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SUBORDINATION FAMILIES

D.J. HALLENBECK

ABSTRACT. Let s(F) denote the set of functions subor-
dinate to a function F analytic in the unit disk A. Let
Hs(F) denote the closed convex hull of s(F) and A denote
the set of probability measures on 0A. Let R = {F :

F is analytic in A and Hs(F) = {f|z|=1 F(xz)du(z) : p €

A}}. Let Ry denote those functions analytic in A such that
the set of support points of s(F) is {F(zz) : |z| = 1}. In
this paper we investigate R and Ry. We prove that if F' is a
univalent function in R and (F(z) — F(0))/F’(0) has positive
Hayman index, then F'is in Ry.

Introduction. Let A = {z : |z2| < 1} and let A denote the set of
functions analytic in A. If f € A, f(z) = Yo" janz"(z € A), then
let m(r, f) = Y07 o lan|r™ A is a locally convex linear topological
space with respect to the topology given by uniform convergence on
compact subsets of A. Let By = {¢ : ¢ € A and |¢(2)| < |2|}. A
function f is called a support point of a compact subset F of A if
f € F and if there is a continuous, linear functional J on A so that
Re J(f) = max{ReJ(g) : g € F} and ReJ is not constant on F. We
denote the set of support points of F by XF, the set of extreme points
of F by EF and the closed convex hull of F by HF.

Let D={f:feAand [, [|f'(2)?dydz < +oo0 where z =z +iy}
and S = {f € A: f(0) = 0,f(0) = 1 and f is univalent}. If we
set M(r, f) = max, <, |f(z)| then o = lim, ;- (1 —7)*M(r,f) < 1
exists for each f € S and is called the Hayman index of f [9, p. 163,
17, p. 141]. It is known that f has a unique direction of maximal
growth €% if o > 0, in the sense that lim,_,; (1 — r)2|f(re'?®)| = a
and lim,_,; (1 — 7)2|f(re?®)| = 0 for 6 # 6y [9]. Let S, = {f : f €
S and o > 0}.
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If f and F are in A we say that f is subordinate to F (and write
f < F) if there exists ¢ € By such that f = F o ¢. We let
s(F)={Fo¢: ¢ e By} and note that s(F) is a compact subset of A.
When F is univalent the relation f < F is equivalent to f(0) = F(0)
and f(A) C F(A).

Let A denote the set of probability measures on 9A. We let R = {F €
A:Hs(F) = {f‘zlle(mz)du :p €A}t and Ry = {F € A: Xs(F) =
{F(zz) : || = 1}}. Finally, let U = {F € A : F is univalent}. The
systematic and general study of R and Ry, was begun recently in [15]. It
is known [2] that if F € H!, then EHs(F) 2 {Fo¢: ¢ € By, inner}.
If F € R, then EHs(F) C {F(xz) : |z| = 1}. So if F € H!, then
F ¢ R. In [3] Y. Abu-Muhanna proved that if F € U, ¢\F(A) is
convex and OF(A) satisfies a certain smoothness condition at oo, then
F € R. In [15] the authors were able to eliminate the smoothness
condition at co and thus complete the proof that, for any F' € U, if
@\F(A) is convex, then F' € R. This result was conjectured by Abu-
Muhanna in [3]. Finally, Abu-Muhanna conjectured in [3] that if F is
the universal covering map of A onto a domain D with ¢\ D bounded
and convex then F' € R. An example of this is provided by the function
F(z) = exp(1 + 2)/(1 — 2). J. Feng proved in [10] that this F' € R.
The fact that F' € Ry, was proved in [12].

In [15] the authors point out that Ry C R and prove that R is
closed in A. The main thrust of [15] was to try to determine when
functions are in R and for such functions to try to further ascertain
when they are in Ry. In this paper we provide new conditions that
guarantee membership in Ry given membership in R. In [15] the
authors conjectured that R\ Ry, consists only of the univalent half plane
mappings. We provide some supporting evidence for this conjecture.

Support points. In Theorem 1 we give new conditions that
guarantee Xs(F) = {F(zz) : || = 1}. This result generalizes [14,
Theorem 1]. The proof is somewhat similar to that in [14] but we
include it for completeness since it differs in some significant details.

Theorem 1. Let F' € R and suppose
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where G € A, lim  z—xo G(2)| =L #0, |G(2)| =0(1/(1 —r)P)

nontangentially

where 0 < B < a and a > 1. Then F € Ry,.

Proof. The inclusion {F(zz) : |x| = 1} C Xs(F) is known [13] and
we need only prove that Xs(F) C {F(zz) : |z| = 1}. Let f € Zs(F).
We have f = Fo¢ for ¢ € By [1]. By standard arguments [5, 12] we
have

(2) f(2) = F($(2)) = Y MeF (axz)
k=1

where A\, > 0, |z, = 1 and Y ,_; Ax = 1. We see from (1) that
f(z) = G(¢(2))/(éd(2) — z9)*. Let wp = Trzo(k = 1,2,...,n); then
from (1), (2) and comparing singularities we see that ¢(wy) = zo for
k=1,2,... ,n. We may write

® e

k=

where t; > 0, |yx] = 1, and > ;- tx = 1 [6], [13, p. 100]. It follows
that

(4) Z)\kF zz) = aG(¢ (Zt 1_W>a

where a = (—z¢)~®. By using (1) and comparing singularities on both
sides of (4), we conclude n = m and so we have

(5) Z)\kF zr2) = aG(¢ (Zthlykzy.

k=1

Using (1) we can rewrite (5) as

(©) aZA S g (L)

— 1y

Thus, wgy = gx for k = 1,2,... ,n. If we let z = rgg, multiply by
(1 —r)?, take absolute values and let r — 1~ in (6), we obtain

(7) LA = Ltg.
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Since ¢ € XBy, ¢ is a finite Blaschke product and so is analytic
on OA. Hence, {¢(rgx) : 0 < r < 1} is orthogonal to JA at
&(Tr) = ¢(wg) = xo = Wy = TETPr. So it follows that ¢(ryx) — o
nontangentially as r — 17. Hence, lim,_,;- |G(zxgrr)] = L and
lim, ;- |G(¢(rygx))| = L. Since L # 0 we conclude from (7) that
Ar = t. Since a > 1, tf < ty and if there are more than two nonzero
Ax’s in (2), a contradiction to the fact that > p_, tx => p_; A, =11is
easily obtained. This completes the proof. ]

We next prove a type of Tauberian theorem which we need for
technical reasons. The proof was provided by Y.J. Leung. Let S denote
a symmetric Stolz angle with vertex e?’ and having opening 2¢ where
0<op<m/2.Ifz € S we associate with z the unique number ¢ that is
a perpendicular projection of z onto the line segment having end points
0 and e*.

Theorem 2. Ifh € A and m(r,h") = o(1/(1 — 7)), then for any 6y,

®) timy [h(:) ~ h(O) =0
Tes

Proof. There is a positive number d so that if z € S, then |e? — z| <
d(1—|z|). As |z —¢| < |e? — z| we have |z — (| < d(1 — |z|) wherever
z € 5. Let |z| = r and note that |h(z) — h({)] < D02, lan]z™ — ¢
where h(z) = Yo7 a,,2™. It is easily seen that |z"—("| < dnr™~*(1—r)
since |¢| < |z|. Hence, we have

9)  |h(z) = h(Q)] < d(L =7) Y nlay|r™ ' = d(1 —r)m(r, ).

It follows directly from (9) and the assumption on m(r,h') that (8)
holds. O

Remark . We do not assume the existence of either of the possible
individual limits in (8).
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Corollary 3. Ifh € A, m(r,h') = o(1/(1-r)) andlim,_, s Reh({)=
radially
L, then
(10) lim Reh(z) = L.
z—eif
2€8

Proof. Since |[Reh(z) — Reh({)| < |h(z) — h({)| it is easy to see that
(10) follows from (8). O

Remark . If you assume lim. , s h(¢) = L, then you conclude
radially
lim__, e, h(2) = L.

z—e

zeS

Theorem 4. Let ' € R and suppose F(z) = (zexpg(z)/(z — 0)*)
where xg = €%, a > 1, g € D and lim,_,; Reg(re’®) = L # —cc.

Then F' € Ry.

Proof. Tt is a well-known classical fact that m(r,g') = o(1/(1—71)). It
follows from Corollary 3 that lim__, s, Reg(z) = L. It was proved [7]
ze$

that m(r, g) = o(y/log(1/(1 —r)). We claim |exp g(2)| = 0(1/(1 —r)")
for any 8 > 0. To see this, note that |expg(z)] = expReg(z) <
expm(r, g) and that m(r,g) = o(y/log(1/(1 —r)) = 0(Blog(1l/(1 —r))
for any 8 > 0. Given a above we choose 3 so that 0 < 8 < a. It follows
from Theorem 1 that F' € Ry. a

We next prove one of our main results. This Theorem supports the
idea that any function in R with “large regular” growth is in Rs.

Theorem 5. If F € RNU and (F(z) — F(0))/F'(0) € Sy for some
a >0, then F € Ry.

Proof. Let f(z) = (F(z)—F(0))/F'(0) and note that it is sufficient to
prove that f € Ry. Since f € S, for some a > 0, there exists a unique
direction €0 such that lim,_,,— ((1 — 7)2/7)|f(re!%)| = a [9]. If we
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write g(z) = log((1—e~%%2)2/2)f(z)), then it follows from Bazilevich’s
Theorem [9, p. 160] that g € D. So we have

z
(11) f(z) = (= 52 exp g(z)

where lim,_,, expReg(re’®) = a > 0. Hence, we deduce that
lim,_,;- Reg(re?®) = loga > —oo. It follows from Theorem 4 that
f € Ry and this completes the proof. i

Remark . If F € RNU and ¢\F(A) is a Jordan arc going to oo
that is contained in a half-strip, then it is known that F' € S, for some
a >0 [17, p. 311]. It follows from Theorem 5 that such an F is in Ry.

If F € Sy for @« > 0 the representation (11) and the fact that
m(r,g) = o(+/log(1/1 — r)) [7] permits an easy proof that

(12) lim

uniformly for 6 satisfying |60 — 69| > 6 > 0. W. Hayman and P.B.
Kennedy first proved (12) by other methods in [16].

In addition to Theorem 1, Theorem 4 and Theorem 5, the next
Theorem adds to the evidence suggesting that most functions in R
are also in Ry. We let ED denote the set of extreme points of any set
D C ¢ and 0D denote the boundary of D.

Theorem 6. Suppose F € R and ¢\F(A) is a bounded convex
domain with the property that EOF(A) = OF(A). Suppose F(e") €
OF(A) whenever F(e) exists. Then F € Ry.

Proof. There exists w € ¢ and d > 0 such that |F(z) —w| > d for all
z € A. Tt follows that f(z) = 1/(F(z) —w) € H* and so F(e) exists
for almost all 8. Let F € Xs(F). Then we have f = F o ¢ for ¢ € LBy
[1]. As in the proof of Theorem 1, we need only prove that ¢(z) = zz
for some |z| = 1. Again, as in the proof of Theorem 1, we may write

(13) f(2) = F($(2)) = Y MeF(axz)
k=1
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where |z| =1,0 < Ap <1, >} _; A =1 [5,12]. We deduce from (13)
that for almost all 4,

(14) f(e?) = i)\kF(a:kew).

Now suppose i # j and z; # x;. We first show that F(z;e?’) # 0 for
each i and almost all §. To see this, note that if F(z;e®) = 0 for some i
and for @ in a set of positive Lebesgue measure, then f(z;e%) = —(1/w)
for all # in this set and since f € H®° this would imply g(z;2) = —(1/w).
Hence, we would have F(z;z) = 0. This is impossible since ¢\ F(A) is
a bounded convex domain.

Since F(¢(e'?)) € OF(A) whenever the limit exists and EOF(A) =
OF(A), it follows from (14) that F(z;e??) = F(z;e") for almost all
6. So g(zie®) = g(x;e'?) for almost all § and so we conclude that
g(z;z) = g(z;2) for all z € A. Hence, we have

(15) F(z;z) = F(z;z)

for all z € A. It follows from (15) and Lemma 9 in [15] that x; = ;.
We conclude that f(z) = F(zz) for some |z|] = 1 and so > s(F) C
{F(xz) : |z| = 1}. Recalling [13] that Xs(F) D {F(xz) : |z| = 1}, we
see that F' € Ry, and this completes the proof. ]

Remark . Theorem 6 provides a new proof that F(z) = exp(l +
z)/(1 — z) € Ry. This was first proved in [12] by different methods.

It is easily proved that if F' is the universal covering map from
A onto a domain D with 0 € D, ¢\D bounded and convex, then
F(z) = expG(z) where Gisin U. Since G € HP forall p < 1/2 [8, p. 50]
and exp(z) is locally conformal it will be the case that F(ei’) € 0F(A)
for almost all 6. If, as conjectured by Y. Abu-Muhanna [3], such an
F is in R, then by Theorem 6, F € Ry, whenever EOF(A) = 0F(A).
This will be the case, for example, if F' maps onto the complement of
an appropriate ellipse.

It was conjectured in [15] that if F' is a nonconstant function in R,
F(A) is not a half plane, ¢ € £¥Bj and (16) holds, then ¢(z) = zz(|z| =
1). We next show that if the assumption F' € R made in this conjecture
is replaced by the assumption F € UN H', then the conjecture is true.
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Theorem 7. Suppose F € UNH!, |zp] = 1, 0 < A\ < 1,
Sr_1 Ak =1, ¢ € By and

(16) F(8()) = 3 M (ai2).

Then ¢(z) = zz for some |z| = 1.

Proof. If we let f(2) = (F(2) — F(0))/F’(0) we have F € SN H* and
(16) implies that

(17) F(6(2)) = Y Aef(ar2).
k=1

Note that fogp € H'. Also, since ¢ is an inner function, Ryff’s Theorem
(18] implies that [|f(2x2)[lr = [1f(6(2))l|x = Iflls for k = 1,2,... ,n
where || || denotes the H' norm. It follows from this fact, (17) and
the condition for equality in Minkowski’s inequality that for each pair
7, k we have

f(zxe®®)
f(zjei?)

for almost all 8. We recall that f(z) = zg(z) where |g(z)| > (1/(1 +
|z])?) for z € A [17, p. 21]. Since 1/g € A the previous inequality
implies 1/g(zz) € H* for any |z| = 1. Let h(z) = f(zrz)/f(x;2) and
note that

(18) >0

_ rrg(TK2) 2
(19) h(z) = —x]-g(wjz) (z € A).

We conclude from (18), (19) and the fact that g € H! that h € H*.
Since we have h(e?) > 0 for almost all §, we deduce that h(z) = ¢ for
all z € A and some ¢ € ¢ [11, p. 95]. We see that ¢ > 0, and since
g(0) = 1, we have h(0) = ¢ = (z/x;). It follows that ¢ = 1, z = x;
and ¢(z) = zz for some |z| = 1. This completes the proof. O

We finish by showing that if the assumption F' € R made in Conjec-
ture B in [15] is replaced by the assumption F' € U, then the conjecture



SUBORDINATION FAMILIES 875

is false. Let F'(z) = 2/(1—2%), ¢ € By, #(2) # xz and ¢(z) = —¢p(—2)
for all z € A. Note that FF € U and F is not a univalent half plane
mapping. We know that

(20) Z 12 TrZ2
k=

where |zx| = 1, ¢ > 0, n > 3, Y7, tp = 1 [13, p. 100]. Since
#(2) = —¢(—2), we obtain from (20)

1 1 " 1
(21) 1+6(z) 1-¢(—-2) Ztk1+wkz'

k=1

It follows from (20) and (21) that

N | =

1 1
22 F =
(22) (6(2)) 1-¢(z) 21+ ¢ 21 1— (wp2)?
It is clear from (22) that the modified conjecture mentioned above is

false. It follows from Lemma 7 in [15] that F(z) = 2/(1 — 2?) ¢ R.

It is known that whenever FF € A then {F(zz) : |z| = 1} C
EHs(F) Cc Es(F) [13]. Recently, Y. Abu-Muhanna and D.J. Hal-
lenbeck proved that if FF € U, then Es(F) C {Fo¢ : ¢ € EBy}.
Hence, whenever F' € U, we have the inclusions

(23)  {F(z2):|z| =1} c EHs(F) C {Fo¢: ¢ € EBy}.

If F(z) = z/(1 — 2%) and ¢ is an odd function in ¥By C EBy, then
(22) implies that F' o ¢ ¢ Es(F). So we have an explicit example of
a function F' € U such that both inclusions in (23) are strict. It was
proved by K. Tkaczyniska in [19] that the inclusions in (23) are always
strict whenever F'(A) is convex, not a half plane, wedge or strip and
OF(A) contains a line segment.
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