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A GRENANDER AND SZEGO LIMIT THEOREM
FOR TOEPLITZ OPERATORS ON
LOCALLY COMPACT ABELIAN GROUPS

HSIEN LIANG

ABSTRACT. This paper is a generalization of earlier results
of Szeg6 and Grenander concerning asymptotic distributions
of eigenvalues of Toeplitz operators on a Hilbert space of
square integrable functions defined on real numbers to locally
compact abelian groups.

Introduction. Let G be a nondiscrete locally compact abelian
group, and let I' be its noncompact dual group. Let m and p be Haar
measures on G and I', respectively, normalized so that the Fourier
inversion theorem holds. Let (D,<) be a directed set such that
{m(g)}cep is a net whose values are those Borel sets of I" with compact
closures. Let D(e,z) = [ X7m(e)(7)(,7)dp(y), a Fourier inversion
transform of a characteristic function X7y on I', where (z,v) is a
character on I for f € L*(G). Let

K©(z,y) = /G D(e,o — 2)(2)D(e, = — y) dm(2).

We then obtain the following integral operator U on L?(G), known
as a Toeplitz operator.

1) U p)() = /G KO (z,y)p(y)dm(y)  for all ¢ € L*(G).

We shall establish the following main result of the paper.

Theorem 1. Let f be real-valued in L'(G) and let U](f) be its
corresponding self-adjoint Toeplitz operator as defined in (1). Let
Q(e,vy) = |D(g,")|* = fG |D(e, z)|*(—x,v) dm(z), the Fourier trans-
form of |D(e,")|?, and let N[(a,b);UJEE)] be the set of eigenvalues of
U ](f) within a closed interval [a,b]. Then

(1) Jim Q(,7)/u(r(e)) = 1
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18 a necessary and sufficient condition for
(12)  lim Nl(a, b U] /u(r(e) = m{zla < f(z) < b},

where the limit (1.1) is in the sense of convergence in measure on each
compact set of T'; and where the assumption m{z|f(z) = a or b} =0
and 0 ¢ [a,b] are provided.

The above result is a generalization of earlier consideration of asymp-
totic eigenvalue distribution of such Toeplitz operators defined on the
real line by Szegd and Grenander [1]. Later, H. Kreiger [5] in 1965
obtained its generalization to a class of locally compact abelian groups
whose dual is compactly generated but noncompact and offered a suf-
ficient condition for the theorem. The author in this paper further
finds that the condition (1.1) is indeed a necessary and sufficient con-
dition. The ideas and methods introduced to prove the theorem are
closely related to previous works of several authors. See [3,4,6] in this
connection.

We first establish a proof of a sufficient condition by considering the
case when the generating function f of U () is a characteristic function,

then by a simple argument subsequently carried to a class of real simple
functions and finally for an arbitrary real-valued function in L!(G).

For the proof of Theorem 1 we shall introduce some extended results
from integral operators listed as corollaries to a well-known Mercer’s
theorem [7].

Corollary 1. Let X be a locally compact Hausdorff space. Let m
be a reqular measure on X. Let K be the Hilbert Schmidt operator on
L?(X) with a kernel K(z,y) satisfying the following properties:

(i) K(z,y) = K(y, ),
(i)

(ili) limg_o {[x |K(z,y) — K(2/,y)|? dm(y)}'/? = 0 for all 2’ € X,
(iv) [y K(z,z)dm(z) < oco.

K(z,y) is positive semi-definite and continuous,

Let {\,}72, be the nonzero eigenvalues of K repeated according to
their multiplicities where for reasons of future convenience we assume
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that Ay > Ao > -+- . We assert that

1) Yonis /X K(,2) dm(x)

Proof. 1t is clear from the property (ii) that all the eigenvalues of
K are nonnegative. Let ¢;(z), i =1,2,... be a complete orthonormal
set of eigenfunctions corresponding to eigenvalues \;, i = 1,2,.... We
assert first that each p;(z) is a continuous function. In fact, using the
property (iii) and the Schwartz inequality, we obtain

o1(z) — ()] = \Ai /X K (2,9) - K(2',y)]os(y) dm(y)

1
< I (e, ) = K@)l il

1

Our assertion follows immediately. Consequently, the remainders
Kn(l‘,y) ZK(m,y)—ZAmz(m)cp,(y), n:1727"' )
i=1
are also continuous functions. Since we have
K (z,y) = Z Aigpi(z)pi(y)

i=n+1

in the sense of mean convergence, it follows that

@) /X /X Ko ) @) F(@) dmi@)dm(@) = 3 Al ) > 0

i=n+1

for every element f of L?(X), where (,) denotes the inner product
of L?(X). From this we deduce that K,(z,z) > 0. In fact, if we
had K,(zo,z0) < 0, we would have by continuity K,(z,y) < 0 in
a neighborhood V' x V of (xg,zp), where V is a neighborhood of .
Setting f(z) =1 for z € V and f(x) = 0 elsewhere, integral (2) would
become negative. Thus a contradiction would occur. Hence, we have

K,(z,z) = K(z,z) — Z -)\igoi(;v)M >0
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for n = 1,2,.... From this we conclude that the series of positive
terms >, \;p;(z)p;(z) is convergent and that its sum is < K(z, z).
Integrating the series we obtain

Z)\ig/XK(m,m)dm(ac). o

Corollary 2. For each n = 1,2,..., let K,, be a Hilbert Schmaidt
operator with kernel K, (x,y) satisfying all the properties (i)—(iv) in
Corollary 1. Let K (x,y) be measurable on X x X and such that

(1) limpooo [x [x 1K (2,y) = Kn(z,y)|* dm(z) dm(y) = 0

(i) limp oo [y Kn(z,z)dm(z) = [ K(x,z)dm(z) < co.

Then K, the operator with kernel K(x,y) is compact and positive
semi-definite and if {\;}52, represents its positive eigenvalues repeated

according to their multiplicities and arranged so that Ay > Ay > - -+
Then

(3) ZM S/XK(w,x) dm(z).

Proof. By (i) of (2), K,, converges to K as n — oo in the Hilbert
Schmidt topology and a fortiori in the uniform operator topology.
Thus, if {\,,}$2, represents for each n = 1, 2, its positive eigenvalues
repeated according to their multiplicities and arranged in decreasing
order, we have

n—oo

By Corollary 1,

(5) meg/ Kn(z,2)dm(z), n=12....
i=1 X

By (ii) of (2) and Fatou’s lemma applied to (4), we obtain (3). O
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Corollary 3. If w(z) is a bounded measurable function on X and
if K(z,y) is the kernel of a Hilbert Schmidt operator satisfying all
properties (1)—(iv) in Corollary 1, then (1) holds for the operator with
the kernel w(z)K (z, y)w(y).

Proof. Choose a sequence {wp(z)}22; of C(X) which is uni-
formly bounded and converging to w(z) a.e. For each n fixed,
wn(z) K (2, y)wy, (y) satisfies properties (i)—(iv) of Corollary 1. To check
(i), (ii) and (iv) is trivial. It suffices to show (iii). For z,2’ € X, we
have
[lwn (&) K (2, - Jwn () = wn (@) K (2, Jwn () ||2

< lwn (2K (2, )wn () = wn(2) K (x, Jwn(-)]]2
+[|wn (2') K (2, Jwn () — wn (@)K (2, Jwn(")]2
< Jwn Sl (@', ) = K (2, )|z + |wn (2) —wn ()] || K (@, )wn()]]2-
Since wy(x) is continuous and K(z,y) satisfies all the properties
(i)—(iv) in Corollary 1, it follows from the inequality above that
wn () K (2, y)wy, (y) satisfies (iii) of Corollary 1 for each n. Furthermore,
{wn () K (z, y)wn (y) }52; satisfies properties (i) and (ii) of Corollary 2.
In fact, by the Lebesgue dominated convergence theorem, we have

Jm [ ] @K @) 6@ K @y dn(e) dn)
< tin { [ [ Jlo) - n@) K o))l dmfa) dmiy

n—oo

. |wn<w>K<w,y)<w<y>—wn<y>>|2dm<w>dm(y)}

< tin [ )=, @P( [ 1K@ P dn() )l dn(o)
+ i [ o) - @P( [ 1K an) )l dnt)

- [ w(w)—wn<m>|2( [ 1K) an)) ol am(y)

[ i o) n P ( [ 1K) an(e) ) ol dnty)
=0.
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This proves (i) of Corollary 2. To prove (ii) of Corollary 2 is trivial and
the results follow immediately. ]

In the following we start to prove Theorem 1 for its sufficient condition
(1.1) when the generating function of the operators is of characteristic

type.

Let Xq be the characteristic function of a Borel subset Q of G such
that 0 < m(2) < oo. Let US(;) be the integral operator on L'(G)
corresponding to Xq. That is,

/KE) 2,0)e(y) dm(y), @ € L*(G),
where K©)(z,y) = [, D 2)Xa(z)D(g, z — y) dm(z).

Lemma 1. For Ug(;) and K (z,y) defined as above, we have

(i) K©)(z,y) is a positive-definite continuous function on G x G.
(i) Timg o [[K© (2, ) = KO(a',)]|l2 =0,
(iii) UQ s of Hilbert Schmadt type.

Proof. Clearly, K(*)(z,y) is continuous. Furthermore, if ¢ € L?*(G),
then

/G /G KO (2,4)p(2)p(y) dm(z) dm(y)
= [ (@) [ Diea2)xa(2)D(e, 2-y) dm(2)ply) dmy) dm(z)
G G
://D(s,a:—z x)dm(z /D g,2—y)p(y) dm(y)Xa(z) dm(z)

XQ( )dm(z) > 0.

/Dsz—u w) dm(u)

These steps are easily justified by Fubini’s theorem. This shows that
Ug(;) is positive-definite. Noting that D(e,z) is the Fourier inverse
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transform of X (), we have
|K(E) (37, y) - K(E) (37/, y)‘

= ‘ /GD(E, T — z)Xa(2)D(e,z — y) dm(z)
- /GD(E, ¢’ — z)Xa(2)D(e,z — y) dm

g/ ID(e, 2 — 2) — D(e, 2" — 2)|Xa(2)|D(e,  — y)| dm(2)
G
= ||Dz(g,-) = D (e, -)l|oo (X * | D(g, ) (y)),

where || ||o denotes the uniform norm on Cy(G), the space of contin-
uous functions on G vanishing at infinity, and where for each x fixed
D, (g, z) denotes the function D(e,z — z). Since D, (g,z2) € Co(G), it
follows that

lim |[Ds(z.") ~ Dor(e. oo = 0.

Thus, our assertion follows from the inequality
1K@ (@,-) = KO (@,)||2 < [|Da(e, ) = Dar (e, )loolXe * [D(e, ) o-

Here we have used the fact that Xq € L'(G) and D(e,-) € L*(G).
Also, since it is the Fourier transform of X(.)(v) so that, by Young’s
inequality, ||[Xq*|D(e, )| [|2 < ||Xal|1]|D(e,-)||2, see [8]. We finally have
(1.1)

[ KO @ ) an)

_ /G /G /G D(e,2—2)Xa(2)D(e, z—y) dm(z)

/GD(E, z—w)XaoD(e,w—y)dm(w) dm(z) dm(y)
- /G /G Xa(2)Xe (w) dm(z) dm(w) /G D(e,o — 2)D(e, @ — w) dm(z)
[ Dz~ 4D w - y) dm(y)
G

:/ / Xo(2)Xe (w)| D(e, 2 — w)[? dm(z) dm(w).
GJG
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Note that we have used the following identity to obtain the last
expression:

(1.2) D(e,u—v) = /GD(E, w—1)D(e, v — t) dm(t).

The integral [, [, Xa(z)Xa(w)|D(e, z — w)|* dm(z) dm(w) in (1.1) is
finite since |D(e, z —w)|? is bounded. This shows that Ug(;) is a Hilbert
Schmidt operator. ]

Lemma 2. Let e, k), k = 1,2,..., be the eigenvalues of Uf(;)
repeated according to their multiplicities. Then

(1) 0<Ae,k)<1,k=1,2,...,
(ii) Dof Ale, k) < m(Q)u(n(e));

in addition, if condition (1.1) of Theorem 1 holds, then the following
condition is valid:

(iii) 32, (e, k) = m(Q)u(x(e))(1 - Ale)),

where 0 < A(e) < 1, and where lim._,, A(g) = 0.

Proof. 1t is apparent that US(;) = PEMoP®) | where P is defined
by P®)¢ = D(e,-) * ¢ and where M, is defined by Moy = X for
¢ € L*(@). We have D(g,-)* D(g,-) = D(e,-) which follows from (1.2).
Using this property, we obtain

[PO2.p=D(e,-)* D(e,) + p = D(e,")  p = POy

A self-adjoint property can also be obtained easily. This shows that
P(®) is a projection. Clearly Mg is also a projection. Thus,

WU < 1P| Ma]| || P©)]] < 1.

That (i) holds is an immediate consequence of this fact. Since Lemma
2 holds for Uée), we apply Mercer’s theorem (weak form), i.e., Corollary
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1, to obtain
Z)\ek /Kg)mac)dm()
(2.1) / / D(e,z — 2)Xa(2)D(g, z — ) dm(z) dm(z)
= /GXQ z /C;D e,x — 2)D(e, z — x) dm(z) dm(z).
Observing (1.2), we have
u(r(€)) = D(e, 0) = /GD(E,x ~ D(, 2 — 7) dm(z).

It follows that

D AMerk) < m(@)u(n(e))-

This proves (ii). Moreover, since US(;) is of Hilbert Schmidt type, using

the result from the standard theory of integral equations [7], we obtain

(2.2) / / |K©)(z,y)|? dm(z) dm(y Z)\z e, k).

It follows from (1.1), (2.2) and the Plancherel theorem that
zk: X(e, k) = /G ; Xa(2)Xa(w)|D(g, z — w)|* dm(z) dm(w)
— [ Xal2)-xa ¢ |D(e, () dm(z)
G
- [ MaoIPQE ) dut)

_ c Aly 2 Q(e,v) y
= u(x(©) | PEE du)

—utr(e)) [ aor{1 |1 ZE ] Lauw)
(e) /|X?2 V)2 du(v)
/'XQ [ ey e

= p(r(€))m(@)(1 - A)),




1414 H. LIANG

where

A =@ [ oWk |- FE du,

If the condition (1.1) of Theorem 1 holds, then we assert that
(2.4) lim A(e) =0.

E—00
To prove (2.4), we use the following argument. Given a small
positive number 7, there exists a compact set C' in I' such that
Jr/c IXa()|?du(v) < nm(Q). Since (Q(e,v))/(u(m(g))) converges
to 1 in measure on C' as ¢ — oo, there exists an ¢y € D such
that u(IT(,E)(C)) < nm(Q)~! for ¢ > ey, where Igs)(C) = {v €
Cl1 = (Q(e,v))/(u(r(e))) > n}. Thus,
Q(E’V)] (v)

a6 = m(@)™ [ xa)P [1 - 2enla

=hL+L+1Is
where
=m -1 v 2 - Q(S,V) v
h=m(@)* [ o ol 12
and

— ()t N2l = Qle,v) v

=@ [ a1 T )

NotiEg that [| [Xo(¥)]* [|loe < m(Q)? and 1 — (Q(e,v))/(u(w(€))) < 1,
we obtaln

b <m(@) @)l [ dule)
I ©)

<m(Q) "t m(@)* - m(Q)

=1,
I < m() ! / Xea(v) P dp(w)
c 1

7 (0)

IN

m() ' / Xa() P du(v)
= m(Q) 'm(Q)n
=1,
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and
E<m@)™ [ a@)dut)
r\c
< m(9) tym(Q)
Our assertion follows immediately. O

Let N*(7; Uf(;)) be the number of the eigenvalues of Ug(;) which are
greater than 7 if & is + or less than —7, if £+ is —, where 7 is a positive
number.

Lemma 3. Under the assumption of Lemma 2, if A(e)'/? < 1/2, we
have

(i) N* (1= A@EY5US >m(@u(r(e)(1 - 4A()1/?)
and
(if) N*(A@E)Y%US ) <m(@u(r(e))(1+4A(c)1/?),
where A(e) is defined as (2.4). Note that a(s)fb(s) means that
lim, 00 (a(e)/b(e)) < 1, ete.
Proof. Let us define
S1={A(e, k); (e, k) < Ae)/?},
82 = (A&, k) A()? < A k) 1= A(e)V?),
and

S = {A(g,k);1 — A(e)/?2 < A, k) }.

Let Sf and Sf be the number of eigenvalues in S5 and S3, respectively.
Subtracting (iii) from (ii) in Lemma 2 we obtain

kal— (g, k)] Z)\sk e, k)]
= A(t‘)m( Ju(m(e))-



1416 H. LIANG

The terms in the sum on the left are nonnegative and exceed
(1/2)A()Y/? since A(e)'/? < 1/2. Consequently,

%A(g)lﬂs,f < A(e)m(Q)u(r(e)),

53 < 20(e) Pm(Q)u(r(e)).

Now we have
SN (e k) < AEY2 YD Ae K) = AE) Am(@)u(r())
Sy k
D N(e, k) < ST < 2A(e) Pm(Q)pu(n(e)),
Sa

and

> X(e, k) < ST

S3

Inserting these estimates in (iii) of Lemma 2, we find that since

D X(e k) = m(Q)u(n(e) (1~ Ae))
S3
B ZA2(5) k) - Z )‘2(55 k)a
Sl 52

then
" St > m@u(r(e)(1 - A(e) - 3A()"2)
> m(Q)p(r(e)) (1 — 4A(e)"?).
Also
(1-AE)YHST <D e, k) < m(Qu(r(e)),
S3
and
ST < m(Qu(r(e)(1 - A@)/?),
< m(Q)u(r(e))(1+24A()"?).
Thus

(%) S3 + 5§ < m(Q)u(n(e))(L +4A()'/?)
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It follows from (x) and (*x) that (i) and (ii) are obtained immediately.
]

Remark 1. The proof of Lemma 3 is reproduced for the reader’s
convenience from Hirschman’s paper [3].

Lemma 4. Assume the sufficient condition (1.1) of Theorem 1 is
satisfied and US(;) s defined as in Lemma 2. We have for 0 < 7 < 1,
lim N*(r;Ug”)/u(r()) = m().

E— 0O

Proof. We may choose €y € D so that A(e)'/? < 7 <1 — A(e)/2 for
all € > ¢ since lim._, ., A(g) = 0 by Lemma 2. Now it follows from (i)
and (ii) of Lemma 3 that

m(Q)u(r(e))(1 — 4A(e)Y?) < NT(1 - A(e) % US))
< NT(r;US))
< N (A4 US)
< m(Q)u(r(e))(1+4A()?).

Dividing through u(w(e)) and taking the limit as ¢ — oo, the above
inequalities become

m(Q) = lim N*(1 - A@e)V%UE)/u(r(e)

< lim N*(r US)/u(x(e))

< Tom N*(r;UG7) /()

< Tm NH(A@E)%US) /u(r(e)
— m(Q)

Thus we obtain

lim N*(r;US)/p(r(e)) = m(Q).

[amde el
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The limit established in Lemma 4 is essentially a proof of a sufficient
condition of Theorem 1 when the generating function of such a Toeplitz
operator is of characteristic type. A general form shown in (1.2) of
Theorem 1 will be seen when an arbitrary real function in L(G) is
treated. The subsequent Lemmas are proofs of a sufficient condition
for real simple functions. a

LEMMAS. Under the assumptions of Lemma 2, the quantity
|D(e,x)|?/u(n(e)) satisfies the following two properties:

i) JgID(e )/ u(r(e)) dm(z) =1

(i) limeeo fg\w |D (e, z)|*/u(n(e)) dm(z) = 0 for each neighbor-
hood W' of the identity 0.

Proof. 1t follows from the Plancherel theorem that

[ 1D(e0) @) dm(@) = [ ey ()P () ) = 1.

Thus (i) is proved. Given a neighborhood W of 0, choose a compact
neighborhood C of 0 such that C'—C C W, let X¢ be the characteristic
function on C' and put g(z) = X¢ * )Zc(m)/u(C), where X¢(z) is
defined by Xc(z) = Xc(—z). Clearly g(z) is a continuous function
with support contained in W — W and bounded by 1. By construction
gMv) = |Xc(v)|?/u(C) € LY(T), and applying the Fourier inversion
theorem to g, we see that

/F o) dp(v) = g(0) = 1.

Moreover, applying Fubini’s theorem and the inversion theorem, we

obtain
DG, o)
[ o2 dm(w)
IDe.o)F
§W) ) du(v) ()
(5.1) /G i (

- [0
= [ 5;31 (),
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Since the condition (1.1) of Theorem 1 holds, the same argument used
to prove (2.4) shows that

o [ o Q)
©2 I V)

dp(v) = / ") du(v) = g(0) = 1.

On the other hand, since the support of g(z) is contained in W, we
have
(5.3)

Dewf [ D,
Js@ iy e = [, @) Ly )

Now (ii) follows immediately from (5.1), (5.2) and (5.3). The properties
(i) and (ii) in Lemma 5 imply that |D(e,z)*/u(r(€)), ¢ € D, is
an approximate identity in L!(G). Namely, for f € LY(G)||f *
|D(e,)|*/u(m(e)) — fll1 — 0 as € — oo. The proof is routine and
will be omitted (see [2]). O

Lemma 6. Let Q5 and Q; be two disjoint Borel sets of G such that
m(Qs) < co. Then, under the assumption of Lemma 4,

(6.1) N*(7; Mo, US) Ma,) = o(u(n(e)))
as € — 0o, for all T > 0.

Proof. Clearly, MQtUS(;S) Mg, is a nonnegative integral operator with

kernel X, (z) [, D(e,z—2)Xq,(2)D(e, z—y) dm(z)Xq,(y). Let u(e, k),
k=1,2,..., be the set of eigenvalues of MQtUéf)MQt. Applying Corol-

s

lary 3 of Mercer’s theorem, and noting that [, Xq, (z)Xaq, (z) dm(z) =
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0, we obtain
Shlenk) < /G Xa () /G D(e, 2—2)Xq, (2)D(e, z—x) dm(2)Xe, (z) dm(z)
~ [ xa(@) [ xXa.()IDe 2~ 2)P din(2) dnlz)
G G
— (&) /G e (2)][Xe, * |D(e, )/ u(()) ()] dmz).

Since, as € — 00, [Xq, * |D(c,")|*/u(n(e))](z) — Xa.(z) in L(G), see
the comments just preceding Lemma 6, it follows that

tim | D, (2)lixa, * (e ) u(x(@)](@) dm(a)

_ / Xow (@)Xa, (z) dm(z) = 0.
G

This shows that >, u(e, k) = o(u(m(€))) as € = oo. Our assertion now
follows from the formula

N* (3 Mo, US) Ma,) < 1Zusk a

We next recall some well-known results from operator theory, see [7],
which we will need. Let A;, j = 1,2,...,n, be compact self-adjoint
operators on L'(G) and let 7; > 0, j = 1,2,... ,n. Then we have

Lemma 7.

k n

(7.1) Ni<ZTJ,ZAJ> ZNi i3 A
and
(7.2)

N*(r;A) < N™(r;B), N (rB)<N (r;4) ifA<B,

i.e. B— A is nonnegative.
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Proof. The results follow from the minimax characterization of the
eigenvalues of such operators. See [4, 7] for details in their proofs.

Let f(z) = >.I'_, arXq,., where {Q,}"_, is a disjoint family of Borel
sets of G with finite measures such that G = U}_;Q, and where
ar, ¥ = 1,2,...,n are reals. Let I be the identity operator on
L*(G). Clearly, we have I = )" | Mgq,. Also, by a linearity of
Toeplitz operators with respect to their generating function we have

U}(f) =3, aTUf(i). Therefore,

= () ($008) (50
s=1 r=1 t=1

=4, Mo, US) M,
r=1
(8.1) - - (e) (e)
+3 ar( Y Mo US Ma, + Mo, U M,
r=1 Sst;frl
or t#r

= a4, Mo, US) Mo, + W

”
r=1

where W denotes the second parts of summation on the last expression.
We shall next show that the asymptotic eigenvalue distribution of W is
negligible so that both Uj(f) and > I, aTMQTUg(Zi)MQT have the same
distribution, as € tends to infinity. u]

The above assertions are due to Lemma 6, Lemma 7, and the following
Lemma 8 and Lemma 9.

Lemma 8. For any three sets Q,., Qs and Q; from the above family
{1}, with Qs # Q. or Q; # Q,., then with the same assumption as
in Lemma 2, we have

(82)  N*(r; Mg, US) Mg, + M, U Mg,) = o(u(n(e))).
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Proof. Recall that P(®) is a projection on L?(G). For 1 > 0, we have

(n™" Mo, P9 Mo, + nMq, P9 Mo, )
- (™ Mg, P®) Mg, +nMq, P9 Mg )* >0

or

T]72MQSP(E)MQT‘P(E)MQS + nzMQtP(E)MQTP(E)MQt
> +(Maq, P Mo, PO Mg, + Mo, P M, P Mq,)

which can be rewritten as
77_2M95Ug(i)MQS + 772Mng(25,)MQt
> (Mo, US) Mo, + Mo, US) Mq,).
Applying (7.1) and (7.2), we obtain
NE(r; MQSU&)MQt + MQtUs(zE,)MQS)
(8.3) < N* (772 Mo,US) Ma, + n*Mo,US) Ma,)

< N* (% n2MQSUS§?MQS> +NE <% UQMQTUS()?MQS> .

We shall now estimate the two quantities above for their sizes of
numbers’ of eigenvalues greater than a given 7/2. Their estimates can
be obtained by considering two situations according to the relationships
among three sets Mg, , Mq,, and Mg,.

Case 1. The three sets €2,,Q, and ; are mutually disjoint. In this
case, we can immediately apply Lemma 6 to obtain

T  _ € T €
Ni<§;n 2MQSUéT)MQS) - Ni<§;n2MQtU§2)MQt>
= o(u(m(¢)))-

It follows from (8.3) that

N* (73 Mo, US) Mo, + Ma,US) Ma,) = o(u(n(e))).
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Case 2. If Qs = Q, and Q; # Q. or Q; = Q, and Qs # Q,, say
Qs = Q, and Q; # Q,.. Since Q; # ), again by Lemma 5 we have

N (330 Mo, UM, ) = ofu(a(2),

Let us choose 7 so that (17/2)-n% > 1. Since HMQSU&)MQSH <1, then

N*(r/2;1 2Mo,US) Ma,) = N*((r/2)n% Ma,U§) Mg,) = 0, and our
claims follow. O

Lemma 9. Under the same assumption as Lemma 7, we have

o m{z|f(z) > 7} < lim N*(r;U57)/u(x(e))
9.1 E—0OQO
m{a|f(z) > v} > Tm N*(r;U7)/u(n())

and

m{z|f(z) < —r} < lim N~ (r;U57)/u(x(e))

m{z|f() < =7} > Tm N~ (r;Uf7)/u(x(e))

where f(z) =Y 1, arXq, (x) is defined previously.

Proof. Since W =" a, (32" si=1 MQSUS()E)MQt—f—MQtUS(;)MQS)
s#r and/or " "
t#r

is a finite sum of those terms (Mg, US) Mg, + Ma, U Mg,) in (8.2)
multiplied by a corresponding constant factor a,.. It is easy to see that
a constant multiple a,. does not affect its estimate; therefore, the finite
sum has the same estimates, i.e.,

(9-2) N*(r3w) = o(u(m(e)))-

For finding limiting distribution of eigenvalues of those terms in the
sum W, it suffices to estimate each aTMQTUS(i)MQT. Let € be the
complement of €2, in G, then

a,US) = a,(Ma, + Mo, )US) (Mo, + Moy)
= a, Mo U Mg, +V
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where V = ar(MQTUg(;T)MQIT + MQ/TUS?MQT) + CLTMQ/TUS(;T)MQ/T. Ap-
plying Lemma 5 and Lemma 8, we obtain

N* (30, Mo, US) Mgy) = o(u(n(e)))

and N*(7; a, (Mo, Uy Mo, + Mo, Us) Mg,)) = o(u(r(¢))). It follows
that

(9-3) N*(13V) = o(u(n(e))).
Choose a number § so that 7 > § > 0, and, applying (8.3), we have
N*(r50,Mo, U Ma,) = N*(r =5+ §;a,US) = V)
< N*(r = §a,U)) + N*(5-V)
and
N*(r +6;a,U5)) < N*(7;0, Mg, U Mq,) + N*(8; V).
Combining the last two inequalities, we have
NE(r +6;a,U5)) < N*(1;0, Mo, US) Mg, ) + N*(6; V)
< NE(r - 6;0,U5)) + N*(8; - V).
Dividing each part of inequalities in the last expression by p(7(g)) and
letting ¢ — 0o, and noting that lim, o, N*(7;£V)/u(r(e)) = 0, we
have
lim N*(7 + & a,US)) /u(r(e))

E—> 00

< lim N*(r;a,Mo,US) Mo, )/n(n(c))

(9.4) E—0OQO
< Tim N*(rya,Mq, US Mg,)/u(r(e))
£—00 T

< lim N*(r — 6 a,U5))/u(x(e)).

E— 00

If [a,| < 7, then N*(r3 0, Mg, U Mg, ) = 0 since ||a, Mg, US) My, || <
|a-|. Suppose T < |a,|; we choose a § so that 0 < § < 7 and 7+6 < |a,|.
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By Lemma 4, (9.4), and by noting that N*(r; A) = N~ (r; —A) for any
self-adjoint compact operator A; thus, we have

(9.5)
Q) f0<7<a

i, 0 05, U0, ) = { -
et (75 0-Ma, Qr 2.)/ 1 () 0 if a, <7 ora, <O0.
and
(9.6)

. _ Q) ifa,<-7<0

lim N~ (r;a, Mo US) M _ r ’
e (750 2.Us, 2.)/ (<)) {0 if a, > —7 or a, > 0.

Since 277;1 arMaq, Us(li) Mg, is a sum of operators whose product is zero
between each other, it follows that a number is an eigenvalue of the sum
if and only if it is an eigenvalue of one of those terms in the sum. Thus,

E—00

(9.7) lim N*T <T;ZarMQTUSgi>MQT)/N(W(E))

r=1

<D Jim N (730, Mo, UG Ma,) [u(n(e) = 3 m()
r=1

ar<T
and
I G (o)
lim N ( e, MQT)/u(w(s))
(9.8) _ ;33& N~ (r;0, Mo, US) Mq,) /(7 (c))
ap<—T

Now since U®) = p - (lT-MQTUf(i‘)MQT + W, then, for 7 > § > 0,

N=E(r; Uj(f)) = N* (7’ -0+ ZGTMQTUK(;T)MQT + W)

r=1

r

< N* (T -5y aTMQ,US(;)MQJ + NE(§ W)

r=1

= ZNi(T -4 arMQTUg(;T)MQ,«) + o(u(m(e)))

r=1
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and

N=E <T +6;> aTMQTUS(;}MQJ = NE(r+ 6,0 - W)

r=1

)+
< N*(r; U}(f)) + o(u(m(e))).

It follows that

N (7485 00 Mo, U M, ) + olur(e)
r=1
< N* (73 UfE))

< N* (T —6; i aTMQrUS(fT)MQT> + o(u(m(e))).

r=1

Dividing through the above inequalities p(7(g)) we obtain from (9.7)
and (9.8)

> m(Q)—slg{.loN+T+5 ZGTMQ US) Mo,)/u(n (<))
T+6<anr r=1
g@meWw»

< Tim N*(rU))) /u(n(e))

E—00

IN

lim Nt (T—5 ZarMn Uy Ma, )/u( (e)

E— 00O

= Z m(§2,)

T+6<anr
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and

Y. m(@)=lim N <r+6;ZaTMQ US) M, >/u( (€))

ar<—(7496) r=1
< lim N~ (r;U)) /u(n(e))

E— 00

< Im N™(r = 5Uf)/u(r(e))

< lim N~ <7'5 Za’I‘MQ Ug(z)MQ >/#( (€)

£—00
r=1

= Z m(§,.).

a,<—7+6

Since § is arbitrary, we have from above

mizlf(z) > )= m(Q) < lim N (r;U57)/u(x(e))

(9.9) T -
m|{alf(@) =7} = Y m() > Tm NF(r;UF)/u(n(e)
and

m{z|f(z) < =t} = > m(Q) < lim N~ (r;U17)/u(n(e))

ap<—T1 E— 00
R R €)
m{alf(2) < —rh = 3 m(@h) 2 T N5 Uf) ulr(o),
Thus, Lemma 9 is proved. u]

Lemma 10. Under the same assumption in Lemma 9, we have
m{a|f(x) > 7} = lim N*(r;Uf7)/u(n(e))

and
m{z|f(z) < =7} = lim N™(r;U[7)/u(x(e)),

provided m{z|f(z) = 7} = m{z|f(z) = -7} =0.
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Proof. Follows immediately from Lemma 9. u]

Lemma 11. Let f,(x), n=1,2,..., be a monotone sequence of real
integrable functions converging to f in L(G). If the results of Lemma
9 hold for each f,, then it holds for f.

Proof. We first assume that {f,} is an increasing sequence. From
this, it is easy to see that U}? < U}E) for each n. Thus, for 7 > 0, and
for each n, we have

(11.1) N*(r;U)) < N (r;UF).
For 7 > 6 > 0, we have
N*(r; U)(f)) =Nt (r-§+6; U}i) + U](ci)fn)
<NH(r =& UD) + NH ;U5 ).
Hence,
(11.2) N*(rU)) < N*(rUp)) < N¥(r = 8;U )+ N* (5,05, ).

Let )\(")(6, k), k =1,2,..., be the necessarily nonnegative eigenvalues

of U](i) o Applying Mercer’s theorem, we have

NY§U, ) <6 Y A (e k)
A (e,k)>6

<5 lz/\(n(
=4 / —fnl(z /Dsz z)D(e,x—z)dm(x) dm(z)

=5 [ 1)~ ful) dmz) - Dle.0)
=6" lllf—fnllw( (&))-
It follows from (11.2) that
N*(r;U)) < N*(r; Ul
SNF(r=GUE) + 57 If = fally - u(r(e)).



TOEPLITZ OPERATORS 1429

Dividing each part of the last expression by p(m(¢)) and by the fact
that (9.1) holds for each f,, we have

m{z|fu(z) > 7} < lim N*(r;UL)) /u(n(e))

E— 0O

< lim N*(r;U57)/u(n(e))

E— 00

and
m N*(r;Uf7)/u(x(e)) < Tm N* (7 = §;Uf))/u(x(e))

+070 I = falls
<mialfu(@) 27— 0} + 61 [|f = fulh-

Since § is arbitrary and {f,} is monotone increasing by assumption,
we obtain from the last two inequalities,

(11.3) m{z|f(z) > 7} < lim N*(r;U17)/u(r(e))

E— 00

and
m{z|f(z) = 7} > Tm N*(r;U17) /u(n(e)).

A similar argument also shows that

(11.4) m{z|f(z) < -t} < lim N~ (7;U57)/u(n(c))

E— 00

and
m{z|f(x) < —r} > Tm N~ (r;Uf7)/u(x(e))

(11.3) and (11.4) proved Theorem 1 for the case when {f,} is an
increasing sequence converging to f in L!(G). Suppose {f,} is a
decreasing sequence converging to f in L'(G), then {—f,} becomes an
increasing sequence converging to —f. Consequently, this case follows
from previously treated cases.

Lemma 12. Let f be a real-valued function in L*(G). Then formulas
(11.3) and (11.4) hold for f if the sufficient condition of Theorem 1 is
satisfied.
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Proof. Lemma 11 shows that the results hold for a real simple
function. Since the set of real functions of L!(G) is the smallest
monotone class containing all real simple functions in L!(G), our
assertion now follows immediately from Lemma 11. u]

With the following lemma, we will conclude the proof of the sufficient
condition in Theorem 1.

Lemma 13. Under the same assumptions as those in Lemma 12, we
have

lim N*(1,U(7)/u(r(e)) = m{al f(z) € I}.
Provide m{z|f(z) = a} = m{z|f(z) = b} = 0, where I denotes any of
the intervals (a,b),[a,b), (a,b], or [a,b] such that 0 ¢ I.

Proof. Suppose 0 < a < b and choose ¢ so that 0 < § < a. Then
N*a; Uy = N* (b= 5;Uf7) < N((a,b);Uf)
and (e) (e) (e)
N([a,b; UfE ) < N+(a —0; Uf6 ) — N+(b§ Ufs )-

Dividing each part of the last inequalities by p(7(g)) and letting ¢ — oo,
we obtain

lim N (a;Uf)/u(n(e)) = Tim N*(b—&U(7) /()

E—00

< lim N((a,b); US)/u(n(e))

E—00

and

Tm N((a,5;Uf7)/u(x(e))

< T N*(a— §UF) u(r(e) — lim N*(5:U57)/u((e).

g0 E— 00

Thus, from the above inequalities and Lemma 12, we obtain

m{z|f(z) > a} —m{z|f(z) > b— 8} < lim N((a,0);UL")/u(n(e))

E—00
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and

fim N ([a,b;U)/n(r(e)) < mizlf() > a - 6} — m{z|f(z) > b}.

E£— 00

Since § is arbitrary, we find from the last two expressions that

(13.1) m{zla < f(z) < b} < lim N((a,0);Uf")/u(n(c))

E—r 00

and
lim N(a, b): Uf?)/u(n(e)) < m{zla < f(z) < b}.

£— 00

Carrying out a similar argument, as in the case 0 < a < b, we obtain
the same result (13.1) for the case a < b < 0. Note that

N((a,b); U)) < N([a,0); U)) < ([a,8]; US)
and
N((a,);UF) < N((a,0]; US) < N([a,b; UJ).

Assertion now follows immediately from formula (13.1). Therefore, a
proof of sufficient conditions for Theorem 1 is established. i

To complete a proof of Theorem 1, we shall prove its necessary
condition from the following lemma:

Lemma 14. The condition (1.1) of Theorem 1 is necessary.

Proof. For a real valued function f € L'(G), we define a measure
A(f;d)N) by setting A(f, B) = m{z|f(z) € B}, where B is any Borel
set of the real line. Similarly, for each index ¢ € D, we define a measure
A©)(f;d)) by

A (f; B) = {\(e, k) € BY#/n(x(e))

where A(g, k), k = 1,2,..., denotes the set of eigenvalues of U](f). Let
us take f(z) to be the characteristic function Xq of a Borel set © of
finite measure in G. If Theorem 1 is true, then

(14.1) tim [ WA (xgidA) = / N2A (X dN).
€ o0 — 0 — o
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We shall postpone the proof of (14.1) until later. Let us assume the
formula (14.1) holds for the moment. By the definition of A(Xq;d)\),
it is clear that

/ NA(Xq; dA) = / X2 () dm(z) = m(Q).
—0o0 G
Thus, we must have

lim MAG) (xq;d)) = m(Q).

Also

/ AZAG) (xqg;d\) = 1ZA2 (e, k)

where A(e, k), k =1,2,..., are eigenvalues of Ug(;). Consequently,

(14.2) lim g 1ZA2 (e, k) = m(Q).

E— 0O

If the condition (1.1) is not satisfied, then there would exist a compact
set C' and an 1 > 0 such that

Tm u(1® where 1) = L, Q)
(14.3) gLWH(I ) >0, here I —{ eC|1 u(ﬂ_(g))>n}.

We choose, as we may, an {2 such that |Xq(v)|? > a for v € C and for
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some positive number a. It follows from (2.2), (2.3) and (14.3) that

= lim T 2 Q(s,v) v

. H 2 Q(E,I/) v
=t (/\ X2 ey )

2 Q(Ev V)
+ [ M@ d“(”)>

<dim ([ a)Pau)
s [ @R mau))
tin ([ xo0IPau) 1 [ o) du)

=m(Q) — Tim » B} Xa()[* du(v)

£—00 I¢

<m(Q) —na Iim p(I®) < m(Q).
E— 00

This is a contradiction. We return to the proof of formula (14.1). For
each ¢ € D, the measure A(®)(Xq;d)\) clearly satisfies the following
properties:

(i) supp A®)(Xq;d)\) C [0,1].

(ii) A®)(Xq;d)\) converges weakly to A(Xq;d\) = §;(dA\)m(Q) on
[7,1], where n is any positive number and where é;(d\) denotes the
Dirac measure with mass at A =1,

(ili) [5° AAE) (Xq;dA) < m(Q).

From the properties above, we easily conclude that

lim MAE) (xqg;dN) = / MA(xq;d)). o
£—>00 — 0 — 0
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