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ON AN INEQUALITY FOR
NONDECREASING SEQUENCES

HORST ALZER

If (a;) is a sequence of nonnegative real numbers, and if r and s are
real numbers with 0 < r < s, then we have

1) (;)/ > (;)/

and, under the additional assumption that (p;) is a sequence of non-
negative weights satisfying > ., p; < 1, we obtain

o (;17)/ < (X par)

Proofs for these well-known inequalities can be found, for instance, in
[1, pp. 26-28].

In 1976 M.S. Klamkin and D.J. Newman [2] established an interesting
variant of (1) for nondecreasing sequences: If 0 = ap < a3 < --- < a,
witha; —a; 1 <1(i=1,...,n)and s =2r + 1 with » > 1, then

(3) <(r +1) zn: af) v > ((s +1) zn: af) 1/(S+1).

i=1 i=1

1/s

In 1981 A. Meir [6] published a weighted version of (3) which can be
considered as an inverse inequality of (2) for nondecreasing sequences:
Let 0=qap<a1 <---<apand 0 <py < p; < -+ < p, satisfying

(4) ; — A5—1 < (Pi+pi—1)/27 Z:]-a s .

If s>2r+1andr >1, then

(5) ((r +1) gpicﬁ) 1/(r+1) . ((8 1) ipi(ﬁ)
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Meir remarked that a slightly modified version of (5) can be obtained
if the assumption (4) will be replaced by

ai*ai—lgpia Z:]-aan
Then
n—1 1/(r+1)
(6) ((r S (it pi1>/2>a:)
=1
n—1 1/(s+1)
z(<s+1)2(<pi+pi_1>/2>af) -

i=1
A refinement as well as an extension of (6) was given recently by G.V.
Milovanovié¢ and I.Z. Milovanovié [7].

The aim of this note is to prove the following counterpart of Meir’s
result:

Theorem. Let0=ap<a; <---<ap, and 0<p, <pp_1 <--- <
po satisfying a; —a;—1 > (pi +pi—1)/2,i=1,...,n.
If0<r<landr <s<2r+1, then

(7) ((7‘ +1) épia;) v < ((s +1) imaf)

1/(s+1)

Proof. Let x and y be positive real numbers and let v and v be real
numbers; we denote by E(u,v;z,y) the mean value family

vat —y

u:| 1/(u—v)

E(u,v;m,y):[ ) w#y,u#v,uv#O.

u ¥ —yv

(Many remarkable properties of the function E were published by E.B.
Leach and M.C. Sholander [3-5].)

Since E(u,v;z,y) is nondecreasing in v and v (see [3]), we conclude

E(T‘ +1,1;a;, ai,l) > E(2T‘,T‘; a;, ai,l)
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which leads to

r+1
aj "t —ally > 5 (ai —ai1)(af +ai_y)
r+1pi+pia
> TEIBA P ()
r+1 )
> 5 (pial + pi—1a;_4), i=1,...,n.

Let 1 < j < n; after summing fori =1,... ,j, we get

+1
(8) @it > T (4 4 Ay)

with 4; = Zle pial.
Let 1 <t < 2; then we have
E(2,1;A4;,A;_1) > E(t,1;A;,A;_1)
which leads to
((Aj + Aj-1)/2) (A — Ajoa) > A — Af_,

and
(9) (r+ 1) (A4 + 4j-1)/2)" (A — 4j-0)
> (r+1)71AL - AL,
From (8) and (9) we conclude
tpja§r+1)(t71)+r _ a§r+1)(t71)t(Aj ~A;)

[((r+1)/2)(A; + Aj1)]" HH(Aj — Aja)
(r+ 1)1 (AL — AL).

v v

Setting t = (s +1)/(r + 1) and summing for j = 1,... ,n, we obtain

1 n n
° j: . > pja; > (r+ 1)/ <Zpiaf
;
=1

j=1

) (s+1)/(r+1)

which is equivalent to inequality (7).
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