(&,M;) and Ngy1 = F(My, My41) for each
positive integer k. Then (M1, Ny,... , My, Ny,...) is a play of MG(J)
in which TWO used the 2-tactic F' and x is in no IV, but is in each
Mj,. Thus, this play is lost by TWO. This completes the proof. O
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Example 2. J ={N C R: N is nowhere dense}. For this example,
we have the following corollary.

Corollary 10.
(a) TWO does not have a winning 2-tactic in MG(J).
(b) CH implies that TWO has a winning 3-tactic in MG(J).

Proof. (a) Note that u(J) = Rg and that there are meager sets of size
continuum, and apply Proposition 9.

(b) If CH holds, the hypotheses of Theorem 8(a) are all satisfied and
the result follows. o

Letting A be a countable everywhere dense subset of R and B a
meager subset of R of size continuum and letting J' = Jyup it follows
similarly from Proposition 9 that TWO does not have a winning 2-
tactic in MG(J'). It can be shown that dir(J’) is uncountable. Thus,
if CH is true, we get that (p(c),C) 4 (w—path)giru,)Kw. This shows
that the necessary condition of Proposition 6 is not sufficient.

Let J be a free ideal on a set J. The following Proposition shows
that the cardinality bound in Proposition 9 is the break point for the
existence of winning k-tactics of TWO in MG(J).

Proposition 11. Let J be a free ideal on S. If there is a subset of S
of cardinality bigger than 2*)) with every subset of size at most 2#(J)
in (J), then TWO does not have a winning k-tactic in MG(J) for any
positive integer k.

Proof. Pick disjoint subsets A and V of S with A in (J)\J and
the cardinality of A is u(J), the cardinality of V is bigger than 2+/)
and every subset of V of size at most 2#(Y) in (J). Also pick a family
{Cy:a< (2Nt} with A C C, C Cp C (AUV) fora < B < (2HU))F
and C, in (J) for a < (2#(9))F.

Let k be a positive integer and let F' be a given k-tactic for TWO.

We may assume without loss of generality that F(Xy,... ,Xy) = @&
whenever Xi,..., X are in (J) and X; = @.
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Write (24N = U{T, : a < (2#U)*F} with {T, : a < (2#())+}
a disjoint collection of intervals, each of length k. Enumerate T, =
{a1,...,ar} in increasing order for each such a.

We define a partition [(2#(/))F]? = U,c 4K, as follows. Let a < 8 <
(29 * be given. Pick  in

A\(F(Cay,s .. ,Cay) UF(Cayy . ,CaryCp) U+ UF(Ca,, ... ,Cs.))

and put {a, 8} in K.

By the Erdés-Rado theorem, we pick an = in A and an increasing
w-sequence
ap<ag <<y < - < (QN(J))+

which is monochromatic of class x for this partition and enumerate
U2 Ty, ={71,72s--+ »¥m,--- } in increasing order.

Put M,, = C,,, for each positive integer m, and consider the play
(My,Ny,... , My, Np,...) of MG(J) where TWO now has used F.
By the properties of our partition z is in each M,, but in no N,,, so
TWO has lost this play of MG(J). Since k was arbitrary and F was
an arbitrary k-tactic, the proof is complete. o

5. Winning (k + 1)-tactics but no winning k-tactics? In the
preceding paragraphs, we saw examples of (1) a free ideal J for which
TWO has a winning 1-tactic in MG(J), (2) a free ideal J for which
TWO has a winning 2-tactic but not a winning 1-tactic in M G(J), and
(3) a free ideal J for which TWO does not have a winning 2-tactic in
MG(J), but if CH holds, then TWO has a winning 3-tactic in MG(J).

At present, this is the only information we have about

Problem 1. Is there for every positive integer k a free ideal Ji on a
set Sy such that

(1) TWO has a winning (k + 1)-tactic in M G(Jy), but
(2) TWO does not have a winning k-tactic in MG(Jg)?

We now discuss some specific examples in this context and we prove a
theorem that rules out some ways of trying to construct examples that
will solve the problem positively. To this end, we introduce a cardinal
function for partially ordered sets.
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Definition. Let (P, <) be an up-directed partially ordered set with
no largest element. Then c.n.(P, <) is the minimal cardinality that a
subset @ of P with the property that there is no p in P so that ¢ < p
for each ¢ in @, can have. We call c.n.(P, <) the completeness number
of (P, <).

The equivalence of the following statements for an up-directed par-
tially ordered set which has no largest element is easily verified:

(a) (P, <) has a cofinal chain,
b) the cofinality of (P, <) is equal to c.n.(P, <),
¢) (P, <) has a cofinal chain of order type equal to the cofinality of

(
(
(P, <).

Proposition 12. Let k be a positive integer and let J be a free
ideal on S with J # (J) and with 1 < cofinality((J), C) = c.n.({J), C).
Assume that TWO has a winning k-tactic in MG(Jx) for each X in
(J)\J Then the following statements are equivalent:

(a) TWO has a winning k-tactic in MG(J).

(b) For some positive integer n, TWO has a winning n-tactic in

MG(J).

Proof. Let J be as in the hypothesis. Only (b) = (a) needs proof.
This is proven by induction on n. If n < k, there is nothing to prove.
So assume that n > k, say n = k+j +1 for some integer j, and that (b)
= (a) is true for k + j. Assume furthermore that TWO has a winning
k + j + 1-tactic in MG(J). We will show that TWO has a winning
k + j-tactic in M G(J), which will complete the proof.

Let £ = cn.((J),C), and let {Cy : @ < K} be a C-cofinal chain
of order type k in (J)\J. Write £ = Ug<yTn where {T,, : @ < Kk}
is a sequence of intervals, each of length k + j. We enumerate each
To = {ai,...,0p4;} in increasing order. For B in (J), we let §(B)
denote the smallest o in k with B C C,. For each o in  pick a winning
k-tactic, say Fy, for TWO in MG(Jc,, ). We may assume without loss
of generality that F,(Xy,...,Xs) = & whenever X;,..., X} are in
(Je,,) and X, = @. Let F' be a winning k + j + 1-tactic for TWO in
MG(J). We now define a k + j-tactic for TWO.
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Let X; C --- C Xgyj in (J) be given, and put B, = [(X,,) for
1<m<k+j.

Case 1. 0 = Bryj—1 < Brt;j = v. Then we let G(X1,...,Xky;) be
the union of sets of the form F(Y1,..., Y4 1) where {Y1,... ,Yiqji1}
is an increasing k + j + 1-tuple from the collection {C,, : 1 < i <
k+jand y=46 or v =v}.

Case 2. 6 = Bryj—1 = Pr+j. Then we let G(X1,...,Xk4;) be the
union of sets of the form F5(Y7,...,Y:) where {Y7,...,Y,} is a subset
of {Xl, .. :ch+j}-

This defines a k + j-tactic G for TWO in M G(J). We show that G is
winning for TWO. So let (M1, Ny, ..., M, Ny,...) be a play of MG(J)
during which TWO used the k + j-tactic G. Let 3" denote 3(M;) for
every positive integer t. Note that if ¢ < s, then 8¢ < 3. There are
two possibilities to be considered.

Possibility 1. {8’ : t a positive integer} is finite.

Let 3 be the maximum of this set and let m > k+ j be minimal such
that for each ¢t > m, 8* = 8. Then N, contains Fg(M,y1,... , My ik)
for each integer 1 > m. By the choice of Fj it follows that the given
play of MG(J) is won by TWO.

Possibility 2. {3’ :t a positive integer} is infinite.

Let {v',72,...} enumerate {3! : t a positive integer} in increasing
order. For each positive integer n there then is a positive integer
m > n for which N,,, contains the set of finite unions of sets of the form
F(Y1,...,Y,qj41) where {Y1,... ,Yg1 41} is an increasing k + j + 1-
tuple from the collection {Cs, : 1 <i < k+jand § =™ or § = "1}
By the choice of F', it then follows that the given play of M G(J) is won
by TWO.

The proof of the Proposition is complete. ]
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Before we apply this information to our examples, we prove another
useful fact that will rule out some ideals as examples that will solve
Problem 1 for k& = 3.

Proposition 13. Let J be a free ideal on S with the property that for
each X in (J) there is a'Y in (J) which is disjoint from X and has the
same cardinality as X. If TWO has a winning k-tactic in MG(J) for
some positive integer k, then TWO has a winning 3-tactic in MG(J4)
for each A in (J).

Proof. Let J be as in the hypothesis and let F' be a winning k-tactic
of TWO in MG(J) for some positive integer k. Only the case k > 3
requires proof. Thus, assume that k£ > 3 and put m = k — 2.

Observation. Let I" be a collection of sets in (J) with the property
that if A and B are in I' and A C B, then there is a C in [' with
A C C C B. Consider that modification of MG(J) where ONE is
restricted to picking sets from I'. Then TWO has a winning 3-tactic in
this modified game.

Proof of the Observation. For each pair A and B in I" with A C B,
pick sets A C C1(A,B) C --- C Cp(A, B) C B with C;(4,B) in T for
1 < i < m. We define a 3-tactic G as follows. Let X; C Xo C X3 in T
be given.

We let G(X1, X2, X3) be the union of sets of the form F(Y1,...,Y%)
where {Y7,...,Y%} is a C-increasing k-tuple form

{Xl,XQ,Xg}U {CZ(XT,X]) :1<i<m, 1<r<j< 3}

That G is as required now follows from the fact that F' is a winning
k-tactic for TWO in M G(J). The proof of the observation is complete.
O

Note that this observation also applies to MG (Jx) for any subset X
of S. Now let A be a set in (J) which is not in J. We may assume
(by Proposition 3) that A is uncountable. Pick a set Y in (J) which is
disjoint from A and has the same cardinality as A. Write Y = U,c4S;
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where {S; : © € A} is a pairwise disjoint collection of infinite sets.
Pick for each = in A a collection R, of subsets of S, with the following
properties:

(a) @ and S, are both in R,
(b) R is totally ordered by C, and
(c¢) whenever C C D arein R, thereisan Fin R, withC' C E C D.

Let T" be the family of those subsets X of AUY for which X N S, is
in R, for each z in A and with X NS, not empty for each z in X N A.
Then I' has the properties required by the observation above. Let G
be a winning 3-tactic for TWO in the modified version of MG(Jauy)
where ONE is required to pick his moves from I'. We now use G to
define a winning 3-tactic of TWO in MG(Jy4).

For X a subset of A put X* = X U (UzexSz). Note that, for each
such X, X* isin I' and that if U C V are subsets of A, then U* C V*.

For U C V C W subsets of A, put H(U,V,W) = G(U*,V*,W*) N
A. Then H is a winning 3-tactic for TWO in MG(J,), for let
(My,Ny,..., My, Ny,...) be a play of MG(Ja) during which TWO
used the 3-tactic H. Let ¢t be a positive integer and let = be a point in
M;. We show that there is a positive integer s with x in IV,.

First note that Mi C My C --- C My C --- is a sequence of
consecutive moves by ONE in the game where ONE is restricted to
moving from I' and that = is a point in M;". Since G is a winning
3-tactic of TWO in this game, we find a positive integer s with z in
G(M;_ o, M:_{,M}). But then z is in G(M_,, M:_,,M}) N A, which
is Ng. The proof is complete. ]

Combining Proposition 12 and Proposition 13, we obtain

Corollary 14. Let k > 2 be a positive integer. Let J be a free
ideal on S with J # (J) and with 1 < cofinality((J), C) = c.n.({J),C).
Assume that for each X in (J) there is a Y in (J) which is disjoint from
X and has the same cardinality as X. Then the following statements
are equivalent:

(a) TWO has a winning k-tactic in MG(J).
(b) TWO has a winning 3-tactic in MG(J).
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Example 2 (Continued). By Corollary 10 player TWO does not
have a winning 2-tactic in M G(J), but if CH holds TWO has a winning
3-tactic in MG(J). We used the following three consequences of CH in
this demonstration.

(i) EH holds.
(i) 2<¢ =c.
(iii) The cofinality of (J) is N;.

The next few problems all relate to Example 2.

Problem 2. Is the theory “ZFC + EH + 2<% = ¢ + ¢ > N;+ the
cofinality of (J) is N;” consistent relative to ZFC?

As Laver points out in [7], the theory “ZFC+FEH+MA+c > X, is
consistent relative to ZFC'. In such a model, one has that the cofinality
of (J) is equal to c.n.((J), C). In light of Proposition 12, we have

Problem 3. Consider a special case of Laver’s models in [7] in which
EH + M A+ c = X3 holds. Does player TWO have a winning 3-tactic
in MG(J) in this model?

On the other hand, consider the models obtained by starting with
models of CH and iteratively with countable support adding N, Mathias
reals. In such models R is a union of X; meager sets, so c.n.((J),C) =
N;. Moreover, every subset of R of cardinality at most N; is meager,
whence the cofinality of (J) is Ny. The reader interested in details
could consult Section 6 of Miller’s paper [8]. We henceforth call a
model obtained in this way a Mathias reals model.

Problem 4. Consider a Mathias reals model. Does player TWO
have a winning k-tactic in M G(J) for some positive integer k?

A variety of other problems suggest themselves for Example 2. We
mention the following one before moving on.

Problem 5. Is it possible that there is no positive integer k£ for
which player TWO has a winning k-tactic in MG(J)?

Also note that J satisfies the condition of Proposition 13.
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Example 3. Let x and A be cardinal numbers with Rg = cof (\) <
A < k. We consider the free ideals J = [k]<*. In the special case when
A = g, we call MG(J) the countable-finite game.

Proposition 5 tells us that if K = A\ and if player TWO has a winning
k-tactic in M G(J) for some positive integer k, then TWO has a winning
3-tactic in MG(J). If Kk = A and TWO has a winning k-tactic in
MG(J), Propositions 5 and 12 tell us that TWO has a winning 3-
tactic in MG(J). What is the situation when x is larger than A*?
The next proposition shows that this class of examples cannot solve
Problem 1.

Proposition 15. Let k be a positive integer and let J = [k]<* where
k and X\ are cardinal numbers with g = cof(\) < A < k. If TWO
has a winning k-tactic in MG(J), then TWO has a winning 3-tactic
in MG(J).

Proof. Let x,\ and k be as in the hypotheses. Let F' be a winning
k-tactic of TWO in MG(J). We may assume that k > 3; put m = k—2.

Observation. Let I" be a collection of sets in (J) with the property
that if A and B are in I' and A C B, then there is a C in [ with
A C C C B. Consider that modification of MG(J) where ONE is
restricted to picking sets from I'. Then TWO has a winning 3-tactic in
this modified game.

Proof of the Observation. For each pair A and B in I" with A C B,
pick sets A C C1(A,B) C --- C Cp(A, B) C B with C;(A4,B) in T for
1 < i < m. We define a 3-tactic G as follows. Let X; C Xo C X3in T
be given.

We let G(X1, X2, X3) be the union of sets of the form F(Y7,...,Y%)
where {Y7,...,Y%} is a C-increasing k-tuple from

{Xl,XQ,X:;} U {CZ(XT,X]) 11<i<m, 1<r<j< 3}
That G is as required now follows from the fact that F' is a winning

k-tactic for TWO in M G(J). The proof of the observation is complete.
O
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Now write K = Up<rxSa where {S, : @ < s} is a pairwise disjoint
collection of countably infinite sets. For each a < k pick a collection
R of subsets of S, with the following properties:

(a) @ and S, are both in R,
(b) R, is totally ordered by C, and
(c) whenever A C B are in R,, thereisa C in R, with A C C C B.

Let T be the set of those subsets X of sk for which X N S, is in R,
for each a < k and for which X is in (J). Then I' has the properties
required by the Observation above. So let G be a winning 3-tactic for
TWO as in the Observation.

We now use G to define a winning 3-tactic for TWO in M G(J). Note
that for X in (J), X* = Ugex Sy is also in (J) and that if X C Y, then
X* C Y*. Note also that if X isin J, then {a <x: X NS, # @} isin
J.

Let AC B C C € (J) be given and define H(A, B,C) to be the set
of these o in & for which G(A*, B*,C*)N S, is not the empty set. By
the foregoing remarks, H is a 3-tactic for TWO in MG(J). We show
that H is winning for TWO.

Consider a play (M, Ny,..., My, Ny,...) of MG(J) during which
TWO has used the 3-tactic H. Let t be a positive integer and let a be
an element of M;. Then S, is a subset of M;". We show that « is in
N,,, for some positive integer m.

By our earlier remarks M{ C My C --- C M} C --- is a se-
quence of consecutive moves by ONE in the game where ONE is re-
stricted to moving from I' and hence U2 ;M is contained in the
union of the responses by TWO, using G. Pick the smallest k for
which G(Mj, My, M; ;) NS, is not the empty set. Then « is in
H(Mj, My41, Mi12) and we are done. ]

We saw in Corollary 4 that TWO has a winning 2-tactic in
MG([¥;]<®0). Beyond this, our knowledge about pairs x and A for
which TWO has a winning 3-tactic in M G([k]<?) is quite unsatisfac-
tory.

Problem 6. Does TWO have a winning 3-tactic in MG ([Ry]<X0)?
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At this stage, even consistency results would be interesting. It is also
not clear that “3-” is the optimal conclusion in Proposition 15.

Problem 7. Is there (consistently) a J as in Proposition 15 for
which TWO does not have a winning 2-tactic in M G(J) but does have
a winning 3-tactic in MG(J)?

J<®

Laver’s model in [7] with ¢ > N,41 and J = [Ry12]<" may shed

some light on problem 7.

6. Remarks about the cofinality condition in theorems 2
and 8. In both Theorem 2 and Theorem 8 the hypothesis that the
cofinality of (J) is at the most X; was sufficient to make various general
conclusions about the existence of winning k-tactics. In this paragraph,
we give an example which shows that this cofinality hypothesis is not
necessary to have winning k-tactics.

New ideas are needed to deal with free ideals J for which the
confinality of (J) is at least N,. The ideals of problems 3, 4 and 6

are test cases which will probably shed some light on the combinatorics
that will be needed to handle cofinalities above Nj.

Example 1 (continued and expanded).

Claim. For each infinite cardinal number k there is a free ideal J
on a set S such that

(1) J# (J),
(ii) the cofinality of (J) is at least k and
(iil) TWO has a winning 2-tactic in MG(J).

Proof. Let k be a given infinite cardinal number. Take a set S of
cardinality x™" and write S = AU B where A and B are pairwise
disjoint and the cardinality of A is k. Now define J so that J4 = J(k)
and so that for each X in J the cardinality of B N X is at the most k.
Since A is in (J) but not in J, (i) is clear. It is also evident that the
cofinality of (J) is ks and thus (ii) also holds. We now prove (iii).
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Let {Y, : @ < k} be a collection of subsets of A which are in J and
has the property that UscpY, = A for every infinite subset F of k.
Also let F4 be a winning 2-tactic for TWO in MG(J4). We assume
(without loss of generality) that F4(X,T) = @ whenever X = &. By
Proposition 15 of [10] we fix a partition [[B]=%]? = U,<.K, which
witnesses that

(1B, C)  (w-path)? ...

Define a 2-tactic G of TWO as follows. Let U and V in (J) be given
withU CV.LetU' =UNA, V' =VNA,U"=UnNBand V"' = VNB.

Case 1. f U" C V", pick a in & with {U"”,V"} in K, and put
GU,V) =Y, UV",

Case 2. Otherwise, let G(U,V) = Fa(U',V')uV".

G is a winning 2-tactic for TWO, for consider a play (M7, Ny, ... , Mg,
Ni,...) of MG(J) in which TWO used G. For each positive integer k,
put By = BN M}, and Cy = AN Mj. If there is some positive integer k
such that B,,, = By, for all m > k, then C,,,4+1 D C, for all m > k, and
F4 then guarantees that the given play is a win for TWO. Otherwise,
the choice of the partition [[B]|<¢]? = U,<.K, and the properties of
the family {Y, : @ < k} guarantees that this play is a win for TWO.
O

Part 2—The game SMG(J). Let J be a free ideal on a set S and
let (J) be its o-completion. For the remainder of this article, when we
consider such a free ideal, we will tacitly assume that J # (J) and that
S is not in (J). We make these two assumptions to avoid technicalities
or trivialities.

SMG(J), which we call “the strongly monotonic meager-nowhere
dense game on J,” is played as follows. Player ONE starts the game
by picking an M; from (J), and TWO responds by picking an Ny from
J. In the second inning, ONE picks an M> which contains M; U Ny
from (J) and TWO responds by picking an Ny from J, and so on. The
players construct an infinite sequence (M, Ny,... , Mg, Ng,...) where
for each positive integer k

(i) My, denotes the set ONE picked from (J) during the kth inning,
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(ii) Nj denotes the set TWO picked from J during the kth inning,
and

(ifi) Mp41 contains My U Ny.

Such a sequence is a play of SMG(J) and TWO wins this play if
Upl M, = Us2 N,. Note that TWO has a winning perfect informa-
tion strategy SMG(J). Furthermore, if TWO has a winning k-tactic
in MG(J), then TWO hs a winning k-tactic in SMG(J). In section
1 of this part, we show that the converse fails badly. We give an ex-
ample of a free ideal J on a set S for which TWO does not have a
winning k-tactic in MG(J) for any positive integer k, and yet TWO
has a winning 1-tactic in SMG(J).

In section 2 we start our discussion of winning k-tactics for TWO in
SMG(J) and we prove

Theorem 18. If J is a free ideal on a set S and if the cofinality of
({J), C) is Ry, then TWO has a winning 2-tactic in SMG(J).

In sections 3 and 4 we discuss various points about k-tactics for k£ > 1.
In section 5, we give an application of SMG(J) to the game BM (R, 7).
Let J be the collection of nowhere dense subsets of R. We prove

Theorem 22. Let k be a positive integer. If TWO has a winning
k-tactic in SMG(J), then TWO has a winning k-tactic in BM (R, T).

1. 1-tactics in SMG(J). We have the following necessary condition
for the existence of winning 1-tactics for TWO in SMG(J).

Proposition 16. Let J be a free ideal on S and let C be a cofinal
subset of J. Then (a) = (b), where (a) TWO has a winning 1-tactic
in SMG(J). (b) For each T in (J), but not in J, there is a family G
in C such that

(i) the cardinality of Gr is at least c.n.((J), C) and
(il) for every infinite subcollection H of Gr, T is a subset of UH.
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Proof. Let & denote c.n.((J), C) and suppose, contrary to the claim of
the Proposition, that C'is a cofinal subset of J for which there is some
set T in (J) but not in J such that for each collection G of cardinality
at least x of sets from C, there is an infinite subcollection G’ of G whose
union does not cover T'. Fix such a set 7'

Let F be a 1-tactic for TWO. Construct a chain {Dy : o < k} in (J)
which has the following properties:

(i) for a < &, T is a proper subset of Dy,

(ii) for o < 8 < K, Dy UF(D,) is a proper subset of Dg and

(i) Ug<rkDyq is not in (J).
For each o < k pick a C, from C which is different from any Cg with
B < a which had already been picked, so that F'(D,,) is a subset of Cl,.
Then {C, : a < k} is a family of x many sets from C. By our choice of
C and T there is an infinite sequence a; < as < --- < a, < - -+ in K for
which T is not a subset of U2 ,C,,, . Put M,, = D,,,, and N,, = F(D,,,)
for each positive integer n. Then (My, Ny,... , My, Ni,...) is a play of

SMG(J) during which TWO used the 1-tactic F' and lost. We proved
the contrapositive of the Proposition. O

We now introduce one more cardinal function for free ideals before
applying this Proposition.

Definition. Let A be an infinite cardinal number and let J be a
free ideal on a set S. Then K(J,\) is the minimal cardinality of a
subcollection G of J which has the property that each set in J of
cardinality less than A is a subset of some set in G.

It is clear that if A < k are infinite cardinals, then K (J,\) < K(J, &)
and that the cofinality of J is an upper bound for these cardinal
numbers.

Corollary 17. Let J be a free ideal on S. If any of conditions
(a), (b) or (c) applies to J, TWO does not have a winning 1-tactic in
SMG(J).

(a) d(J) < cn.((J),Q)
(b) for some infinite cardinal p < c.n.({J),C) there is an X in (J)



1040 M. SCHEEPERS

for which pt < K(Jx,p™)
(c) cof ((J),C) < K(J,cn.((J),C)).

Proof. (a) Let k denote d(J) and let J = Uy« Jo be a decomposition
of J witnessing this. By assumption (a), we pick a set T in (J) with
T not in (J,) for each a < k. Note that if C' is any collection of
cardinality bigger than k of sets in J, then there is an «a in x for which
the set {D € G: D isin J,} is infinite. T, together with the fact that
the cofinality of (J,C) is no smaller than c.n.((J), C), witnesses that
the necessary condition of Proposition 16 fails.

(b) Pick p and X as in the hypothesis, and consider any family G of
cardinality at least p* of sets in J. Pick by hypothesis (b) a set Y in
J which is a subset of X, has cardinality at the most p and which is
not a subset of any set in G. Then there is an infinite subcollection
G' of G and a point y in Y such that y is in no set in G'. Thus, X is
not a subset of UG’. Thus X witnesses that the necessary condition of
Proposition 16 fails.

(c) Let H be a cofinal subset of (J) of minimal cardinality. By
(c) we pick an X in (J) for which K(Jx,c.n.((J),C)) is bigger than
cof ((J),C). Then we have the inequality c.n.({J), C) < K (Jx,c.n.({J),
Q). If cn.({(J), C) is the successor of an infinite cardinal number p,
then p and X satisfy hypothesis (b) and we are done. Otherwise,
cn.((J),C) is an uncountable limit cardinal and there is an infinite
cardinal number p below c.n.((J), C) for which p* < K(Jx,p") and
(b) applies again. O

Example 2 (continued—see Part 1, Section 4). Since u(J) <
c.n.((J),C) and d(J) < u(J) for this example, Corollary 17(a) implies
that TWO does not have a winning 1-tactic in SMG(J). Note also
that if CH holds, then neither (b) nor (c) applies to this example.

Example 3 (continued—see Part 1, Section 5). Now we
conclude from the formulae d(J) = dir(J) < c.n.((J), C) and Corollary
17(a) that TWO does not have a winning 1-tactic in SMG(J). For the
particular example J = [R,]<" neither (b) nor (c) of Corollary 17
applies.
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Next we show that there are nontrivial free ideals J for which TWO
has a winning 1-tactic in SMG(J).

Example 4. Let x and A be infinite cardinal numbers and let S and T
be disjoint sets of cardinality x and A, respectively. Write S = U<, Rq
where {R, : a < k} is a pairwise disjoint collection of countably infinite
sets. The underlying set for the ideal J we are about to define is SUT,
which we denote by E.

Let X be a subset of F. We put X in J if the supremum of the set
{7 < kK : X N R, is infinite} is below « and if the cardinality of X N T
is less than A. Then J is a free ideal on E having the following readily
verifiable properties:

(a) Eisin (J) if and only if A has countable cofinality.

We assume henceforth that the cofinality of A is uncountable.
(b) S isin (J) but not in J.

(c¢) w(J) is equal to the cofinality of k.

(d) c.n.((J), Q) is equal to the cofinality of A.

Claim. The following statements are equivalent:
(i) TWO has a winning 1-tactic in SMG(J).
(ii) Both the cofinality of k and of A are equal to R .

Proof. (ii) = (i). Let {Ty : @ < w1} be a collection of subsets of T
which has the following properties:

(1) for o < 8 < w1, Ty is a proper subset of Tg.
(2) the cardinality of each T, is less than A and
B) T=U{Ty:a<w}

For each B in (J) we let a(B) denote the smallest ordinal v below w;
for which T, is not contained in B.

Let {Cy : @ < w1} be a collection of subsets of k with the properties:
(a) Cy ={a}if kis wy,
(b) for a < 8 < wy each ordinal in C, is less than each in Cg and
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(c) if k is not wy, then for & < B < w; the cardinality of C, is less
than that of Cg.

For § in k, let {rs(n) : n < w} be a bijective enumeration of R5. We also
fix a collection of functions {f, : @ < wi}, each of which has domain
wi and values in w and such that

(%)

ifog <as <+ <ap<---<wg, then {f, (§):n a positive integer}

is infinite for each § which is above each «,.

(Proof that these exist: for each v < wq, pick an injection h. from 7
to w. For « less than wy, define f, so that f,(§) = hs(a) if ¢ is bigger
than «, and f,(d) = 0 otherwise.)

We now define a 1-tactic for TWO. Let B be a set in (J) and let 8
be the ordinal a(B). We define F(B) to be the set

(U{Rs:¢disin C, and v < 8})
U({ro(n):n < fz(y), oisin Cy and vy in wi }) U (BNT) U Cpg.

Then F(B) isin J and F is a 1-tactic for TWO. We claim that F is a
winning 1-tactic for TWO. For let (My, Ny,... , Mg, Ng,...) be a play
of SMG(J) during which TWO used F. For each positive integer k,
we let i, denote the ordinal a(Mjy).

Observation 1. [ < Bk for each positive integer k.
(This is because Cp, is a subset of N and Ny of My for each k.)

Observation 2. U2, (T N My) is a subset of U2, V.

(This is because of the third term in the union of four that constitutes
F(B).)

We will be done if we show that S is a subset of U2 ; Nj. Let 6 denote
the supremum of the set {8k : k a positive integer}. From the first term
in the definition of F, it follows that S will be a subset of U32 ; IV}, if we
can show that R, is a subset of U2 ; Nj, for each «y not in C'; for some 7
less than §. Consider such a . Then « is in C, for some 7 bigger than
or equal to § and thus {r,(n) : n < fz,(7) and k is a positive integer}
is a subset of U72; Ny. It follows from Observation 1, the choice of T
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and the property (x) of the family {f, : @ < w1} that R, is a subset of
Up21 Nk, and we are done.

(i) = (ii). Suppose that at least one of x or A has cofinality different
from N;. We may assume that the cofinality of A is uncountable.

Case 1. cof (k) < cof (X). Then u(J) < c.n.((J),C) and since d(J)
is at most u(J) Corollary 17(a) implies that TWO does not have a
winning 1-tactic.

Case 2. cof (k) > cof(\). Then the cofinality of k is larger than
Ny. Since K(Jg,N1) is larger than Ry and c.n. ((J), C) is larger than
Ro,it follows from Corollary 17(b) that TWO does not have a winning
1-tactic.

The proof is complete. i

If we now take k and X\ both of cofinality X; and X larger than 2"
in this example, then TWO has a winning 1-tactic in SMG(J) and by
Proposition 11 TWO does not have a winning k-tactic in MG(J) for
all positive integers k.

2. k-tactics in SMG(J) for k bigger than 1.

Theorem 18. If J is a free ideal on S for which the cofinality of
({(J), C) is Xy, then TWO has a winning 2-tactic in SMG(J).

Proof. Without loss of generality, J is not o-complete. Choose a
family {Cy : @ < w;} of sets in (J) which are not in J such that

(i) for o < B < wi, Cy is a proper subset of Cz and
(ii) for each B in (J) there is an « less than w; with B a subset of
Ca.

Let G be a winning perfect information strategy of TWO in MG(J)
and pick for each « less than w; a set D, in J which is not a subset of
Cy. For each B in (J), let B(B) denote the least ordinal « less than
w1y for which B is a subset of C,.
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Let (<p: n < w) be a sequence of binary relations on w; such that
(a) T}, = (w1,<p) is a tree of height at most n + 2 for each n in w,
(b) for m < n in w, <, is contained in <,, and

(c) for o < B in wy, there is an n in w for which a <, B.

We now define a 2-tactic F' for TWO. So let B and C be sets in (J)
with B a proper subset of C' and let a denote 3(B) and ~, 3(C). Then
a is less than or equal to 7.

Case 1: «a is less than . Pick the smallest m in w with a <, v and
put T ={6d <wy:6=vord <, v} By (a) T is a finite set. Define
F(B,C) to be the set Dy U (U{F(Cq,,...,Cq,) : {a1,... ,an} is an
n-element subset of T' for an n < m}.

Case 2: o is equal to . Then define F(B,C) to be the set D.,.

F is a winning 2-tactic for TWO, for let (My, Ny,..., Mg, Ng,...)
be a play of SMG(J) during which TWO used F. For each positive
integer n we let «,, denote 8(M,,) and we let m,, denote the smallest
integer m for which o, <;, apy1. E,, denotes Cy,, and S,, denotes D,
for each positive integer n.

Observation 1. «, is less than «, ; for each positive integer n.
(This is because S, is a subset of M, ;.)

Observation 2. The function f defined so that for each positive
integer k f(k) is the smallest ¢ with k¥ < m,, has the property that if
k < s are positive integers, then

(i) f(k) is less than or equal to f(s),
(i) myam) < my),
(i) lim, e f(n) = 0o and
(iv) for each j < f(k), o <y Q(f(k)+1)-
It follows that Ny contains the set

G(El)U'-'UG(El,... ,Em)U---UG(El,... 7Ef(k))
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for each positive integer k. This, together with the fact that G is a
winning perfect information strategy of TWO in M G(J), implies that
the given play of SMG(J) is won by TWO. O

Example 2 (Continued). It is consistent with ZFC (even with
ZFC + —CH) that the cofinality of ((J),C) is N;. Consequently, it is
consistent with ZFC' that TWO has a winning 2-tactic in SMG(J).
In our applications of Corollary 17 we noted that TWO does not have
a winning 1-tactic in SMG(J).

Example 3 (Continued). For J = [w;]<%0 the cofinality of ((J), C)
is X;. By Theorem 18, TWO has a winning 2-tactic in SMG(J). In
Corollary 4, we have already noted the better result that TWO has a
winning 2-tactic in M G(J).

Problem 8. Is there some positive integer k for which TWO has a
winning k-tactic in SMG ([Rg]<0)?

3. Winning (k + 1)-tactics but no winning k-tactics? We have
given examples of

(1) a free ideal J for which TWO has a winning 1-tactic in SMG(J)

(2) a freeideal J for which TWO has a winning 2-tactic in SMG(J)
but no winning 1-tactic in SMG(J).

These settle the case kK = 1 of the following open problem.

Problem 9. Is there for each positive integer k a free ideal J; such
that TWO has a winning (k + 1)-tactic in SM G(J) but not a winning
k-tactic in SMG(Jy)?

The following theorem rules out some ideals as candidates for the
case k > 1 in Problem 9.

Theorem 19. Let J be a free ideal on a set S. If the cofinality of
((J), C) is equal to the completeness number of ((J), C), the following
statements are equivalent:
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(1) TWO has a winning 2-tactic in SMG(J).

(2) For some positive integer k TWO has a winning k-tactic in
SMG(J).

Proof. Only (2) = (1) requires proof. This implication is proven
by induction on k. It is clearly true for £ < 2. Let k& > 2 be given
and suppose that it is known that if TWO has a winning k-tactic in
SMG(J), then TWO has a winning 2-tactic in SMG(J) for J as in the
hypothesis of the theorem. Let J be as in the hypothesis of the theorem
and assume that TWO has a winning (k + 1)-tactic in SMG(J). Let F
be such a winning (k + 1)-tactic for TWO. Let s denote the cofinality
of ({(J), C). By the induction hypothesis, it suffices to show that TWO
has a winning k-tactic in SMG(J).

Choose a family {C,, : o < k} from (J) such that

(1) for a < 8 < K, C4 is a proper subset of Cp,

(2) for each B in (J), there is an « less than x with B a subset of
C., and

(3) for ay < -+ < agpg1 < B <k, F(Cay,...,Ca,,) is a subset of
Cps.

Write & = Ug<xTo where for a < &, Ty = {Za, Yo} is a set of two
consecutive ordinals listed in increasing order and {7, : @ < &} is a

pairwise disjoint family. Put D, = C;_ for @ < k. Then {D, : a < K}
still has properties (1), (2) and (3) above.

For each o < k, pick a z, in S which is not in C,, and for each B in
(J), let a(B) denote the smallest ordinal v with B a subset of D,. We
now define a k-tactic G for TWO.

Let {Bi,...,Bx} be sets from (J) with B, a subset of B; for
j < s < k. Let a; denote the ordinal a(B;) for 1 <i < k.

Case 1. a3 < --- < ay. Let E be the set consisting of the terms in the
chain D,, C Cy,, C -+ C Dq, C Cy, and we define G(B, ..., By)
by the set

(U{F(Xl, e ,Xk+1) : {Xl, e ,Xk+1}
an increasing chain from E}) U {z,, }.
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Case 2. In all other cases, put G(B1,...,Bi) = {za, }-

Suppose that (M7, Ny,..., M, Ny,...) is a play of SMG(J) during
which TWO used the k-tactic G. For each positive integer j, let «;
denote the ordinal a(Mj), let u; denote x4, let v; denote y,; and let
w; denote z,,. We also let D; denote C,; and H; denote C,;.

Observation 1. For 1 < j <k, N; = {w,}.
Observation 2. For k£ < j, N; is defined by Case 1.

Observation 3. For each positive integer j, o; < aj41. (This is
guaranteed by the set {w;} in the definition of G.

Observation 4. M; C D; C H; C Dj;.

Using these observations and the fact that F' is a winning (k + 1)-
tactic for TWO in SMG(J), it follows that the given play of SMG(J)
is won by TWO. Thus, G is a winning k-tactic for TWO in SMG(J).
O

The hypothesis that the cofinality of ((J),C) is ®; in Theorem 18
implies that cof ((J), C) = c.n.((J),C). We show in the next section
that this sufficient condition for the existence of a winning 2-tactic
for TWO is not necessary and also that it is not necessary to have
cof ((J),C) = cn.({(J),C) in order to have a winning 2-tactic in
SMG(J).

4. Criteria for nonexistence of winning k-tactics, £ > 1. Note
that when considering a k-tactic F' for TWO in SMG(J) for some J,
we may without loss of generality assume that F(Xq,...,X;) = &
whenever X; = &. This will henceforth be our tacit assumption unless
we explicitly assume something else.

Theorem 20. Let J be a free ideal on a set S. If J satisfies any
one of the following conditions, then TWO does not have a winning
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k-tactic in SMG(J) for any positive integer k.
(a) 29D < cn.((J),C).
(b) (C'n'(<‘]>’ C)’ <) - (w_pa‘th)?iir(J)/<w'

(c) there is an infinite cardinal number \ with 2* < c.n.((J), C) and
(2M* < K(Jx,AT) for some X in (J).

Proof. (a) Let x denote d(J), let p denote c.n.((J), C) and choose
a decomposition J = Uy<xJ, where for each « less than k, J, is an
ideal with (J,) # (J). Since k is less than p, pick an X in (J) which
is in none of the (J,). Let k be a positive integer and let F' be a k-
tactic of TWO. Construct a chain {Cy : a < p} in (J) such that if
ap <o <oy <P < p,then XUF(Cy,,...,Ca,)UCy, is a subset of
Cg. Write 1 = Uq<, To where for a < 8 < p,

(a) Ty has k elements and

(b) each element of T, is less than each element of 7. Enumerate
each T, in increasing order as {aj,... ,ax}.

Define a partition [u]? = U,<.S, as follows. We put {a,} in S,
if 4 is minimal with F(Cyu,,... ,Co:) U F(Cayy... ,Cq,;,Cpy) U--- U
F(Cﬂl, ce ,Cgk) in J,y.

Since 2" is less than u, we get (by the Erdés-Rado theorem) a 7 in &
and a subset A of u of order type at least kT + 1 which is homogeneous
of class S,. Pick an increasing sequence oy < -+ < oy < --- from A
and enumerate U2 T, = {6 : m is a positive integer} in increasing
order.

For each positive integer ¢, we put M; = Cg,. Consider the cor-
responding play (My, Ny,..., My, Ny,...) of SMG(J) during which
TWO used the k-tactic F. By our construction X is a subset of M;
while [V; is in J,, for each positive integer £. Hence, TWO lost this play
of SMG(J).

(b) Let s denote dir(J), let p denote c.n.((J),C) and choose a
decomposition J = Ug<yrJo where {J, : @ < &} is an up directed
family of ideals. Since & is less than pu, pick an X in (J) which is
in none of the (J,). Let k be a positive integer and let F' be a k-
tactic of TWO. Construct a chain {Cy : a < p} in (J) such that if
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a1 < <o <P <p,then XUF(Cyy,...,Cq,)UC,, is a subset of
Cs.

We define a partition [u]* = U,<.S, by putting {a1,...,ax} in S,
where v is minimal with F(Cq,,...,Cy,) in J,.

Since (p, <) — (w-path)?, _ , we also have that (y, <) — (w—path)ﬁkw

[10, Corollary 10]. So pick a finite subset H of k and an increasing
sequence a1 < --- < oy < --- from p such that H is the set of those v
for which some {a;41,...,0j4%} for a, j in w is in S,.

Since {J, : @ < k} is an up directed family, pick a § in « such that J,
is a subset of Js for each v in H. For each positive integer ¢, put M; =
Cy,. Consider the corresponding play (My,Ny,..., My, Ng,...) of
SMG(J) during which TWO used the k-tactic F'. By our construction,
X is a subset of M; while IV; is in Jj for each positive integer ¢t. Hence,
TWO lost this play of SMG(J).

(c) Pick an X in (J) and an infinite cardinal number A as in (c).
Let 4 denote c.n.((J),C) and let x denote (2*)*. Let k be a positive
integer and let F be a k-tactic for TWO in SMG(J). Construct a
chain {Cy : @ < p} in (J) such that if a3 < -+ < o < B < p, then
X UF(Cuys.-v,Cqy) UCy, is a subset of Cp.

The family G consisting of finite unions from the collection {F(Cy,,

3 Cq,) a1 < --+ < ap < Kk} of sets in J has cardinality at the
most k. Pick a subset Y of X which has cardinality at the most A and
which is not a subset of any set in G. Write k = Uy<, T, where for
a < B <K,

(a) T, has k elements and
(b) each element of Ty, is less than each element of Tj.

Enumerate each T, in increasing order as {a1,...,a;} and define a
partition []? = Uyey Sy so that {«, 3} is in Sy for some y in Y which is
not in F(Cyy,... ,Ca )UF(Cay,...,Cq,,Cp)U---UF(Cgy,...,Ca,).
On account of the size of k we pick (by the Erdés-Rado theorem) a y in
Y and a subset A of  of order type at least AT +1 which is homogeneous
of class S,. Pick an increasing sequence oy < -+ < ¢ < -+ from A
and enumerate U T, = {6 : m is a positive integer} in increasing
order.
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For each positive integer ¢, we put M; = Cg,. Consider the cor-
responding play (Mi, Ny,...,M;, Ny, ...) of SMG(J) during which
TWO used the k-tactic F'. By our construction, Y is a subset of M;
while y is not in N; for each positive integer ¢t. Hence, TWO lost this
play of SMG(J). u]

Example 1 (continued and expanded). Let s be an infinite
cardinal number and let S be a set of cardinality A where A > k. Write
S = AU B where A and B are pairwise disjoint sets with cardinalities
respectively x and A. Define J on S so that J4 is J(k) and Jg is a
o-complete free ideal. Since the cofinality of J(k) is &, dir(J) < k.

Claim. The following statements are equivalent.
(a) TWO has a winning 2-tactic in SMG(J).

(b) There is a positive integer k for which TWO has a winning k-
tactic in SMG(J).

(¢) cn.((J),C) # (w-path)Z, .

Proof. Only the implications (b) = (c) and (c¢) = (a) require proof.

(b) = (c). If (c) fails, it follows from the fact that dir(J) < s and
Theorem 20(b) that TWO does not have a winning k-tactic in SMG(J)
for any positive integer k. (b) = (c) is the contrapositive of this.

(c) = (a). Let A denote c.n.((J), C) and pick a chain {C, : @ < A} in
(J) such that A C Co C Cg for a < § < X and so that Us<1Cy is not
in (J). Let {Y3 : 8 < K} be a family of sets in J4 with the property
that A = UyerY, for each infinite subset F of k. Let [A]2 = Uy<xSa
be a partition witnessing that \ /4 (w—path)i\<w. For each T in (J),
we let a(T') be the least v in A with (C,\ A)NT nonempty if such exists,
or else let a(T) = 0.

We now define a 2-tactic for TWO. So let M and M’ be given sets
in (J) with M a subset of M'. Let a = a(M) and o' = a(M'). Then
evidently, o < o'.

Case 1. ao=«a'. Then put F(M,M') = Cy.
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Case 2. o < &'. Then put F(M,M') =Y, U[(M'UCqy)N B], where
7 is minimal with {o, &'} in S,,.

This defines a 2-tactic F' of TWO and it follows easily that whenever
(My,Ny,..., My, Ny,...)isaplay of SMG(J) during which TWO used
F, then A is a subset of U2 ; IV; and consequently that this play is won
by TWO. The proof is complete. a

Thus, if we let x be an infinite cardinal number, if X is at least k1
and if Jp is [B]=", then c.n.((J),C) # (w-path)?,_,. It follows that
TWO has a winning 2-tactic in SMG(J) despite the facts that the
cofinality of (J) is different from the completeness number of (J) and
larger than X;. It follows that the sufficient hypotheses of Theorems
18 and 19 are not necessary for the existence of winning 2-tactics in

SMG(J).

Example 2 (continued). This example is of particular interest
when the cofinality of (J) is larger than ®;. Solutions to the following
two problems may shed some light on this.

Problem 10. Consider models of ZFC + MA + ~CH. Is there
such a model in which TWO has a winning 2-tactic in SMG(J)? (By
Theorem 19, it suffices to ask for the existence of winning 2-tactics.)

Problem 11. Consider a Mathias reals model (see Part 1, Section
5). Does TWO have a winning k-tactic in SMG(.J) for some positive
integer k in such a model?

Example 3 (continued). We have cardinal numbers A and x
with R < A < x and J = [k]<*. For these ideals, we know that
d(J) = dir(J) = Ry and that cn.((J),C) = At. If X is bigger
than the continuum, Theorem 20 implies that TWO does not have
a winning k-tactic in SMG(J) for any positive integer k. If A is less
than the continuum, Theorem 20 (a) and (c) do not apply anymore.
Yet Theorem 20 (b) might still apply since it could be that there is a
real-valued measurable cardinal below ), in which case [10, Proposition
19] shows that Theorem 20 (b) applies.
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We noted earlier that TWO has a winning 2-tactic in SMG ([R;]<%0).
As far as we know, this is the present state of knowledge concerning
k-tactics in SMG(J) for this class of ideals.

Problem 12. Is there some positive integer k such that TWO has a
winning k-tactic in SMG ([Rg]<N0)?

(At this stage, even consistency results would be illuminating.)

Problem 13. Consider models of ZFC in which X, is less than the
continuum. Is it possible that TWO has

(i) a winning 2-tactic in SMG(([Ry41]<N«)?

(ii) a winning k-tactic in SMG (([X,42] <®«) for some positive integer
k?

5. An application to Banach-Mazur games. In the introduction
to this article we briefly introduced the Banach-Mazur game and Debs’
example (R, ) of a space for which TWO does not have a winning 1-
tactic in BM (R, 7). Let J be the ideal of nowhere dense subsets of R
(in the usual topology). It is further known that if the cofinality of (J)
is Ny, then TWO has a winning 2-tactic in BM (R, 7). In this section
we show the relevance of the game SMG(J) to questions concerning
k-tactics in BM (R, ).

Recall that a family R of subsets of a topological space (X, ) is a
m-base for the topology 7 if R consists of nonempty elements of 7,
and each nonempty element of 7 contains an element of R. Now for
a m-base R of a topological space (X, 1), the following statements are
equivalent:

(a) TWO has a winning k-tactic in BM (X, 1)

(b) TWO has a winning k-tactic in the Banach-Mazur game on
(X, 7) where the players are restricted to picking their open sets from
the m-base R.

The family R = {I\M : I is an open interval of R and M is a meager
set with M = M + Q} is a w-base for the space (R, 7). The reader
should remember our convention that “open,” “meager,” “nowhere

dense,” “interior,” “closure,” and “dense” in the present context are
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to be understood in the sense of the usual topology, o, of R unless it
is further qualified by 7.

For A in R, I(A) denotes the interior of the closure of A and M (A)
denotes the set (I(A)\A)+ Q. The crucial properties of R are recorded
in the next lemma. The proofs are routine and at some point rely on the
fact that if X is a subset of R with X = X +Q, then X = (XNI)+Q
for each nonempty open interval I.

Lemma 21. Let A and A’ be in R.

(a) If A =1\X where I is an open interval and X is meager and
X=X+Q,thenI(A)=1I and M(A) = X.

(b) The following statements are equivalent:
i)y ACA
(i) I(A) CI(A") and M(A") C M(A).

And now a final remark before proving the main result of this section;
when considering a winning k-tactic F of TWO in SMG(J), we may
(and will) assume that F' has the following two properties:

(i) for all Xy,..., Xy in (J), F(X1,...,Xk)\ Xk # &, and

(ii) for each w-sequence X; C --- C X; C ... of sets in (J) with
the property that there is a positive integer m such that whenever
j>mands < j—k, then F(Xs41,...,Xsyr) C Xj, it follows that
U® X, = U2 F(Xnt1,.-- , Xntk). (Intuitively speaking, this says
that F' is then also a winning k-tactic for TWO in those plays where
ONE plays a weakly monotonically and eventually obeys the rules of
SMG(J)).

We are now ready to prove

Theorem 22. Let k > 1 be an integer. If TWO has a winning
k-tactic in SMG(J), then TWO has a winning k-tactic in BM (R, T).

Proof. We consider the Banach-Mazur game where both players pick
their open sets from the w-base R defined above. Let & > 1 be an
integer and let F' be a winning k-tactic of TWO in SMG(J) which
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has the properties stated above. Let G be a winning tactic of TWO in
BM(R,o0).

Define a k-tactic, H, of TWO in BM (R, 7) as follows. Let D; 2 --- D
Dy, be sets in R. Put I; = I(D;) and M; = M(D;) for 1 < j < k. By
Lemma 21 we know that Iy D -+ D I, and M7 C .. C Mj. Pick a
nonempty open interval V(Iy,...,I;) € G(I) which is disjoint from
F(M,...,My) and put

H(D1,...,Dp) =V(Iy,... ,T)O\N(F(My,..., M) UM) + Q).

We show that each play (E;,Ny,...,Ey, Ny, ...) of BM(R,7) for
which each F; and each N; is in R and with Ny = H(E},...,E),
N2 = H(El, ,El,Eg),..., Nj+k = H(Ej+1,... 7Ej+k) for _] in w
is won by TWO. This will show that TWO has a winning k-tactic in
BM(R, 7).

Consider such a play and put My = M(FE;) and I; = I(E;) for each
positive integer t. So E; = I;\M; for each positive integer t. Fur-
thermore, let W1 = F(Ml, e ,Ml), W2 = H(Ml, e ,Ml, Mg), ey
Wiyr = H(Mjt1,... ,Mj1y) for j in w. An inductive computation,
using the properties of F', shows that M; C M;,; for each positive
integer t and that if ¢ is bigger than k, then in fact M; UW; C My y;.
Consequently, U2, M,, = U W,,. Since (I1,G(I1),... ,I;, G(L),...)
is a play of BM (R, o) during which TWO used the winning 1-tactic
G, Ne2, 1, is nonempty. An inductive computation shows that for
each positive integer m, Iny1 and W, are disjoint, and thus N2, 1,
and U W, are pairwise disjoint. Consequently, NS° I, is a subset
of N9, E,, whence this latter intersection is nonempty and TWO has
won the play under consideration. The proof is complete. |
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