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A NOTE ON ORTHOGONAL POLYNOMIALS

XIN LI

Let du be a finite positive Borel measure on the interval [0, 27] such
that its support is an infinite set. Then there is a unique system
{sn}5% of polynomials orthonormal with respect to du on the unit
circle, i.e., polynomials

$n(2) := sp(dp, z) = apz" +ap_12" 1+ +ag, an = an(dp) >0

satisfying

1 27

(1)

— $m(2)8n(2) dp(0) = dmn, z=¢"% m,n >0,
2w 0

where §,,, = 1 if m = n and §,,,,, = 0 otherwise. The purpose of this

note is to give a simple and elementary proof of the following identity
(without using any recurrence relations).

2 2T
/ Hs(2)| 2 df = / 2+ du(6),
0 0

z=¢€? |k|<n,n=0,1,2,....

(2)

This identity plays a very important role in the study of the asymp-
totics of orthonormal polynomials (cf., e.g., [4, 5]). Other proofs of (2)
can be found in [2, Theorem 5.2.2, p. 198, 1, Lemma 2 or 3, formula
(1.20), p. 7].

Proof of (2). For simplicity, we write du for du(f) and z for .
By (1), we have

27
2
/ Sn(z)z_kd:u’: a_’,r(snk:a k:071727"' y 1y
0

n
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i.e.,

an

n 27
2
(3) E al/ 2 Fdu = —Trénk, k=0,1,2,...,n.
1=0 Y0

Taking conjugate of (3), we get

n

n 27
2
(4) § a,/ sk = T k=0,1,2,...,n.
1=0 0 a

From (3) and (4), it is easy to see that

27 27 27 27 T
W= (/ 2" du, . .. ,/ d,u,/ 2 Yy, ... ,/ z_"d,u> e canft
0 0 0 0

is a solution of z in C?"*! satisfying

(5) Az =a,
where
an  Gp_1 ap O
0 an aq ag
A _ O (079 Ap—1
ao ai
ao a1 . an,
0 o Gn_1 @n
and

—~ T

an

Note that we can write

n(n—1)

detA=a,-(-1)" 7 R,,

(2n+1)x(2n+1)
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where
ap  Ap—-1 ag
an e al a/o
ap ap—-1 - Qg
Rn = = — ’
ao a an
ag Qn,
Qo a1 cer Qg

which is the resultant of s,(z) and s} (z). Now since all the zeros of
sn(z) liein |z| < 1 (cf. [6, p. 292]), so all the zeros of s} (2) liein |z| > 1,
and hence s,(z) and s’ (z) have no common zeros. Furthermore, note
that a, # 0. Now, by the property of the resultant (cf. [7, p. 84]) we
know that R, # 0. Therefore, det A # 0. Thus, equation (5) has a
unique solution. It follows from this that, in order to prove (2), we only
need to show that

27 27
5 e </ s (2)|"2 d6, ... / 150 (2)| 2 d6),
B 0 0
27 T
. / z_”|sn(z)|_2d9>
0
is also a solution of (5).

In fact, if we write s (z) := 2"s,(1/Z), then the k-th element of As
is

(6) 3 o (2)ekt1 2m —kt1
[ Segr =] =5

n—k+1 d
:/ E % fork=1,2,...,n+1,
|z|=1 Sn(Z) 1z

and

(7)

27 (N k—n—2 27 —k+n+2
/ sn(2)z d0:/ sn(2)z 40
0 0

|sn(2)[? [8n(2)[?

2n—k+2 (4
:/ z*i_z, for k= n—|—2,,2n+1
|z]=1 Sn(Z) 1z
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Now note that all the zeros of s*(z) lie in |z| > 1, so by the residue
theorem,

2t dz
8 E 20, forl=1,2,...
) oo &0 mrimtn

and for [ =0,

2 dz 1 2 2
9 2= dz = = —.
©) /z_l ) i /|z_1 w2 T w0

By (6), (7), (8) and (9), we can see that s is a solution of (5). This
completes the proof. |
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