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WALLMAN COMPACTIFICATION IN FTS

R. LOWEN, R.C. STEINLAGE AND P. WUYTS

1. Introduction. In this paper we construct a good extension
of Wallman’s compactification for all fuzzy topological spaces, and we
prove that besides being a good extension of Wallman’s original con-
struction in TOP, our construction also extends the earlier construction
in FNS which was given in [1]. FNS stands for the bireflective and core-
flective subcategory of FTS consisting of all fuzzy neighborhood spaces.

Remarkably, in order to perform our construction we need to apply
(in FTS) Shanin’s generalization of Wallman’s construction as given
in [10]. The main advantages of our compactification over previous
ones in, e.g., [2, 3, 8], are that, in the first place, it does not reduce
to only a small class of fuzzy spaces (sometimes only to topologically
generated spaces) and, in the second place, that it is given by a very
explicit construction describing the closed fuzzy sets and a fortiori the
convergence of prefilters in the compactification.

2. Preliminaries. We recall some concepts and notations which
are required in this paper. I stands for the unit interval, Iy := I'\{0}
and I := I\{1}. We restrict our attention to classical fuzzy sets (i.e.,
functions with domain some set X and codomain I) and classical fuzzy
topological spaces in the sense of, e.g., [4]. Given a set X, a fuzzy
topology on X is a collection A C IX which is closed under the taking
of finite infima, arbitrary suprema and which contains all constants. A
map f: (X,A) — (X', A’) between fuzzy topological spaces is said to
be continuous if, for all u’ € A’, we have ' o f € A. Fuzzy topological
spaces and continuous maps form a topological category denoted FTS.
This means, among other things, that initial and final structures
exist in FTS. TOP is embedded in FTS as a full isomorphism closed
subcategory which is at the same time bireflective and coreflective,
i.e., the embedding has both a left and right adjoint. Given a fuzzy
topological space (X, A) its coreflection in TOP is determined by the
topology ¢(A) := ({p (e, 1]) | p € A, € I}). If T is a collection of

Received by the editors on February 13, 1991.

Copyright ©1992 Rocky Mountain Mathematics Consortium

1435



1436 R. LOWEN, R.C. STEINLAGE AND P. WUYTS

fuzzy sets, we denote I'° the collection of all pseudo-complements, i.e.,
p € T¢ifand only if 1 — p € I'. If § is a prefilter, then we recall that
its character is the real number ¢(§) := inf, ez sup,¢c x pu(z). If p € IX,
then we denote by [u] the prefilter generated by {u}. If F is a filter on
X, then w(F) stands for the prefilter generated by {1¢|F € F}, i.e.,
p € w(F) if and only if there exists an F € F : 1p < p.

Given a prefilter § in a fuzzy topological space (X, A) the adherence
of § is defined as
adh§: X — 1

x — inf f(z

inf 7i(z)
where ~ stands for closure in (X, A). The numerical value adh §(z) is
to be interpreted as the degree with which the point z is an adherence
point of §. In the same way, one can define a limit of §, but we shall
not have recourse to this in the present paper (see, e.g., [5]).

A subset A of a fuzzy space (X,A) is called dense if it is dense
in the TOP-coreflection, i.e., if it fulfills the property that for all
p € A, supycqp(z) = sup,cx p(z). By a closed saturated 1-level
prefilter, we mean a prefilter § in A° such that ¢(F) = 1 and which
fulfills the property that if for some p € A° for all ¢ € Iy, we have
(u+e)Al € §, then necessarily p € §. For more details on convergence,
we refer to [4, 5], and for the Wallman compactification in FNS, we
refer to [1].

An extension (Y,T') of (X,A) (i.e.,, a space in which (X,A) is
embedded) is called a compactification of X if X is densely embedded
in Y and Y is compact.

For basic results on the Wallman-compactification in TOP and espe-
cially Shanin’s generalization thereof, we refer to [9, 10].

3. The Wallman compactification in FTS. Let (X,A) be an
arbitrary fuzzy space. We let

C(A) = { U?:l iu’_l[aia 1] | n e Na/"i € Acaai € Il}
It is clear that C(A) is a basis for the closed fuzzy sets of «(A) and

by definition it contains @ and X and is closed under the operation
of taking finite unions. A subset H of C(A) is called a C(A)-family
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if it has the F.I.P., and it is called a maximal C(A)-family if it is not
properly contained in any other C(A)-family. In [9], it was shown that a
maximal C(A)-family M fulfills the prime-property, i.e., if A, B € C(A)
and AU B € M, then either A € M or B € M. We shall use this fact
freely in the sequel. A C(A)-family H is called vanishing if it has an
empty intersection.

Given (X, A) and C(A) as above, we shall put
V(X) := {vanishing maximal C(A)-families},

and
X =X UV(X).

Notice that we do not suppose any separation-properties to be fulfilled
in (X,A). We now extend the structure of X to X in the following
way. Given p € A°, we define

J z — p(x) zeX
“'X_)I{M—W(M,M) M e V(X)
where
 Joe([p]) Vw(M)) if [p] Vw(M) exists
el M) = {O otherwise.

Proposition 3.1. For u,v € A° and o constant, the following
properties hold:

(1) é=a
(2) wwr=pVvo
(3) pwAv=pnAp.

Proof. The verification of (1) is of course trivial. For (2) and (3
first remark that if £&,0 € A€ are such that 8 < &, then 6 < f SO we
already have i V7 < pVv and pAv < g A0, Now let M € V(X). If
a € I is such that (uVv)~!([a,1]) € M, then either p=1([a, 1]) € M
or v~1([a, 1]) € M and thus, under the assumption that [uVv]Vw(M)

~—
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exists, we have

pVv(M) =sup{a € I | (uVv) (o, 1]) € M}
<sup{a€l, | p  ([a,1])e M} Vsup{acl | v ([a,1]) e M}
=p(M) Vo (M).

In case [pV V] V w(M) does not exist, we have
pVv(M) = p(M) = (M) =0.

Analogously, if o € I; and 8 € I; are such that p1([o,1]) € M and
v~1([B,1]) € M, then by the maximality of M and the fact that

p (e 1) e ((8,1]) € (A ) N[ A B,1])
we have (uAv)~([aAB,1]) € M and thus, under the assumption that
[1] Vw(M) and [v] V w(M) exist, we have
M) A D(M) =sup{a AB | p~ ([, 1]) € M and v7([B,1]) € M}
<sup{y € I | (uAv)"H([v,1]) € M}
= pAv(M).

In case one of [u] Vw(M) and [v] V w(M) does not exist, we have

As a consequence of this proposition, the family {4 | p € A°} is a
basis for the closed fuzzy sets of some fuzzy topology on X, which we
shall denote by A.

Theorem 3.2. (X, A) is a compactification of (X, A), in particular
(X,A) is ultracompact.

Proof. That X is dense in X is of course an immediate consequence
of Proposition 3.1 (1).

To see that X is ultracompact, we observe that

D= {u (o 1)) | p € A% € Io}
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is a subbasis for the closed sets in ¢(X).

Let (Fj = ﬂ;l([aj,l])jg be a subfamily of D with N;e;F; = @.
The following assertion will be used at several places in the proof.

Assertion. If M is a maximal C(A)-family, u € A° and « € I, then
c([u] Vw(M)) > a if and only if for all B < a : = 1([B,1]) € M.

Indeed, if & = 0 or if [u] V w(M) does not exist, there is nothing to
prove. Otherwise, we have

c([plVoM)) > a <= VB<a,VM e M: 1y Augp
= B<a,VMeM:pu ([B,1]NM) #2
which by maximality of M proves our claim.
Consequently, it follows that for each j € J we have
Fj=PUQ;
where 1
Pj = p; ([ay,1])
Q; = {M | VB < ay : 7 (85, 1)) € M}
and where then P; C X, Q; C V(X).
Therefore, for all K C J, we have
Ne=(Nr»u(ne)
JjeEK JjEK JjEK
and, in particular,
(%) NF=Q=2
jeJ jeJ
Now we consider three cases:
(1) 3Ke2V:(P=o and ILe2Y):()Q;=2.
JEK jeL
Then K UL € 2 and NjexurFj = @.

(2) VK €2 (| P # @.
jEK
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This means that (P;);cs is a C(A)-family which thus is contained in
a maximal C(A)-family M and which by (x) is vanishing. For each
j € J, we now have

p7 (lag,1]) = Py € M

and, thus, again by the assertion fi;(M) > «;. This implies that
M € NjesQ; which by (%) is a contradiction.

(3) vLe2): (@, # 2.

JjeEL

If then L € 2(Y) and M € Njer@;, and if, for each j € J we take
B; < aj, it follows again by the assertion that ,uj_l([ﬁj, 1]) € M for all
j € L. Since this holds for all L € 2(Y) and all choices of 8; < aj, it
follows that the whole family

{u;'([8,1]) | j € J,B8 < oy}

is a C(A)-family and, therefore, is contained in some maximal C(A)-
family M. Now if M is nonvanishing, there exists € X such that

ViedJ: V8 <a:pi(z) >0,

and, thus, NjcsP; # @, which is a contradiction. If M is vanishing,
then it follows from its very definition that M € @Q; for all j € J which
is also a contradiction. This shows that of the three cases which we have
considered, only the first one can occur, which applying Alexander’s
subbase Lemma means ¢(X) is compact. O

Remarks 3.3. 1) Since Theorem 3.2 proves ultracompactness and not
compactness of X , the proof does not involve prefilters. If we had
given a proof of compactness rather than of the stronger ultracompact-
ness, then it would have been easily seen that V(X) consists of two
kinds of “new points.” Those which are required in order to provide
prefilters § (on X) for which sup,.x adh§(z) < ¢(F), with a point
M wherein the extension of § to X, say §, fulfills adh F(M) = ¢(3)
and those which are required in order to provide prefilters § for which
sup,cx adh §F(z) = ¢(F) but adhF(z) < ¢(F) for all z € X, with a
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point M wherein adh §(M) = ¢(F). Removing from V(X) those M
which are only required for the second type of prefilters leaves us with a
smaller extension of X which is still compact but no longer necessarily
ultracompact. This smaller extension is then a compactification which
fulfills the property of coinciding with X if and only if X is compact,
while the larger compactification which we have constructed coincides
with X if and only if X is ultracompact.

2) Rather than proving that the construction of Theorem 3.2 coin-
cides with the usual Wallman-compactification in case (X, A) is topo-
logically generated, we shall prove that it even coincides with the con-
struction in FNS given in [1] in case (X,A) € |[FNS|, from which the
aforementioned result will follow as a corollary.

4. Relation to the Wallman compactification in FNS. In
[1] a Wallman compactification was constructed for symmetric [11],
weakly-T; [12], fuzzy neighborhood spaces. The symmetry and weak-
T, properties were imposed there in order to be able to identify the
points of X with a special type of maximal closed saturated 1-level
prefilter. However, we can generalize the construction of [1] to arbitrary
spaces in FNS. This will make the link to the construction of the present
paper clearer.

If (X,A) € |[FNS]|, then (as in [1]), we denote by R(X) the collection
of all maximal closed saturated 1-level prefilters § on X such that
adhF(z) < 1 for all z € X. Further, we put X := X U R(X). For any
§ € R(X) and p € A°, we also put

I(p,§)={ecl|(p+e)AN1eF}
and then we define

. x — p(x) zeX
N'X%I{S—)I—infl(u,g) 3 € R(X).

The following results are now proved in exactly the same way as the
corresponding ones in [1] and we therefore omit the proofs.

Proposition 4.1. For p,v € A° and o constant the following
properties hold
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Theorem 4.2. If (X,A) € |[FNS|, then (X, A) is a compactification
of (X,A) in FNS, in particular, (X,A) is ultracompact.

We shall now treat the relationship between X and X if X is a fuzzy
neighborhood space. Hereto we require some preliminary propositions.

Proposition 4.3. If § is a maximal closed saturated 1-level prefilter
in (X,A), then

) ={Cec(A)|FIpecF Iacl:u*(a1]) CC}

is a mazimal C(A)-family and the following are equivalent:
(1) forallz € X :adh(z) < 1, i.e,, §F € R(X)
(2) 6(F) is vanishing, i.e., §(F) € V(X).

Proof. That 6(F) is a C(A)-family is clear. Suppose it is not maximal,
and let M be a maximal C(A)-family which strictly contains §(5F).
Then there exist £ € A and 8 € I; such that

€71([8,1]) € M\&(3).
By Theorem 4.4 [13], it follows that
0 :=E&V 1)) € A"
Now for any « € I; it is clear that we have

-1 B HB<a
R S

If u € §, then for any a € [3, 1] we have

pH (o 1) 07 ([op 1) = 17N ([ 1)) NETH([B,1]) # @
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and, thus,

sup 4 A B(z) = sup{a | p (e 1) N7 ([, 1]) £ 2} = 1.

By maximality of §, this implies that § € § and, thus, £71([3,1]) =
6=1([B,1]) € 6(F), which is a contradiction. Consequently, §(F) is a
maximal C(A)-family.

Finally, for any z € X we have that adh§(z) < 1 if and only if
x ¢ Npes(z)F which proves the equivalence of (1) and (2). o

For ease in notation, in what follows, given u € A€ and a € I, we
shall put

/\(,LL, a) = V lufl([a,l])-
Again, by Theorem 4.4 [13], we know that 1 € A€ implies A\(p, @) € A°.

Proposition 4.4. If M is a mazimal C(A)-family, then
LM) = {A @) [ pH(loy1]) € M, p € A% a € 1}

is a mazimal closed saturated 1-level prefilter and the following are
equivalent:

(1) Forallz € X : adh L(M)(z) < 1, i.e., LIM) € R(X)
(2) M is vanishing, i.e., M € V(X).

Proof. That L(M) is a closed saturated 1-level prefilter is easily
verified, and we leave this to the reader. Now put

T(M) = {(p, ) € A° x I | ™" (o, 1]) € M}.
Let ¢ € A€ be such that for all (u,a) € T (M), we have

sup € A A, ) (&) = 1.

zeX
Now let ¢ € Iy, and let (u,a) € T(M). Then it follows that
there exists an € X such that £ A A(p,a)(z) > a V (1 — €) and,
consequently, £7([1 — &,1]) N p~'([e,1]) # @. By maximality of
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M this proves that £ 71([1 — &,1]) € M. Thus we have that, for all
e€lp:(§,1—¢) € T(M). Consequently, since for all € € Iy, also

A€ 1—e) < (E+e)nl

and, since £(M) is saturated, this implies that £ € £(M), which in
turn shows that £(M) is maximal. That (1) and (2) are equivalent
again is clear. O

Proposition 4.5. The maps § : R(X) — V(X) and L : V(X) —
R(X) are bijective inverses of each other.

Proof. If M € V(X), then for any (i, o) € T(M), we have
w7 ([ 1)) = Ap, 0) ([ 1]) € 8(L(M),

ie., M C §(L(M)) which by maximality implies M = §(L(M)). If
¥ € R(X), then for any p € §F and € € Iy, we have A(u, 1—¢) € L(9, (F))
and, thus, by saturedness of ¥, we have § C L(4(F)) and, again, by
maximality, § = L(6(F)). o

Theorem 4.6. If (X,A) € |[FNS|, then the map

*

(X,A) 55 (X,A)

defined by 6*(z) := x for all z € X and §*(F) := 0(F) for all § € R(X)
is a homeomorphism, in particular, i = [i o §* holds for any p € A°.

Proof. From Proposition 4.5, we already know that §* is a bijection.
Let p € A® and § € R(X). If € € I is such that (u+¢) A1 € F, then
we have

v ey N (B -6 1)) £ 2

for all « € I, B € I and v € §. Consequently, u=1([3 — ¢,1]) € §(F)
for all B8 € I; and this implies that

1—e < a(6(3))-

Thus, i < f1od*.
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Conversely, if a € I; is such that p ([, 1]) € 6(F), then

pH (e, ) NETH(B,1]) # o
for all B € Iy and € € 5, i.e.,

sup(p+1—a)Aé(z) =1
zeX

for all £ € §. Consequently, (u+1—a)AlEF,ie.,
a < fi(3)-

Thus fi o 6* < ji, and we are done. o

Again, the next result is proved in exactly the same way as in
[1], and so we omit the proof. For a topological space (X,7T), we
put (W(X),W(T)) for the Wallman compactification of (X,7), i.e.,
W(X) is the set of all maximal vanishing closed families together
with the points of X and W(T) is the topology with subbasis for
the closed sets given by the family {F* | F closed in X}, where
F* := F U{F | maximal vanishing closed family such that F' € F},

(see, e.g., [9]).

Theorem 4.7. If (X,7) € |TOP|, then the compactification

(X,w(T)) and (the embedding in FTS of) the Wallman compactifi-
cation (W (X),w(W(T))) coincide.

From this result and Theorem 4.6, we immediately deduce our next
result.

Corollary 4.8. If (X,T) € |TOP|, then the compactification

(X,w(T)) and (the embedding in FTS of) the Wallman compactifi-
cation (W (X),w(W(T))) coincide.

Remark 4.9. The smaller extension to which we alluded in Remark
3.3.1, also coincides with (the embedding of) the Wallman compacti-
fication (W(X)),w(W(T))) in case X is topologically generated, since
in this case compactness and ultracompactness are equivalent.
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