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SPACES ON WHICH
UNCONDITIONALLY CONVERGING OPERATORS
ARE WEAKLY COMPLETELY CONTINUOUS

PAULETTE SAAB AND BRENDA SMITH

ABSTRACT. Let Q be a compact Hausdorff space, and let
E be a Banach space with unconditional reflexive decompo-
sition, then every unconditionally converging operator 7" on
C(Q, E), the space of E-valued continuous functions on €, is
weakly completely continuous, i.e., T' sends weakly Cauchy
sequences into sequences that converge weakly.

Introduction. Let T : X — Y be a bounded linear operator from
a Banach space X into a Banach space Y. We say that T is weakly
compact (w.c.) if for every bounded sequence (z,) in X, there is a
subsequence (z,,) such that (T'z,,) converges weakly in Y. We say
that T is weakly completely continuous (w.c.c.) (also called Dieudonné
operator) if for every weakly Cauchy sequence (z,) in X, the sequence
(Tx,,) converges weakly in Y, and we say that T is unconditionally
converging (u.c.) if for every weakly unconditionally Cauchy series
(wawc.) >, %, in X, the series ), T, converges unconditionally in
Y. Here recall that a series ), «, is weakly unconditionally Cauchy if
for each z* in X* the series ) |z*(x,)| is convergent. It is clear that T
weakly compact implies 7" weakly completely continuous which in turn
implies T unconditionally converging. In his fundamental paper [9] A.
Pelczynski looked at spaces on which every unconditionally converging
operator is weakly compact. Such spaces are said to have Pelczynski’s
property (V). In [9] Pelczynski showed that among classical Banach
spaces, the spaces C(€) of scalar-valued continuous functions on a
compact Hausdorff space © have property (V), and in [7] W. Johnson
and M. Zippin showed that more generally any Banach space whose
dual is isometric to an L' space have property (V). Also in [9] spaces
with property (u) were introduced; for this recall that a Banach space
E has property (u) if for any weakly Cauchy sequence (e,,) in E there
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exists a weakly unconditionally Cauchy series (w.u.c) > x, in E such
that the sequence (e, — Y., z;) converges weakly to zero in E. Any
Banach space E with unconditional basis or more generally any space
with unconditional reflexive decomposition has property (u) and so is
the case of any weakly sequentially complete Banach space and any
order continuous Banach lattice [8]. It is clear that if a Banach space
E has property (u), then every unconditionally converging operator on
E is weakly completely continuous. The main object of this paper is to
see what other Banach spaces share the above property with spaces that
have property (u). For this, let us fix some notations and terminology.
If Q is a compact Hausdorff space and if F is a Banach space, we
let C(, E) stand for the Banach space of all E-valued continuous
functions on € under supnorm. In this paper we shall show that if
F is a Banach space with unconditional reflexive decomposition and if
Q is a compact Hausdorff space, then every unconditionally converging
operator on C(£2, F) is weakly completely continuous. For all undefined
notions, we refer the reader to [5] or [8].

The main result. Throughout, 2 is a compact Hausdorff space, F is
a Banach space and C(Q, E) stands for the Banach space of continuous
E-valued functions on Q under supnorm. We shall denote by M (2, E*)
the space of all regular E*-valued vector measures p defined on the o-
field of Borel subsets of Q2 that are of bounded variation. It is well
known [5, p. 182] that M (Q2, E*) is a Banach space under the variation
norm ||u|| = |1/(Q) and that M (9, E*) is isometrically isometric to the
dual C(Q, E)* of C(Q, E). Recall also that if F' is a Banach space, then
any bounded linear operator T : C(Q2, E) — F has a finitely additive
representing measure G that is defined on the o-field of Borel subsets
of Q and that takes its values in L(E, F**), the space of all bounded
linear operators from FE into the second dual F** of F'. Among many
properties of G we should point out that G is said to be of bounded
semi-variation. If for each y* € F* we denote by Gy« the element of
M(Q2, E*) defined by

(Gy=(B),e) =y"((G(B),e))

for each Borel subset B of 2 and each e in E, the semi-variation of

G is the extended nonnegative function ||G|| whose value on a Borel
subset B of (2 is given by

IGI[(B) = sup{|Gy-[(B) : y* € F", [[y"[| < 1}.
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For a series ) |z, in a Banach space X we say that ), is a weakly
unconditionally Cauchy series in X if it satisfies one of the following
equivalent statements

a) >, |z (zn)| < oo, for every z* € X*;
b) sup {|| >, c, all : o finite subset of N} < oo

c) sup, SUP,,—y || 321, oiwil| < 0.

Our first lemma is well known; its proof is an easy consequence of the
Lebesgue bounded convergence theorem and of the fact that for any
compact Hausdorff space §2 and any Banach space E, C(€, E') embeds
isometrically in the space C(Q x B(E™)) of the scalar-valued continuous
functions on the product of Q and the dual unit ball B(E*) with its
weak*-topology, where the embedding associates to each element ¢ in
C(Q, E) the element ¥ in C(Q x B(E*)) defined by

Iwe) =" (W) weRe € B

Lemma 1. Let Q be a compact Hausdorff space and let E be a
Banach space. A bounded sequence (f) is weakly Cauchy in C(Q, E)
if and only if for each w € Q, the sequence (fn(w)) is weakly Cauchy
m B

Finally, we say that a Banach space has an unconditional Schauder
decomposition into subspaces {E,}, if each x € E can be uniquely
written as x = Zn x, with each z, € F, and such that the series
> n Zn converges unconditionally in E. If a Banach space has such an
unconditional decomposition {E,, }, then for each n > 1, we will denote
by @, the bounded linear operator on E defined by @, (3=, z;) =
Z?Zl x;. We will also denote by P, = @ and P, = Q,, — @Q,—1 for
n > 2. Here what is important to note is that when the decomposition
is unconditional, then sup{[| ", ., Pxl| : o finite subset of N} < co. If
the decomposition is unconditional and E, is reflexive for each n > 1,
then we say that F has an unconditional reflexive decomposition. With
these notations, we can now state our next Lemma which basically
tells us how well some spaces with unconditional decomposition enjoy

property (u).

Lemma 2. If E is a Banach space that has an unconditional reflexive
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decomposition {E,} and if (yi) is a weakly Cauchy sequence in E with
y** its weak® limit in E**, then

y** = weak” Z Py (y™).

Proof. Let ** € E**. Let P, : E — E, be the projection associated
to the decomposition with range E,, then P;* : E** — E,, since each
space E, is reflexive. Notice now that the series ). P *(z**) is a
weakly unconditionally Cauchy series since for each finite subset o of

Do) < Nl P
neo neo
= llz [ | > Pa
neco
< Cllz*]]

where C' = sup{|| Y, c, Pn|| : o finite subset of N} is finite because the
decomposition {E,} is unconditional. So what the lemma is asserting
is that any element y** in E** that is the weak™ limit of a weakly
Cauchy sequence in E can be realized as the weak* sum of a very
special weakly unconditionally Cauchy series in . Let y** in E** such
that y** = weak* limy y, with (yi) a weakly Cauchy sequence in E.
We need to show that for each z* € E*

y(t) =Y (P (YT, )
n
For this, let z* € E* be fixed and note that since the decomposition
{E,} is unconditional, one can easily show that the series > Py (z*)
is a weakly unconditionally Cauchy series in E*. Since (yg) is a weakly
Cauchy sequence in E, it follows from [9] that

(oo}

Jim S (P, = 0
n=N+1
uniformly for all £ > 1. Fix € > 0, then there exists Ny > 0 such that

oo

Y KPiE)uel <e/3

n=Np+1
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for all k£ > 1. Since y** is the weak* limit of the sequence (yx) we can
find K > 0 such that for all £ > K, we have

|2*(y™) — 2" (yx)| < /3
and

No
D oIPE ) e — vl < /3.

Hence, for £ > K, we have

No
)= S P )

n= .

<) - )] ) — S )
[e9) No

<3 | S Palw). =) — S (B )
No 0o

<3S EE ) | Y P
n=1 n=Nop+1

<e/3+¢/3+¢/3.
This completes the proof. a

We are now ready to state and prove the main result of this paper.
The proof refines ideas found in [2] and [3].

Theorem 3. Let Q be a compact Hausdorff space, and let E be a
Banach space with unconditional reflexive decomposition {E,}. Let
F be a Banach space. If T : C(Q,E) — F is an unconditionally
converging operator, then T is weakly completely continuous.

Proof. Let T : C(Q, E) — F be unconditionally converging with G
its representing vector measure. It follows from [6] that there exists a
nonnegative scalar measure A on 2 such that

(1) lim ||G]|(B) = 0.

A(B)—0
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Without loss of generality, we may assume that €2 is metrizable, for
one can proceed as in [1] (see also [3]) to reduce to the case where Q
is metrizable.

Let (f1)n>1 be a weakly Cauchy sequence in C'(£2, E). Then for each
w € Q, there is f(w) € E** such that

f(w) = weak™ lim f,,(w).

Without loss of generality, we may assume that ||f,(w)|| < 1 for all
n > 1; hence, for all w € Q, ||f(w)|| < 1. By Lemma 2, we have

oo

f(w) = weak™ Y P7*(f(w)).

n=1

For each n > 1, let ¥, (w) = P*(f(w)) for each w € Q. Since
P . E* — E,, then ¥, takes its values in E,. We claim that
¥, : Q = E, is A-measurable. For this, note that for each z* € E},
Prz* € E*, hence for each k > 1, the mapping w — (fi(w), Pz*) is
continuous, therefore the mapping

w = (W, (w),2%) = (f(w), Pa”)
= lim( (@), Pix")

is a scalarly A-measurable function because it is the pointwise limit
of a sequence of continuous functions. It follows from the Pettis
Measurability Theorem [5, p. 42] that ¥,, : Q@ — E,, is Ad-measurable.

Since for every w € Q we have that >, ¥,(w) is a weakly uncondi-
tionally Cauchy series in F, then

n

sup sup =Mw) < o0

n o;=%x1

O'i‘I/i(w)
1

i=
and the mapping w — M (w) is A-measurable.

Let € > 0 be given. It follows from (}) that one can find § > 0 such
that A\(B) < ¢ implies

€
1+’

IGI(B) <
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where C' = sup{|| >, o, Pnl| : o finite subset of N} < oo and where for
each n > 1, P, is the projection associated to the decomposition {E,, }.
Let Q. be a closed subset of Q such that A(Q2\Q.) < § and each ¥, is
continuous on {2, and

sup M(w) = M, < 0.

wEN,
By the Borsuk-Dugundji Theorem [10, p. 365], there exists a linear
extension operator S : C(Q,E) — C(Q,E) with [|S]] = 1 and
S(9)(w) = g(w) for all g € C(Qe,E) and w € Q.. For each k > 1,
let

Gke = S(\Ilk:|Q€)

then

< M

n
> 09
j=1

for all n > 1 and o; = £1. Therefore, the series > g;. is a weakly
unconditionally Cauchy series in C(£2, E). Since T is unconditionally
converging the series ) ; T'gj converges unconditionally in F'.

For n > 1, consider the quantity

Tfn - Z ng,e
j=1

-/ 5 ;gj,s] ac+ [ . 5 ;gj,a] ac,

and note that for each n > 1,

n
E 9j,e
Jj=1

n

> 5(T510)

Jj=1

= sup
wEN,

ile*(f(w))H

<C,

and, therefore, for each n > 1,

sup <1+4+C.

weN

fn (w) - Z gj7€(w)
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This of course implies that

| [ 2] ]

j=1

< sup
weN\Q,

fu(w) = Zgj,a(W) IGII(2\Q2e) < &

since A(Q\Q¢) < § implies ||G||(2\2) < (¢/(1 + C)). We claim that

/ [fn_zgj,s] aG
Q =

converges to zero weakly in F' as n — oco. For this, let z* € F* be such
that ||z*|| <1,

$*</QE [fn_;gj,a] dG> = /QE [fn _jz:;gj,s] dG g~

For each w € €., the sequence (f,(w) —>_7_, gj.(w)) converges weakly
to zero in E. This, of course, follows from the fact that

f(w) = weak” Z T, (w)

€

and the fact that g, .(w) = ¥,(w) for w € Q.. Since the sequence
(fn — Z?:l gje) is bounded in C'(Q,, E), it converges weakly to zero
in C(Q, E) by Lemma 1. We also know that the vector measure
G- defines an element of M(Q, E*) the dual of C(Q, E), hence the
measure G+ restricted to §2. defines an element of M (Q., E*) the dual
of C(Qe, E), hence

z ( /Q E [fn - j;gj,a] dG) = /Q 5 [fn - ;gj,g] dG,-
Q, |:fn - igj,e]> —+0
j=1

= (Gp+

as n — oQ.
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So far we have shown that for £ > 0, we can write

n
Tfn = Zng,s + one+ Yne
j=1

where oy, — 0 weakly as n — oo and ||y, || < ¢ for all n > 1. If
we let K. = {37 Tgje + ane :n > 1}, then K. is relatively weakly
compact since the sequence (3°7_, T'gj,c) converges in norm and (an,c)
converges to zero weakly. Hence,

{Tfn} C Ke+ B(0,¢)

where K. is relatively weakly compact and B(0, ¢) is the ball of radius ¢.
By a result of Grothendieck [4, p. 227], the sequence (T'f,,) is relatively
weakly compact in F, since (T'f,) is weakly Cauchy in F'; it follows
that (T'f,,) converges weakly in F. This completes the proof. o
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