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P> HAS A COMPLEMENTED SUBSPACE
ISOMORPHIC TO ¢2

DENNY H. LEUNG
ABSTRACT. We prove the assertion claimed in the title.

The weak LP spaces play an important role in interpolation theory
as well as harmonic analysis. In this paper, we concentrate on their
geometry as Banach spaces. More precisely, we show that the sequential
weak LP spaces have complemented subspaces isomorphic to 2. We
remark that the corresponding assertion for non-atomic weak LP spaces
is also true. For, in this case, it is easy to see that the Rademacher
functions span a complemented subspace isomorphic to £2. The idea of
the proof in the atomic case is to create a similar situation in the ¢P>*°
spaces.

We start by recalling some standard definitions. Let (2, X2, u) be an
arbitrary measure space. For 1 < p < oo, the weak L? space L(p, 0o, i)
is the space of all ¥-measurable functions f such that {w: |f(w)| > 0}
is o-finite and ||f|| = supp [ |f|dp/w(B)'"YP < oo, where the
supremum is taken over all measurable sets B with 0 < u(B) < co. In
case (2,3, ) = [0,1] endowed with Lebesgue measure or N with the
counting measure, we use the notation L>*°[0, 1] and ¢7:°°, respectively.
For an real valued function f defined on (Q,%,u), we denote by f*
the decreasing rearrangement of |f| [1], similarly for (aZ), where (a,)
is a sequence of real numbers. It is well known that LP-*°[0,1] is
naturally isomorphic to the dual of L%[0,1], 1/p + 1/q = 1, where
L%1[0,1] denotes the space of all measurable functions f such that
fll = fol t~YPf*(t)dt < oco. Furthermore, L(p,oo,u) satisfies an
upper p-estimate [2]. For further details on the weak LP spaces, we
refer to [2, 1].

Fix 1 < p < o0, let (e;) denote the coordinate unit vectors in ¢7>°,
and let F' = [e;].
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Proposition 1. Let G={(a,) € "> : 3j such that Z;kil);])ﬂ an=

0, k=0,1,2,...} and define f : span {G, (n"'/P),e;} = R by
flg+am™P)+Be))=a foral geG andoa,B€R,

then f is bounded with respect to the norm of P>

Proof. Let g = (a,) € G and suppose ||g + a(n='/?) + Bey|| < 1.
Choose j such that an's'kl(y 400 =0 for all £ > 0. For any k € N,
consider the set B = {n: 2/ < n < k2/}. By definition of the norm in
{P>° we obtain

k(279)
> lan +an VPl < ((k—1)29) e
n=2J+1
k(29)
= Z (an + an™Y/P)
n=27+41
k(27)
= Z an

n=27+1

(27)+1 ,
= / at™l/P dt‘ < ((k—1)29) VP,
2741

< (k- 120)

Pl < ((k—1)20)171/p

Taking the limit as k — oo in the last inequality, we see that |a| <
1 —1/p. This shows that f is bounded, as claimed. u]

By the Hahn-Banach theorem, there is a norm preserving extension
"€ (4P>°) of f. We claim that z’ € F°. Indeed, let (a,) be a finitely
nonzero sequence, then (a,) — (3 an)er € G, hence

()= (S an)ere’) = 1((en) - (L )er) =0

Therefore,

(o)) = (Lan ) fere) = (L) sten) =0
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By continuity, we obtain =’ € F°, as claimed.

This z’ will play the role of the identically 1 function in the scheme
of the Rademacher functions. The tree structure involved will be given
by the “dyadic” decomposition of N : 4; = N, Ay = {1,3,5,...},
As ={2,4,6,...}, etc. At this point, we need some additional notation:

(1) Let (an) be a real sequence and let A C N, then (a,)X4 denotes
the sequence whose n-th coordinate is a,, if n € A and 0 otherwise;

(2) For y € (¢7*) and A C N, y'xa € (/) is given by
(T,y'Xa) = (xXa,y") for all z € (7

(3) S: P> — ¢P>° will denote the shift operator S(an) = (an+1);

(4) Forn > 1and 0 < j < 2", we let N(n,j) = (first element of
Agn ;) —1. With respect to (1) and (2) and the sets A,, defined above,
we will write X,, for X4,,. A simple fact which will be used repeatedly
is that for any = € (P, 2Xony; — SV (2Xan;;) € G and hence
(xXanyj, 2"y = (SNI) (zXan ), 2'). Mimicking the definition of the

Rademacher functions, we now define a sequence (z}) C (¢7>°)" by

xl = i:;,l (—=1)kz'X},. In the following propositions, we show that
(z!,) is equivalent to the canonical ¢? basis.

Proposition 2. For alln and 0 < j < 2", |[2'Xon|| = ||2'X2n+4]]-

Proof. For © € (P>,

(@,2'Xan 1) = (@Xanyjra’) = (SN (@Xon ), @)
= <SN(n’j) (IXQnJ,.j),I’XQn).

Taking the supremum over all  with norm < 1, we have ||2'Xan ;|| <
||2"X2n || since [|SN (™) (zX2n 4 ;)|| < ||z||. The reverse inequality follows
by symmetry. ]

Proposition 3. For any finitely nonzero sequence (ay), we have
13> anzh || < ||(an)||2, where < means < up to a fized constant and
[| - ||2 denotes the €3 norm.
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Proof. Since (¢P>°)" satisfies a lower g-estimate, 1/p + 1/q = 1, we
have

1 2m 1 /a
- >||'|| = <Z ||an2n+]|q> :2"/‘1Hx/X2n||

q

= ||z Xon || = 271,

Let (a,) be a finitely nonzero sequence, then there exist k and
2% 1 ’ 2k 1

a sequence (b,);_," such that > a,z, = > ") bpa'Xory,. But
then, the same relationship exists between the Rademacher functions
and the characteristic functions of the dyadic intervals. Thus, if
(r ) denotes the Rademacher functions, then we obtain > a,r, =
Zi _Olb Xin/2k,(n+1)/2k)- Now let & = (z,,) € €7 with ||z|| < 1,
then

2k 1 2k 1
<m, Zanx;> - <x ) bnm'X2k+n> = S b (X )
n=0 n=0
2k_1

= 37 b (SVEM (X g )y 2) = (y, ' Xon),
n=0

where we have set y = (yn,) = Zi’;_ol b SNE) (Xok, ). To esti-
mate the norm of y, we must consider the sum ) . |ym| for any
finite B C N. Suppose card B = i, then there are disjoint sub-
sets By,...,By_; of N, each of which has cardinality 7 such that

Y omen lUm| < 22 1 b, \(ZmEB |Zrm|). A simple computation re-

veals that the latter sum is < 22 o (ngszll zh). Now ||z]| <
1= z¥ < m YP for all m; hence

2k 1 (n+1)i
AEDY b*( > mi)
meB m=ni+1
2k_1
<YY" b ((n+1)V9 -0/,
n=0
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2P =1 1/q _ pl/a
Therefore, ||y|| <3, 5 bi((n+1)/9 —n'/9). Consequently,

‘<$Z>‘ = 1 2xe)] < [J3l] - 12 xar]|

2k _1
< 27N " br ((n+1)19 = n'/9)
n=0
2k_1
= || D bnXny2r (ntry /2%
70 La1[0,1]

= § AnTn

La:1[0,1]
=< Zanrn Vs > q (Holder’s inequality)
= ||(an)]|2 (Khinchine’s inequality).

Since this holds for all z with ||z|| < 1, we obtain the desired inequality.
]

Proposition 4. For any finitely nonzero sequence (a,), we have

122 an@y |l = [l(@n)]]2-

Proof. Let k and (b,,) be chosen as in the last proposition. Computing
directly the L? norm of ) a,r, and using (one half of) Khinchine’s
inequality, we get ||(an)||2 < 27%/9|/(b,)||4- On the other hand,

2k 1

1
Z bpx Xok 1n
n=0

2k 1 1/q
- = < Z |bn$/X2k+n|q>

n=0

l
|0,

= ll2"X2x[] - |1(bn)lq

by the lower g-estimate on (¢P*°)" and Proposition 2. To finish the
proof, it remains to show that ||z/Xax|| = 27%/9. Let = = (m~/?). By
direct verification, it can be shown that zXox — SNVE™ (zXoky,) € F
for 0 < n < 2¥. Therefore, since =’ € F°, we obtain

<IX2’“7I/> = <SN(kYn) (IX2k+n)a CE’) = <xX2k+na CE’).
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Thus,
2k 1
1= (z,2") = Z (X s ') = 28 (2X k11, @' Xone1 1)
n=0
< 28 ||lmXonr | - || Xorer 1] = 2%][Xonerq]| - || Xon |
= 28(|((n25)7VP) | - [ Xar || = (28) VP[] - (]2 X |-
Hence ||2'Xox || = 27%/9, as desired. O

Combining the previous propositions, we arrive at

Theorem 5. The sequence (z,) C (£7°) is equivalent to the (*
basis.

To obtain ¢? as a complemented subspace of ¢P**°, it suffices to
produce a sequence in ¢>° which is (1) biorthogonal to (z]) and
(2) equivalent to the ¢? basis. A natural choice is the sequence (z,)
given by z,, = Z:;,l(—l)kmxk, where © = (m~!/P). In this case,
requirement (1) is trivially true but (2) fails. However, since z’ € F°,
we may obtain a desirable sequence by “trimming” the x,’s. This is

done in the following lemmas.

Lemma 6. There is a constant K < oo such that for any integer
k > 1 and any finitely nonzero sequence (a,), ||(Z:Z:1 AnTn)X (2k,00)|| <
Kl|(an)ll2-

Proof. Let j = k — 1 and let the sequence (bn)ijzj)l be such that

k 201
Yo nTn = 0o bp®X2iyy,. Then
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291
> 80X s X 0|
n=0

k
(S|
n=1

271 1/p
= < Z |bna:X2j+nX(2k7oo)|p> (upper p-estimate)
n=0

291 1/p
< (X It o)
n=0

= [[(bn)lp - ll2X23 X (25 00) |
= [/(0a)llp - 1| (027 +1)71/7)02, |

< 1)y - [1((n27) =H7)7, ||
= 2777 (b)llp - [|(n™7)22s]

n=2
k
< 2797 (ba) [l 2]] = [J2|| || D anrn
n=1 Lr[0,1]
=< I(an)]l2, (Khinchine’s inequality)
as desired. O

Lemma 7. Let K be the same constant as in Lemma 6. Then there
is a strictly increasing sequence of integers (k;) such that

(a) k; >2¢ for alli > 1; and
(b) if we let z; = X[k, 00), then

n
E iz
i=1

for all (a;) and all n, where 1/p+1/qg=1.

< (BK +q+1—-1/n)[(ai)]l2

Proof. The proof is by induction. For n = 1, let k&; = 3. Then the
assertions are trivially verified. (Note that ||z|| < q.) Now suppose
k1,...,kn, has been defined (n > 1). Choose k,1 > 2"*! such that

((kns1) Y2, (Bpgr +m)™YP,0,..0)]] > (n 4 1)72
= Km'/7 > (3K + g+ 1)(kL/9).
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We need to show that for all finite nonempty subsets B of N,

(card B) /¢ Z

JjEB

<7§a,zl> ‘ BK+qg+1-1/(n+1))-]|[(a:)ll2

Start with such a set B; we consider two cases.

Case A. (card B)"Y93 . g lzn11(4)] < (n+1)72. In this case,

>

JjEB

(S as) o]« (o) + T sy

jEB JjeB
< (card BYY9{(3K + q+1—1/n) - ||(a;)||2
+ lant1](n +1)7%}

by the inductive hypothesis. Now since (n+1)"2—1/n < —1/(n+ 1),
the desired result follows.

Case B. (card B) /4 e lzn+1(f)] > (n+1)7% In this case
l|zn+1XB|| > (n+1)72. Let m = card B. Then

1((knen) 775 (Rnr +m) V2,0, )] 2 2w Xl > (0 +1) 72

Now

= (£l

JEBN[1,ky)
n—1

= Y <Zaizi> (j)‘

jEBN[Lk,) ' i=1
<(BK+qg+1-1/(n—1))-/(a;)|]2 - (card (B N1, ky)))*/

by induction
< BK +q+1)-|l(ai)lz - b/ < Kl|(a)lz - m*/
by choice of k,,11.
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Finally,
n+1
> (Zm%)(j)‘
jeB ! Ni=1
n+1
(> + ¥ ) (X))
jeBN[L,k,) j€BN[kn,kni1] FEBN[kni1,00) i=1
<K@l mor Y |(Sam))
JEBN[kn kngr) ! ~i=1
n+1
+ Z ‘(Zm%) (J)‘
JEBN[kni1,00) | S i=1
<Hllalemt e S (Saw))
jEBN[kn,00) | ~i=1
n+1
+ Z ‘(Z%%)(J)
FJEBA[kny1,00) | N i=1
< K@l + (card o | (3 i P, oo
i=1
n+1
(e
i=1
< (card B)"/4[|(a;)||2(K + K + K)
by Lemma 6 since k, > 2. This completes the induction. a

Theorem 5 and Lemma 7 combine to yield the following theorem.

Theorem 8. For 1 < p < oo, P> has a complemented subspace
isomorphic to 0.
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