SUBORDINATION FAMILIES

D.J. HALLENBECK

ABSTRACT. Let s(F) denote the set of functions subordinate to a function F analytic in the unit disk Δ . Let Hs(F) denote the closed convex hull of s(F) and Λ denote the set of probability measures on $\partial \Delta$. Let $R=\{F:F:A\}$ is analytic in Δ and $Hs(F)=\{\int_{|x|=1}F(xz)\,d\mu(x):\mu\in\Lambda\}\}$. Let R_{Σ} denote those functions analytic in Δ such that the set of support points of s(F) is $\{F(xz):|x|=1\}$. In this paper we investigate R and R_{Σ} . We prove that if F is a univalent function in R and (F(z)-F(0))/F'(0) has positive Hayman index, then F is in R_{Σ} .

Introduction. Let $\Delta = \{z : |z| < 1\}$ and let A denote the set of functions analytic in Δ . If $f \in A$, $f(z) = \sum_{n=0}^{\infty} a_n z^n (z \in \Delta)$, then let $\bar{m}(r,f) = \sum_{n=0}^{\infty} |a_n| r^n$. A is a locally convex linear topological space with respect to the topology given by uniform convergence on compact subsets of Δ . Let $B_0 = \{\phi : \phi \in A \text{ and } |\phi(z)| \leq |z|\}$. A function f is called a support point of a compact subset \mathcal{F} of A if $f \in \mathcal{F}$ and if there is a continuous, linear functional J on A so that $\operatorname{Re} J(f) = \max\{\operatorname{Re} J(g) : g \in \mathcal{F}\}$ and $\operatorname{Re} J$ is not constant on \mathcal{F} . We denote the set of support points of \mathcal{F} by $\Sigma \mathcal{F}$, the set of extreme points of \mathcal{F} by $E\mathcal{F}$ and the closed convex hull of \mathcal{F} by $H\mathcal{F}$.

Let $D=\{f:f\in A \text{ and } \int_{\Delta}\int |f'(z)|^2\,dy\,dx<+\infty \text{ where }z=x+iy\}$ and $S=\{f\in A:f(0)=0,f'(0)=1 \text{ and }f \text{ is univalent}\}.$ If we set $M(r,f)=\max_{|z|\leq r}|f(z)|$ then $\alpha=\lim_{r\to 1^-}(1-r)^2M(r,f)\leq 1$ exists for each $f\in S$ and is called the Hayman index of f [9, p. 163, 17, p. 141]. It is known that f has a unique direction of maximal growth $e^{i\theta_0}$ if $\alpha>0$, in the sense that $\lim_{r\to 1^-}(1-r)^2|f(re^{i\theta_0})|=\alpha$ and $\lim_{r\to 1^-}(1-r)^2|f(re^{i\theta})|=0$ for $\theta\neq\theta_0$ [9]. Let $S_\alpha=\{f:f\in S \text{ and }\alpha>0\}.$

Received by the editors on October 4, 1988 and in revised form on April 16, 1989.

¹⁹⁸⁰ AMS Mathematics Subject Classification. Primary 30C80; Secondary 30C55.

Key words and phrases. Support points, subordination.

If f and F are in A we say that f is subordinate to F (and write $f \prec F$) if there exists $\phi \in B_0$ such that $f = F \circ \phi$. We let $s(F) = \{F \circ \phi : \phi \in B_0\}$ and note that s(F) is a compact subset of A. When F is univalent the relation $f \prec F$ is equivalent to f(0) = F(0) and $f(\Delta) \subset F(\Delta)$.

Let Λ denote the set of probability measures on $\partial \Delta$. We let $R = \{F \in$ $A: Hs(F) = \{ \int_{|x|=1} F(xz) d\mu : \mu \in \Lambda \} \}$ and $R_{\Sigma} = \{ F \in A : \Sigma s(F) = \{ F \in A :$ $\{F(xz): |x|=1\}$. Finally, let $U=\{F\in A: F \text{ is univalent}\}$. The systematic and general study of R and R_{Σ} was begun recently in [15]. It is known [2] that if $F \in H^1$, then $EHs(F) \supseteq \{F \circ \phi : \phi \in B_0, \phi \text{ inner}\}.$ If $F \in R$, then $EHs(F) \subset \{F(xz) : |x| = 1\}$. So if $F \in H^1$, then $F \notin R$. In [3] Y. Abu-Muhanna proved that if $F \in U$, $\mathcal{C} \setminus F(\Delta)$ is convex and $\partial F(\Delta)$ satisfies a certain smoothness condition at ∞ , then $F \in \mathbb{R}$. In [15] the authors were able to eliminate the smoothness condition at ∞ and thus complete the proof that, for any $F \in U$, if $\mathbb{C}\backslash F(\Delta)$ is convex, then $F\in \mathbb{R}$. This result was conjectured by Abu-Muhanna in [3]. Finally, Abu-Muhanna conjectured in [3] that if F is the universal covering map of Δ onto a domain D with $\mathbb{C}\backslash D$ bounded and convex then $F \in R$. An example of this is provided by the function F(z) = exp(1+z)/(1-z). J. Feng proved in [10] that this $F \in R$. The fact that $F \in R_{\Sigma}$ was proved in [12].

In [15] the authors point out that $R_{\Sigma} \subset R$ and prove that R is closed in A. The main thrust of [15] was to try to determine when functions are in R and for such functions to try to further ascertain when they are in R_{Σ} . In this paper we provide new conditions that guarantee membership in R_{Σ} given membership in R. In [15] the authors conjectured that $R \setminus R_{\Sigma}$ consists only of the univalent half plane mappings. We provide some supporting evidence for this conjecture.

Support points. In Theorem 1 we give new conditions that guarantee $\Sigma s(F) = \{F(xz) : |x| = 1\}$. This result generalizes [14, Theorem 1]. The proof is somewhat similar to that in [14] but we include it for completeness since it differs in some significant details.

Theorem 1. Let $F \in R$ and suppose

$$F(z) = \frac{G(z)}{(z - x_0)^{\alpha}}$$
 $(|x_0| = 1)$

where $G \in A$, $\lim_{\substack{z \to x_0 \\ \text{nontangentially}}} |G(z)| = L \neq 0$, $|G(z)| = 0(1/(1-r)^{\beta})$ where $0 \leq \beta < \alpha$ and $\alpha > 1$. Then $F \in R_{\Sigma}$.

Proof. The inclusion $\{F(xz): |x|=1\} \subset \Sigma s(F)$ is known [13] and we need only prove that $\Sigma s(F) \subset \{F(xz): |x|=1\}$. Let $f \in \Sigma s(F)$. We have $f = F \circ \phi$ for $\phi \in \Sigma B_0$ [1]. By standard arguments [5, 12] we have

(2)
$$f(z) = F(\phi(z)) = \sum_{k=1}^{n} \lambda_k F(x_k z)$$

where $\lambda_k \geq 0$, $|x_k| = 1$ and $\sum_{k=1}^n \lambda_k = 1$. We see from (1) that $f(z) = G(\phi(z))/(\phi(z) - x_0)^{\alpha}$. Let $w_k = \bar{x}_k x_0 (k = 1, 2, ..., n)$; then from (1), (2) and comparing singularities we see that $\phi(w_k) = x_0$ for k = 1, 2, ..., n. We may write

(3)
$$\frac{1}{1 - \bar{x}_0 \phi(z)} = \sum_{k=1}^m t_k \frac{1}{1 - y_k z}$$

where $t_k \geq 0$, $|y_k| = 1$, and $\sum_{k=1}^m t_k = 1$ [6], [13, p. 100]. It follows that

(4)
$$\sum_{k=1}^{n} \lambda_k F(x_k z) = aG(\phi(z)) \left(\sum_{k=1}^{m} t_k \frac{1}{1 - y_k z}\right)^{\alpha}$$

where $a = (-x_0)^{-\alpha}$. By using (1) and comparing singularities on both sides of (4), we conclude n = m and so we have

(5)
$$\sum_{k=1}^{n} \lambda_k F(x_k z) = aG(\phi(z)) \left(\sum_{k=1}^{m} t_k \frac{1}{1 - y_k z}\right)^{\alpha}.$$

Using (1) we can rewrite (5) as

(6)
$$a \sum_{k=1}^{n} \lambda_k \frac{G(x_k z)}{(1 - \bar{w}_k z)^{\alpha}} = G(\phi(z)) \left(\sum_{k=1}^{n} t_k \frac{1}{1 - y_k z} \right)^{\alpha}.$$

Thus, $w_k = \bar{y}_k$ for k = 1, 2, ..., n. If we let $z = r\bar{y}_k$, multiply by $(1-r)^{\alpha}$, take absolute values and let $r \to 1^-$ in (6), we obtain

Since $\phi \in \Sigma B_0$, ϕ is a finite Blaschke product and so is analytic on $\partial \Delta$. Hence, $\{\phi(r\bar{y}_k): 0 < r \leq 1\}$ is orthogonal to $\partial \Delta$ at $\phi(\bar{y}_k) = \phi(w_k) = x_0 = x_k w_k = x_k \bar{y}_k$. So it follows that $\phi(r\bar{y}_k) \to x_0$ nontangentially as $r \to 1^-$. Hence, $\lim_{r \to 1^-} |G(x_k \bar{y}_k r)| = L$ and $\lim_{r \to 1^-} |G(\phi(r\bar{y}_k))| = L$. Since $L \neq 0$ we conclude from (7) that $\lambda_k = t_k^{\alpha}$. Since $\alpha > 1$, $t_k^{\alpha} < t_k$ and if there are more than two nonzero λ_k 's in (2), a contradiction to the fact that $\sum_{k=1}^n t_k = \sum_{k=1}^n \lambda_k = 1$ is easily obtained. This completes the proof.

We next prove a type of Tauberian theorem which we need for technical reasons. The proof was provided by Y.J. Leung. Let \hat{S} denote a symmetric Stolz angle with vertex $e^{i\theta}$ and having opening 2ϕ where $0 < \phi < \pi/2$. If $z \in \hat{S}$ we associate with z the unique number ζ that is a perpendicular projection of z onto the line segment having end points 0 and $e^{i\theta}$.

Theorem 2. If $h \in A$ and $\bar{m}(r, h') = o(1/(1-r))$, then for any θ_0 ,

(8)
$$\lim_{\substack{z \to e^{i\theta_0} \\ z \in \hat{S}}} |h(z) - h(\zeta)| = 0.$$

Proof. There is a positive number d so that if $z \in S$, then $|e^{i\theta_0} - z| \le d(1-|z|)$. As $|z-\zeta| \le |e^{i\theta_0} - z|$ we have $|z-\zeta| \le d(1-|z|)$ wherever $z \in S$. Let |z| = r and note that $|h(z) - h(\zeta)| \le \sum_{n=1}^{\infty} |a_n||z^n - \zeta^n|$ where $h(z) = \sum_{n=0}^{\infty} a_n z^n$. It is easily seen that $|z^n - \zeta^n| \le dn r^{n-1} (1-r)$ since $|\zeta| \le |z|$. Hence, we have

(9)
$$|h(z) - h(\zeta)| \le d(1-r) \sum_{n=1}^{\infty} n|a_n|r^{n-1} = d(1-r)\bar{m}(r,h').$$

It follows directly from (9) and the assumption on $\bar{m}(r, h')$ that (8) holds. \Box

Remark. We do not assume the existence of either of the possible individual limits in (8).

Corollary 3. If $h \in A$, $\bar{m}(r, h') = o(1/(1-r))$ and $\lim_{\zeta \to e^{i\theta_0} \text{ Re } h(\zeta) = L$, then

(10)
$$\lim_{\substack{z \to e^{i\theta_0} \\ z \in \hat{S}}} \operatorname{Re} h(z) = L.$$

Proof. Since $|\operatorname{Re} h(z) - \operatorname{Re} h(\zeta)| \le |h(z) - h(\zeta)|$ it is easy to see that (10) follows from (8). \square

Remark . If you assume $\lim_{\zeta\to e^{i\theta_0}}h(\zeta)=L$, then you conclude $\lim_{\substack{z\to e^{i\theta_0}\\z\in\hat{S}}}h(z)=L$.

Theorem 4. Let $F \in R$ and suppose $F(z) = (z \exp g(z)/(z-x_0)^{\alpha})$ where $x_0 = e^{i\theta_0}$, $\alpha > 1$, $g \in D$ and $\lim_{r \to 1^-} \operatorname{Re} g(re^{i\theta_0}) = L \neq -\infty$. Then $F \in R_{\Sigma}$.

Proof. It is a well-known classical fact that $\bar{m}(r,g') = o(1/(1-r))$. It follows from Corollary 3 that $\lim_{z \to e^{i\theta_0}} \operatorname{Re} g(z) = L$. It was proved [7] that $\bar{m}(r,g) = o(\sqrt{\log(1/(1-r)})$. We claim $|\exp g(z)| = 0(1/(1-r)^{\beta})$ for any $\beta > 0$. To see this, note that $|\exp g(x)| = \exp \operatorname{Re} g(z) \le \exp \bar{m}(r,g)$ and that $\bar{m}(r,g) = o(\sqrt{\log(1/(1-r)}) = 0(\beta \log(1/(1-r)))$ for any $\beta > 0$. Given α above we choose β so that $0 \le \beta < \alpha$. It follows from Theorem 1 that $F \in R_{\Sigma}$.

We next prove one of our main results. This Theorem supports the idea that any function in R with "large regular" growth is in R_{Σ} .

Theorem 5. If $F \in R \cap U$ and $(F(z) - F(0))/F'(0) \in S_{\alpha}$ for some $\alpha > 0$, then $F \in R_{\Sigma}$.

Proof. Let f(z) = (F(z) - F(0))/F'(0) and note that it is sufficient to prove that $f \in R_{\Sigma}$. Since $f \in S_{\alpha}$ for some $\alpha > 0$, there exists a unique direction $e^{i\theta_0}$ such that $\lim_{r \to 1^-} ((1-r)^2/r)|f(re^{i\theta_0})| = \alpha$ [9]. If we

write $g(z) = \log((1 - e^{-i\theta_0}z)^2/z)f(z))$, then it follows from Bazilevich's Theorem [9, p. 160] that $g \in D$. So we have

(11)
$$f(z) = \frac{z}{(1 - e^{-i\theta_0}z)^2} \exp g(z)$$

where $\lim_{r\to 1^-} \exp \operatorname{Re} g(re^{i\theta_0}) = \alpha > 0$. Hence, we deduce that $\lim_{r\to 1^-} \operatorname{Re} g(re^{i\theta_0}) = \log \alpha > -\infty$. It follows from Theorem 4 that $f \in R_{\Sigma}$ and this completes the proof. \square

Remark. If $F \in R \cap U$ and $\mathcal{Q} \setminus F(\Delta)$ is a Jordan arc going to ∞ that is contained in a half-strip, then it is known that $F \in S_{\alpha}$ for some $\alpha > 0$ [17, p. 311]. It follows from Theorem 5 that such an F is in R_{Σ} .

If $F \in S_{\alpha}$ for $\alpha > 0$ the representation (11) and the fact that $\bar{m}(r,g) = o(\sqrt{\log(1/1-r)})$ [7] permits an easy proof that

(12)
$$\lim_{r \to 1^{-}} \frac{\log |F(re^{i\theta})|}{\sqrt{\log \frac{1}{1-r}}} = 0$$

uniformly for θ satisfying $|\theta - \theta_0| \ge \delta > 0$. W. Hayman and P.B. Kennedy first proved (12) by other methods in [16].

In addition to Theorem 1, Theorem 4 and Theorem 5, the next Theorem adds to the evidence suggesting that most functions in R are also in R_{Σ} . We let ED denote the set of extreme points of any set $D \subset \mathcal{C}$ and ∂D denote the boundary of D.

Theorem 6. Suppose $F \in R$ and $Q \setminus \overline{F}(\Delta)$ is a bounded convex domain with the property that $E\partial F(\Delta) = \partial F(\Delta)$. Suppose $F(e^{i\theta}) \in \partial F(\Delta)$ whenever $F(e^{i\theta})$ exists. Then $F \in R_{\Sigma}$.

Proof. There exists $w \in \mathcal{C}$ and d > 0 such that $|F(z) - w| \ge d$ for all $z \in \Delta$. It follows that $f(z) = 1/(F(z) - w) \in H^{\infty}$ and so $F(e^{i\theta})$ exists for almost all θ . Let $F \in \Sigma s(F)$. Then we have $f = F \circ \phi$ for $\phi \in \Sigma B_0$ [1]. As in the proof of Theorem 1, we need only prove that $\phi(z) = xz$ for some |x| = 1. Again, as in the proof of Theorem 1, we may write

(13)
$$f(z) = F(\phi(z)) = \sum_{k=1}^{n} \lambda_k F(x_k z)$$

where $|x_k| = 1$, $0 < \lambda_k \le 1$, $\sum_{k=1}^n \lambda_k = 1$ [5,12]. We deduce from (13) that for almost all θ ,

(14)
$$f(e^{i\theta}) = \sum_{k=1}^{n} \lambda_k F(x_k e^{i\theta}).$$

Now suppose $i \neq j$ and $x_i \neq x_j$. We first show that $F(x_i e^{i\theta}) \neq 0$ for each i and almost all θ . To see this, note that if $F(x_i e^{i\theta}) = 0$ for some i and for θ in a set of positive Lebesgue measure, then $f(x_i e^{i\theta}) = -(1/w)$ for all θ in this set and since $f \in H^{\infty}$ this would imply $g(x_i z) \equiv -(1/w)$. Hence, we would have $F(x_i z) \equiv 0$. This is impossible since $\mathbb{C} \setminus \overline{F(\Delta)}$ is a bounded convex domain.

Since $F(\phi(e^{i\theta})) \in \partial F(\Delta)$ whenever the limit exists and $E\partial F(\Delta) = \partial F(\Delta)$, it follows from (14) that $F(x_ie^{i\theta}) = F(x_je^{i\theta})$ for almost all θ . So $g(x_ie^{i\theta}) = g(x_je^{i\theta})$ for almost all θ and so we conclude that $g(x_iz) = g(x_iz)$ for all $z \in \Delta$. Hence, we have

$$(15) F(x_i z) = F(x_j z)$$

for all $z \in \Delta$. It follows from (15) and Lemma 9 in [15] that $x_i = x_j$. We conclude that f(z) = F(xz) for some |x| = 1 and so $\sum s(F) \subset \{F(xz) : |x| = 1\}$. Recalling [13] that $\sum s(F) \supset \{F(xz) : |x| = 1\}$, we see that $F \in R_{\Sigma}$ and this completes the proof. \square

Remark. Theorem 6 provides a new proof that $F(z) = \exp(1 + z)/(1-z) \in R_{\Sigma}$. This was first proved in [12] by different methods.

It is easily proved that if F is the universal covering map from Δ onto a domain D with $0 \in D$, $C \setminus D$ bounded and convex, then $F(z) = \exp G(z)$ where G is in U. Since $G \in H^p$ for all p < 1/2 [8, p. 50] and $\exp(z)$ is locally conformal it will be the case that $F(e^{i\theta}) \in \partial F(\Delta)$ for almost all θ . If, as conjectured by Y. Abu-Muhanna [3], such an F is in R, then by Theorem 6, $F \in R_{\Sigma}$ whenever $E \partial F(\Delta) = \partial F(\Delta)$. This will be the case, for example, if F maps onto the complement of an appropriate ellipse.

It was conjectured in [15] that if F is a nonconstant function in R, $F(\Delta)$ is not a half plane, $\phi \in \Sigma B_0$ and (16) holds, then $\phi(z) = xz(|x| = 1)$. We next show that if the assumption $F \in R$ made in this conjecture is replaced by the assumption $F \in U \cap H^1$, then the conjecture is true.

Theorem 7. Suppose $F \in U \cap H^1$, $|x_k| = 1$, $0 < \lambda_k \le 1$, $\sum_{k=1}^n \lambda_k = 1$, $\phi \in B_0$ and

(16)
$$F(\phi(z)) = \sum_{k=1}^{n} \lambda_k F(x_k z).$$

Then $\phi(z) = xz$ for some |x| = 1.

Proof. If we let f(z) = (F(z) - F(0))/F'(0) we have $F \in S \cap H^1$ and (16) implies that

(17)
$$f(\phi(z)) = \sum_{k=1}^{n} \lambda_k f(x_k z).$$

Note that $f \circ \phi \in H^1$. Also, since ϕ is an inner function, Ryff's Theorem [18] implies that $||f(x_k z)||_1 = ||f(\phi(z))||_1 = ||f||_1$ for $k = 1, 2, \ldots, n$ where $|| \quad ||$ denotes the H^1 norm. It follows from this fact, (17) and the condition for equality in Minkowski's inequality that for each pair j, k we have

$$\frac{f(x_k e^{i\theta})}{f(x_i e^{i\theta})} > 0$$

for almost all θ . We recall that f(z)=zg(z) where $|g(z)|\geq (1/(1+|z|)^2)$ for $z\in\Delta$ [17, p. 21]. Since $1/g\in A$ the previous inequality implies $1/g(xz)\in H^\infty$ for any |x|=1. Let $h(z)=f(x_kz)/f(x_jz)$ and note that

(19)
$$h(z) = \frac{x_k g(x_k z)}{x_j g(x_j z)} \qquad (z \in \Delta).$$

We conclude from (18), (19) and the fact that $g \in H^1$ that $h \in H^1$. Since we have $h(e^{i\theta}) > 0$ for almost all θ , we deduce that $h(z) \equiv c$ for all $z \in \Delta$ and some $c \in \mathcal{O}$ [11, p. 95]. We see that c > 0, and since g(0) = 1, we have $h(0) = c = (x_k/x_j)$. It follows that c = 1, $x_k = x_j$ and $\phi(z) = xz$ for some |x| = 1. This completes the proof. \square

We finish by showing that if the assumption $F \in R$ made in Conjecture B in [15] is replaced by the assumption $F \in U$, then the conjecture

is false. Let $F(z) = z/(1-z^2)$, $\phi \in \Sigma B_0$, $\phi(z) \neq xz$ and $\phi(z) = -\phi(-z)$ for all $z \in \Delta$. Note that $F \in U$ and F is not a univalent half plane mapping. We know that

(20)
$$\frac{1}{1 - \phi(z)} = \sum_{k=1}^{n} t_k \frac{1}{1 - x_k z}$$

where $|x_k| = 1$, $t_k \ge 0$, $n \ge 3$, $\sum_{k=1}^n t_k = 1$ [13, p. 100]. Since $\phi(z) = -\phi(-z)$, we obtain from (20)

(21)
$$\frac{1}{1+\phi(z)} = \frac{1}{1-\phi(-z)} = \sum_{k=1}^{n} t_k \frac{1}{1+x_k z}.$$

It follows from (20) and (21) that

(22)
$$F(\phi(z)) = \frac{1}{2} \frac{1}{1 - \phi(z)} - \frac{1}{2} \frac{1}{1 + \phi(z)} = \sum_{k=1}^{n} t_k \frac{x_k z}{1 - (x_k z)^2}.$$

It is clear from (22) that the modified conjecture mentioned above is false. It follows from Lemma 7 in [15] that $F(z) = z/(1-z^2) \notin R$.

It is known that whenever $F \in A$ then $\{F(xz) : |x| = 1\} \subset EHs(F) \subset Es(F)$ [13]. Recently, Y. Abu-Muhanna and D.J. Hallenbeck proved that if $F \in U$, then $Es(F) \subset \{F \circ \phi : \phi \in EB_0\}$. Hence, whenever $F \in U$, we have the inclusions

(23)
$$\{F(xz) : |x| = 1\} \subset EHs(F) \subset \{F \circ \phi : \phi \in EB_0\}.$$

If $F(z) = z/(1-z^2)$ and ϕ is an odd function in $\Sigma B_0 \subset EB_0$, then (22) implies that $F \circ \phi \notin Es(F)$. So we have an explicit example of a function $F \in U$ such that both inclusions in (23) are strict. It was proved by K. Tkaczyńska in [19] that the inclusions in (23) are always strict whenever $F(\Delta)$ is convex, not a half plane, wedge or strip and $\partial F(\Delta)$ contains a line segment.

REFERENCES

1. Y. Abu-Muhanna, Variability regions and support points of subordinate families, J. London Math. Soc. 29 (1984), 477–484.

- 2. ——, H¹ subordination and extreme points, Proc. Amer. Math. Soc. 95 (1985), 247-251.
- 3. ——, Subordination and extreme points, Complex Variables 9 (1987), 91–100.
- **4.** Y. Abu-Muhanna and D.J. Hallenbeck, Subordination by univalent H¹ functions, Bull. London Math. Soc. **19** (1987), 249–252.
- 5. L. Brickman, T.H. MacGregor and D.R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107.
- 6. P.C. Cochrane and T.H. MacGregor, Frechet differentiable functionals and support points for families of analytic functions, Trans. Amer. Math. Soc. 236 (1978), 75–92.
- ${\bf 7.~V.~Cowling},\,A~remark~on~bounded~functions,\,Amer.~Math.~Monthly~{\bf 66}~(1959),\,119–120.$
 - 8. P.L. Duren, Theory of H^P spaces, Academic Press, 1970.
 - 9. ——, Univalent functions, Springer-Verlag, New York, 1985.
- 10. J. Feng, Extreme points and integral means for classes of analytic functions, Ph.D. dissertation, SUNY at Albany, 1974.
 - 11. J. Garnett, Bounded analytic functions, Academic Press, 1981.
- 12. D.J. Hallenbeck and T.H. MacGregor, Support points of families of analytic functions described by subordination, Trans. Amer. Math. Soc. 278 (1983), 523–546.
- 13. ——, Linear problems and convexity techniques in geometric function theory, Pitman Publishing Ltd., 1984.
- 14. D.J. Hallenbeck, A note on support points of subordination families, Proc. Amer. Math. Soc. 103 (1988), 414–416.
- 15. D.J. Hallenbeck, S. Perera and D.R. Wilken, Subordination, support points and extreme points, Complex Variables 11 (1989), 111–124.
- 16. W.K. Hayman and P.B. Kennedy, On the growth of multivalent functions, J. London Math. Soc. 33 (1958), 333–341.
- ${\bf 17.}$ Chr. Pommerenke, ${\it Univalent\ functions},$ Vandenhoech and Ruprecht, Gottingen, 1975.
 - **18.** J.V. Ryff, Subordinate H^P functions, Duke Math. J. **33** (1966), 347–354.
- 19. K. Tkaczyńska, On extreme points of subordination families with a convex majorant, J. Math. Analysis and Appl. 145 (1990), 216-231.

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716