GENERALIZED FREE PRODUCTS OF π_c GROUPS

P.C. WONG AND H.L. KOAY

ABSTRACT. A group G is said to be π_c if and only if for every pair of elements g_1 and g_2 of G either $g_1 = g_2^k$ for some integer k or there exists a normal subgroup N of finite index in G such that $g_1 \not\equiv g_2^z \mod N$ for all integers z. In this note we prove that a certain generalized free product amalgamating a cyclic subgroup is π_c and then apply the result to show some one-relator groups are π_c .

1. Introduction. A group G is termed π_c if and only if for every pair of elements g_1 and g_2 of G either $g_1 = g_2^k$ for some integer k or there exists a normal subgroup N of finite index in G such that $g_1 \not\equiv g_2^z \mod N$ for all integers z. Clearly, a π_c group is residually finite. However, the one-relator group $G = \langle a, b; a^{-1}ba = b^2 \rangle$ is residually finite but not π_c [1]. Examples of π_c groups are the finite groups, free groups and finitely generated torsion-free nilpotent groups [4, 5].

In [7], Stebe proved that the generalized free products of isomorphic π_c groups amalgamating a cyclic subgroup are again π_c . In this note, we shall prove the following theorem.

Theorem. Let A and B be π_c groups and let $a \in A$ and $b \in B$ where a and b have the same order. If A is $\langle a \rangle$ -Pot and B is $\langle b \rangle$ -Pot, then the generalized free product G of A and B amalgamating the subgroups $\langle a \rangle$ and $\langle b \rangle$ with a = b, is π_c .

Modifying [2], a group G is termed $\langle x \rangle$ -potent (or $\langle x \rangle$ -Pot for short) for a nontrivial element x of G if and only if for every positive integer n (dividing the order of x if the order is finite) there exists a normal subgroup N of finite index in G such that xN has order exactly n in G/N. G is termed potent if it is $\langle x \rangle$ -Pot for every nontrivial element x

Received by the editors on July 31, 1989, and in revised form on June 15, 1990, 1980 AMS Mathematics Subject Classification. Primary 20E25, 20E30; Secondary 20F05.

Key words and phrases. Generalized free product, one-relator group residually finite, π_c , potent.

Copyright ©1992 Rocky Mountain Mathematics Consortium

of G. Free groups and finitely generated torsion-free nilpotent groups are examples of potent groups [8].

The following notations will be used for any group $G \colon N \triangleleft_f G$ means N is a normal subgroup of finite index in G. If G is a generalized free product and $x \in G$, then ||x|| will denote the usual reduced length of x.

2. Proof of the Theorem. We shall use the following two lemmas in the proof of our theorem.

Lemma 1. Let G be the generalized free product of groups A and B with amalgamated subgroup H. Let $g_1, g_2 \in G$, where g_1 is reduced and g_2 is cyclically reduced. Then $g_1 \in \langle g_2 \rangle$ only under the following conditions:

- (a) If $||g_2|| = 0$ or 1, say $g_2 = a$, where $a \in A$ or B, then $g_1 = a^k$ for some integer k.
- (b) If $||g_2|| = m$, m > 1, say $g_2 = y_1 y_2 \cdots y_m$, then $g_1 = x_1 x_2 \cdots x_n$ in reduced form with n = km for some positive integer k. In this case, $g_1 = g_2^z$ if and only if $z = \pm k$. If $g_1 = g_2^k$, then there is a finite sequence of elements c_0, c_1, \ldots, c_{km} in H such that $y_j^{-1} c_{j-1} x_j = c_j$, $j = 1, 2, \ldots, km$, where $y_i = y_{i+m} = \cdots = y_{i+(k-1)m}$, $i = 1, 2, \ldots, m$, and $c_0 = c_{km} = 1$. If $g_1 = g_2^{-k}$, similar equalities hold with y_{km}^{-1} replacing y_1, y_{km-1}^{-1} replacing y_2 , etc.

Proof. Straightforward.

Lemma 2. Let G be the generalized free product of groups A and B with amalgamated subgroup H. If A and B are finite, then G is π_c .

Proof. Since the generalized free product G with finite factors A and B is free-by-finite [6] and free-by-finite groups are π_c [7], the result follows. \square

Now we can prove the Theorem.

Proof of Theorem. Let g_1 and g_2 be elements of G such that $g_1 \notin \langle g_2 \rangle$. To prove the theorem, it is sufficient for us to find a π_c group \overline{G} and a homomorphism θ from G to \overline{G} such that $g_1\theta \notin \langle g_2\theta \rangle$. If $g_2 = 1$, we can easily find such a group \overline{G} since G is residually finite by Theorem 2.1' of Allenby and Tang [2]. So we may assume $g_2 \neq 1$. Furthermore, without loss of generality, we may assume that g_1 is reduced and g_2 is cyclically reduced in G. We divide the proof into several cases.

Case 1. Suppose $g_1 \notin \langle g_2 \rangle$ is implied by the lengths of g_1 and g_2 , that is,

- (1) if $||g_2|| = 0$, then $||g_1|| > 0$ or
- (2) if $||g_2|| = 1$, then $||g_1|| > 1$ or
- (3) if $||g_2|| = m > 1$, then $||g_1||$ is not divisible by m or $||g_1|| = 0$.

Suppose $g_1 = x_1x_2\cdots x_n, \ n\geq 1$, and $g_2 = y_1y_2\cdots y_m, \ m\geq 1$, where the x_i and y_i are not in the amalgamated subgroups. Let u_i denote those x_i and y_i in $A\backslash\langle a\rangle$ and v_i denote those x_i and y_i in $B\backslash\langle b\rangle$. Since A and B are π_c , we can find $M_1 \triangleleft_f A$ and $N_1 \triangleleft_f B$ such that $u_i\langle a\rangle \cap M_1 = v_i\langle b\rangle \cap N_1 = \varnothing$. Since M_1 and N_1 are of finite index in A and B, respectively, we have $M_1\cap\langle a\rangle=\langle a^r\rangle$ and $N_1\cap\langle b\rangle=\langle b^s\rangle$ for some integers r and s. Now let $t=\operatorname{lcm}(r,s)$. Since A is $\langle a\rangle$ -Pot and B is $\langle b\rangle$ -Pot, we can find $M_2 \triangleleft_f A$ and $N_2 \triangleleft_f B$ such that $M_2\cap\langle a\rangle=\langle a^t\rangle$ and $N_2\cap\langle b\rangle=\langle b^t\rangle$. Let $M=M_1\cap M_2$ and $N=N_1\cap N_2$. Then, clearly $M\triangleleft_f A$, $N\triangleleft_f B$ and $M\cap\langle a\rangle=N\cap\langle b\rangle$. Thus we can form $\overline{G}=\langle \overline{A}*\overline{B};\overline{H}\rangle$ where $\overline{A}=A/M$, $\overline{B}=B/N$ and $\overline{H}=\langle a\rangle/(M\cap\langle a\rangle)$. Let θ be the canonical map from G onto \overline{G} . Then the choice of M and N implies that $g_1\theta$ is reduced and $g_2\theta$ is cyclically reduced in \overline{G} . Furthermore, $||g_1\theta||=||g_1||$ and $||g_2\theta||=||g_2||$. Hence, $g_1\theta \notin \langle g_2\theta\rangle$. Since \overline{G} is π_c by Lemma 2, our objective is achieved.

Case 2. Suppose $||g_1|| = 0$ and $||g_2|| \le 1$ or $||g_1|| = ||g_2|| = 1$. The proof of this case can be derived easily from Lemma 3.1 of Allenby and Tang [2].

Case 3. Suppose $||g_1|| = km$ and $||g_2|| = m$ for $k \ge 1$ and m > 1. Let $g_1 = x_1 x_2 \cdots x_{km}$ and $g_2 = y_1 y_2 \cdots y_m$ where the x_i and y_i are not in the amalgamated subgroups. As in case 1, let u_i denote those x_i and y_i

in $A \setminus \langle a \rangle$ and v_i denote those x_i and y_i in $B \setminus \langle b \rangle$. Since A and B are π_c , we can find $M_1 \triangleleft_f A$ and $N_1 \triangleleft_f B$ such that $u_i \langle a \rangle \cap M_1 = v_i \langle b \rangle \cap N_1 = \emptyset$.

By Lemma 1(b), $g_1 = g_2^z$ if and only if $z = \pm k$. So we may consider $g_1 \neq g_2^{\pm k}$. Now $g_1 \neq g_2^{\pm k}$ implies that at least one equation in each of the sets of equations of Lemma 1(b) is not satisfied for both the cases $g_1 \neq g_2^k$ and $g_1 \neq g_2^{-k}$. Suppose $g_i^{-1}c_{i-1}x_i = c_i$ is the first such equation for the case $g_1 \neq g_2^k$, that is, c_i , $i \neq km$, is not in the amalgamated subgroup or $c_{km} \neq 1$. Without loss of generality, we may assume $c_i \in A$. Since A is π_c , we choose $M_2 \triangleleft_f A$ such that $c_i \langle a \rangle \cap M_2 = \varnothing$, $i \neq km$, or $c_{km} \notin M_2$.

Let M_3 be the similarly defined subgroup for the case $g_1 \neq g_2^{-k}$. Let $\overline{M} = M_1 \cap M_2 \cap M_3$. Then $\overline{M} \triangleleft_f A$ and $\overline{M} \cap \langle a \rangle = \langle a^r \rangle$ for some integer r. Also, N_1 is of finite index in B, we have $N_1 \cap \langle b \rangle = \langle b^s \rangle$ for some integer s. Let $t = \operatorname{lcm}(r,s)$. Since A is $\langle a \rangle$ -Pot and B is $\langle b \rangle$ -Pot, we can find $M_4 \triangleleft_f A$ and $N_2 \triangleleft_f B$ such that $M_4 \cap \langle a \rangle = \langle a^t \rangle$ and $N_2 \cap \langle b \rangle = \langle b^t \rangle$. Let $M = \overline{M} \cap M_4$ and $N = N_1 \cap N_2$. Then $M \triangleleft_f A$, $N \triangleleft_f B$ and $M \cap \langle a \rangle = N \cap \langle b \rangle$. Now we form $\overline{G} = \langle \overline{A} * \overline{B}; \overline{H} \rangle$ where $\overline{A} = A/M$, $\overline{B} = B/N$ and $\overline{H} = \langle a \rangle / (M \cap \langle a \rangle)$. Let θ be the canonical map θ from G onto \overline{G} . By the choice of M_1 and N_2 , $g_1\theta$ is reduced and $g_2\theta$ is cyclically reduced in \overline{G} . Also, $||g_1\theta|| = ||g_1||$ and $||g_2\theta|| = ||g_2||$. Hence, we have $g_1\theta \neq g_2\theta^z$ for $z \neq \pm k$. Since $M \subseteq M_2 \cap M_3$, we also have $g_1\theta \neq g_2\theta^{\pm k}$. Thus, $g_1\theta \notin \langle g_2\theta \rangle$. By Lemma 2, G is π_c , and we are done. This completes the proof of the theorem. \square

3. Remark. Our theorem can be used to prove the following generalization of Lemma 2.2 of Allenby and Tang [3].

Corollary. Let $G = \langle a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m; (u(a_i)v(b_i))^s = 1 \rangle$ where $s \geq 1$ and $u(a_i)$ and $v(b_i)$ are words on the disjoint sets of generators a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_m . Then G is π_c .

REFERENCES

- 1. R.B.J.T. Allenby and R.J. Gregorac, On locally extended residually finite groups, Conference on Group Theory, University of Wisconsin-Parkside 1972, LNM 319 (1973), 9–17.
- 2. R.B.J.T. Allenby and C.Y. Tang, The residual finiteness of some one-relator groups with tension, J. Algebra 71 (1981), 32-140.

- 3. , Conjugacy separability of certain one-relator groups with torsion, Journal of Algebra 103 (1986), 619–637.
- 4. M. Hall, Jr., Coset representation in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432.
- 5. A. Mal'cev, On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Uben. Zap 18 (1958), 49–60.
- **6.** B.H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A **246** (1954), 503–554.
- $\bf 7.~P.F.~Stebe,~\it Residual~finiteness~of~a~\it class~of~knot~groups,~Comm.$ Pure Appl. Math. $\bf 21~(1968),~563-583.$
- 8. ———, Conjugacy separability of certain free products with amalgamation, Trans. Amer. Math. Soc. 163 (1972), 173–188.

Department of Mathematics, University of Malaya, 59100 Kuala Lumpur, Malaysia