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p-ADIC INTERPOLATION OF THE
COEFFICIENTS OF HURWITZ SERIES
ATTACHED TO HEIGHT ONE FORMAL GROUPS

C. SNYDER

1. Introduction. In a series of articles [16, 17, 18] we studied
Kummer congruences for the coeflicients of Hurwitz series associated
with a differential on an algebraic curve. Actually, the proper setting
turns out to be Hurwitz series attached to formal groups over integral
rings. (See the definitions below.)

The object of this paper is to partially answer a question posed to
us by J-P. Serre [15] as to whether we could strengthen the Kummer
congruences considered in our earlier papers by using the concept of the
Iwasawa algebra. We accomplish this with the aid of p-adic measure
theory in the case that the formal groups are of height one.

2. Preliminaries. Throughout the paper we let p denote a fixed
prime which, for convenience, we assume to be odd. We let C,, denote
the completion of an algebraic closure of Q,, and O, the ring of integers
of C,. Let K be a finite extension of Q, with ring of integers O

Recall that ZZ; may be written as a direct product ZZ; = V x U
where V' is the group of p-1st roots of unit in 27, and U = 14+pZZ,, the
group of principal units in ZZ;”. Ifx e Z;’j, then we denote by w(z) and
(x) the projections of z onto V and U, respectively. Furthermore, recall
that if u is a topological generator of U, then the mapping 27, — U
given by x — u” is a topological group isomorphism of Z7, with U.

We now summarize some of the standard material on formal groups
which we use in the paper.

Definition. Let A be a commutative ring with 1. Then a (one

parameter) formal group (law) over A is a power series FI(X,Y) €
A[[X, Y]] satisfying:

a) F(X,Y)=X+Y + “higher degree terms”,
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340 C. SNYDER

b) F(F(X,Y),Z)=F(X,F(Y,Z)), (associative law)
c¢) F(X,Y)=F(Y,X), (commutative law)
We sometimes write X +Y for F(X,Y).
F

Examples. 1) Let G,(X,Y) = X +Y, the so-called additive formal
group.

2) Let G (X, Y)=X+Y + XY = (1+ X)(1+Y) —1, the so-called
multiplicative formal group.

3) Let G(X,Y) = (1 — w2X2%Y?)" X\/ — K2Y2) +
Y+/(1 — X?)(1 — k2X2)) where we assume 2 is a nonzero algebraic
number. This is the formal group induced by the addition law of
the Jacobi sinus function sn(w) satisfying the differential equation
Y2 (1 - X%)(1— k%2X?) where X =snu and Y = (d/du)snu. Notice
G. is defined over ZZ[1/2, k2], cf. [3, pp. 216, 217].

Definition. Let A be a characteristic zero integral domain with
quotient field K. Let F' be a formal group over A. Then the formal
logarithm of F is (the unique) power series A(z) € K|[z]] satisfying

a) A(z) = z + “higher degree terms”,
b) AX + Y) = AX)+AY).

(Actually, A(2) = Y e, ek (2¥/k) where e, € A and g1 = 1, cf. [2].)

The formal exponential function of F is (the unique) power series
e(t) € K|[[t]] such that £(t) = A~1(t), the inverse power series of A(t),
e, AMe(t) =t =e(A®)). (e(t) = Xope; ar(t®/k!) where a; € A and

a; = ].)
Remark . Notice e(s +t) = F(e(s),e(t)).

Examples. (1) For G,, M\(z) = z = €(2).
(2) For G, A(2) =log(1+ 2) and () = €' — 1.
(3) For Ge, A(z) = [, (dz/+/(1 — 22)(1 — k222)) and &(t) = sn(t).

Definition. Let F' and G be formal groups over A, a commutative
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ring with 1. Then a homomorphism ¢ over B from F to G, denoted
¢ : F — G, is a power series ¢(z) € BJ[[z]], B an extension ring of A,
satisfying

(a) #(0)=0

(b) (X +Y)=9¢(X)+o(Y).

If  : F — G and ¢(z) = az + “higher degree terms” where o € B?,
the units of B, then ¢ is called an isomorphism over B.

If F = G, then ¢ is called an endomorphism over B. We denote
the homomorphisms over B from F to G by Hompg(F,G) and the
endomorphisms over B by Endg(F).

Remark . If ¢, € Hompg(F,G) and we define (¢ + )(z) by
#(2) —g (z), then ¢ + ¢ € Homp(F,G) and (Homp(F,G),+) is an

abelian group. (Endg(F),+,0) is a ring, cf. [12].

Examples of endomorphisms. Let n € ZZ, n > 0. Define [n]p(z)

as z+...+z. Define [0]p(z) = 0. Let [~1]p(z) denote (the unique)
F F
——v

n-times

power series such that [—1]p(z) + z = 0. Define for n < 0, [n]r(z) as
F
[-1]F(2) + ...+ [-1]F(2). Then [n]p(z) € End4(F). Moreover, if A is
F F

|n|-times
a characteristic zero integral domain with quotient field K so that A(z)
and e(t) exist, then [a]r(z) is defined to be e(aA(z)) where a € K. (If
a € Z, then the two definitions of [a]r coincide.) [a]r(z) may not have
coefficients in A even if a € A, cf. [13].

From now on (to the end of this section) we assume that K is a finite
extension of Q, with ring of integers Ok and that F'is a formal group
defined over Ok. Also, let O, be the ring of integers in C,,.

Remark . Endo,(F) — O, given by ¢ — (linear coefficient of
¢) is an injective ring homomorphism, cf. [12]. If a € Z7,, then
la]r(2) € Endo, (F'), again cf. [12].
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Definition. Let P be the maximal ideal of Ox and k = Ok /P the
residue class field.

If [p]F(2) # 0 mod P, then by [12], [p]r(z) = az?" + “higher degree
terms” mod P where a € O%. We define h to be height of F.

If [p]r(z) = 0 mod P, then we say F' has infinite height.

Example. (1) G, has infinite height.
(2) G, has height one.

(3) Consider G, where x? is p-integral so that we may consider G
defined over Ok for some K a finite extension of Q,. Suppose p does
not divide the discriminant of y? = (1 — X?)(1 — k2X?2). Then G, has
height one or two according to whether ¢, # 0(P) or ¢, = 0(P), cf. [9].

Remark . Suppose F' has finite height. Then the image of Endo, (F)
in O, is “not too big,” namely, Endp,(F) — Opg where E is the
composition of all (finitely many) extensions of Q,, of degree h. In
particular, if o = 1, then Endo, (F) ~ ZZ,, cf. [12].

We shall also use the following well-known result, cf. [12].

Proposition. Let F be a formal group of height one defined over
Ok . Then there exists an isomorphism from F to G,, defined over Or
where T is the maximal unramified extension of K.

3. Kummer congruences and p-adic interpolation of Hurwitz
series. As above, let F' be a formal group defined over Ok, K a
finite extension of Q,. Let A and € denote the formal logarithm and
exponential functions, respectively. Recall that A(z) = > po , ex(2*/k)
where ¢, € Ok and ¢1 = 1. Now let f(z) € Op[[z]]. Then we
define f(e(t)) = Y pryck(t*/k!) to be a Hurwitz series attached to
the formal group F'. For the coefficients of this Hurwitz series, we have
the Kummer congruences:

T

(T r—j — T
Z(—l)” J <]> €y 'Cmij(p-1) =0 mod p"O,

=0

for all positive integers r,m with m > r. This was proved in [18] for
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f(z) = z; but then it holds for all f(z) once we know it for z, [2, p.
299].

As an aside, we should mention that there is another way of obtaining
the coefficients ¢, in the Hurwitz series f(e(¢)). Let D be the invariant
derivation defined by Df(z) = (8/0w)f(z + w)|w=o. Then we claim

F

that D (=(t)) = (d/dt){((t)). For Df(=(t)) = (8/0w) f(£(t) +10) o,

AL () £ eO@))mo = o F(elt + A@))ucy
= F(elt+ M) (¢ + A@DN (@) homo = £/ (£()<'(0)

since A(0) = 0 and X' (0) = 1. Thus, Df(e(t)) = (d/dt)f(e(t)). But
then we have ¢, = DF f(0) without reference to the formal exponential
map.

We now wish to strengthen the Kummer congruences for the sequence
{ck}r. We accomplish this by “twisting” the ¢, to obtain a new
sequence {¢;}; and then by constructing a function c(s) which is p-
adically continuous for all s € ZZ, and such that c(s) agrees with &
on a dense sequence in Z7,. From all of this, we shall then recover our
original Kummer congruences.

Let us now introduce p-adic measures. Let X be a compact totally
disconnected topological space. Denote by M(X,0,) the O,-valued
measures on X [5,11, p. 95, or even 8, p. 36]. (For a very nice account
of why it is desirable to introduce measures, see Katz’s Arcata paper
[5].)

Let X = ZZ, and consider the mapping from M(ZZ,,0,) to Op[[z]]
given by u — f(z2) = fzzp(l + 2)%du(z). By Mabhler’s theorem, cf.
[11, p. 99], this mapping is a bijection. Moreover, if f(e! — 1) =
S reock(t®/k!) so that f(ef — 1) is a Hurwitz series attached to Gy,
the formal multiplicative group, then ¢, = fz,, z® du(zx), cf. [11, p.
104]. Thus, we see that the coefficients of our Hurwitz series are given
as the moments of a measure corresponding to f(z). Our “twisted”
coefficients in this case are given by ¢} = [ z: x* du(z) and the function

c(s) by [,,.(x)* du(x) or more generally by [, (z)*w™(z)du(z) for
p P

any fixed integer m. Notice then (in the latter case) that if £ = m(p—1),

¢, = c(k) so that cj and c(k) agree on a dense subset of ZZ,,.
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In the example above, two questions arise. In the bijection between
measures and power series, why is X = Z7, and how does the integrand,
(1+2)*, arise? We shall try to answer these questions in a more general
situation.

Let F be a formal group over Ox. Let f(z) € O,[[z]] and
f(e(t)) = Yopeyce(th/k!) a Hurwitz series attached to F. Suppose
that there is an O,-valued measure ;1 defined in some space A such
that ¢y = [, ¥ du(x). Then we must have f(e(t)) = Y po ck(t*/k!) =
N0 Ly 2 du(@) (k) = [ Y3 o* (¢4/4) dp(@) = [ exp(at) du(e).

If we set t = A(z), we obtain

f(2) = /A exp(A(2)) du(a).

It seems natural to take A = {z € C, : exp(zA(z)) € Op[[z]]} so
that the coefficients of the powers of z in exp(zA(z)) are O,-valued
functions of z. Notice then that if z,y € A and a € Z7,, then
z+y,ax € A so that A is a ZZ,-module. Let us denote exp(zA(z)) by
¥z (2). Then v, (z) satisfies the properties 1,(0) = 1 (since A(0) = 0)
and 9, (z —}; w) = Y (2)Y, (w) (since A(z —IL— w) = A(z) + A(w)). By [5],
{¥(2) : © € A} is the so-called p-divisible dual of F' and is isomorphic
to A as a ZZ,-module. Then it is known that A is a free ZZ,-module of
rank h where h is the height of F' which we assume to be finite, cf. [19].
As an example, let F' = G,,. Then 9,(z) = exp(zlog(l+2z)) = (1+2)*.
Furthermore, A = {x € C, : (14 2)* € Op[[2]]}. We claim A = Z7,,.
For let ¢, (z) = (1 + 2)* — 1. Then ¢,(2) is an endomorphism of G,,
over Op. But G, has height one and thus since Endo, (Gr,) ~ ZZ),
x € ZZ,. This answers the two questions previously posed.

As a less standard example assume F' = G,. Then ¢,(z) = exp(z=z)
since \(z) = z. Moreover, A = {z € C, : exp(zz) € Op|[[z]]} = M/P~1
where M is the maximal ideal of O, cf. [20]. Notice then that A is
“very large” as a ZZ,-module compared with the previous example.

We now consider the case where the Hurwitz series are attached to
a formal group F' of height one. Then there exists an isomorphism
g : F — G, over Or, the ring of integers of the completion of the
maximal unramified extension, T, of K, i.e., g(z) € Or[[2]] such that

g(z;:w) =g(2) Gj;g(w)
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and
9(z) = vz + O(2%)

for some unit v in O, see section 2 above.

We now want to determine A. But first we claim that the formal

logarithm A(z) = 4 'log(1 + g(z)). For notice that A o g~! is a

homomorphism from G,, to G,. But the only such homomorphisms
are of the form alog(l + z) for some constant «, [12, p. 31]. A
comparison of the linear coefficients in A o g7!(z) and alog(1l + 2)
shows that @ = 7! as desired. Now, for 4, A = {z € C, :
exp(z - M) € Opllell} = {z € Cp : explzr 'log(l + g(=)))} =

{y7 € Cp : exp(ylog(l +2)) € Opllg H(2)]] = Opllz]l} = Z
Thus, given a measure, i, on A We can associate with p the power

series f(z) = [, ,yexp(m)\( z))du(z) = [ (1+ g(2))" du(yx). This
assoc1at10n gives a bijection between M(Zp’y, O,) and Op[[#]].

We are now ready to develop p-adic interpolation associated with the
coefficients of f(g(t)) = > pe ck(t*/k!). Then we have f(z fz (1+
9(2))* dji(x) where i = po~y, u as above. Then ¢ = fzz ,ym d/J,( )=
fzzp(’yac)kdﬁ(ac). Let ¢, = 'y’kck. Then Ek fzz z* dji(x)
Also let ¢ = fz; zF dji(x) and let ¢ fzz* )du( ) for
some fixed integer m. Then c¢(s) is meamngful for all s in ZZ,
and c¢(k) = & for all kK = mmod (p — 1). We now wish to see
how c(k) and ¢ are related to the original c;. To this end, we
need to see what power series is associated with fi| 7z, the restric-
tion of f to Z;. If Xz denotes the characteristic function of
77, then we have XZ*( ) = 1 = (1/p) Xoeoe 1(”” for all z € ZZ,.

Thus fz* Yo (2 fzz XZZ*( ) dit = fz Pa(2)(1 -
1/p>2:C7) dis(z fz ¢z z) ﬂ( _1/p2¢fzz %/)z (””d,u( ) BUt
we clalmthat fz W ( ) dii(z) = f(z+97*(¢-1)), for fz Ve (z
fzz (14 9(=))* dix) = fzz (1+(g(2) + (C D))" dji(z ):
fzz 9(2) +g(g7H(¢ = 1) 4 —fzz +92+g (=
1)))* dp( ) = f(z—lL—g_l(C 1)), as desired. Putting this all together,
we see fzz;; Yu(2) dji(x) = f(2) = 1/p > fz+g (¢ — 1))
For each p'" root of unity, ¢, define ¢ (¢) (k > 0) by Yo ek () (E*/k!)
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= fle®) £ 97H(¢ — 1) and ¢ by FZo (/K = fle(t)) -
1/pX¢ F(e(®) £+ 971(¢ = 1)); thus, ¢ = ex = 1/p3 ¢ ci((). Notice
that if ( =1, then cx(¢) = cx, since g71(0) =0 and z —}7— 0 = z (which
follows from the definition of a formal group).

We shall now relate [,,.(z)*w™ () dfi(z) to the cx(¢). To this end,
since 27 =UpncynU, we have fzz; (z)kw™ (z) dp(z) =X, fnU<x>kwm (z)-

= [, 2" dB(z) where g = >, "Rz o n. We claim that
fzz d)z( ) dB(z) = 1/P2<p 167 Znevn (P rlz 4971 (¢ 1))
where [n]p(z) denotes the unique endomorphism of F with linear

coefficients 7, cf. our preliminaries. To see this, first notice that if
[, ¥a(2) du(x) = f(Z), then [, ¥o(2)du(nz) = f(In ']r(2)); for
Yy-10(2) = (ww( )) = Ya(In™]r (@) so that [, vu(2)du(nz) =
Sz, Y ( = [z, V(17 r(2)) dp(z) = £ e (2)). Also
if [ a(2 ( ) f(2), then [y, vu(2) du(@) = 1/p 3oy 1 (2 £

g ¢ - 1)), for Xy (z) = 1/p3X2, ¢7'¢" so the argument is similar to
the one we used before for X z;- Thus, we get
@)

/wz ) dBlo (@ /wz (Zn pon|
=—Z<12an ez 497 (¢ 1)

neV

as we wished.

Notice that V = {w™!(a) : @ = 1,...,p — 1}. Using this representa-
tion for V and letting z = ¢(¢), the right-hand side of the last equation
becomes

% Y w @) fe(wla)t) + g (¢t — 1)
(pP=1 a=1
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Therefore,

[ @@ dne) =1 3 ¢ 1Y alc)

» ¢r=1 a=1

Notice that when k = m mod (p — 1), we get

p—1
/ P die) = = 3¢S a(e)
» p ¢ a=1
p—1_ 1 pd
=&+ -y MY &)
p p ¢#1 a=1
=Ck — lék + lZ%(C)ZCJ
b P (71
=Ck — %Zék(C)
—a

which is as it should be.

We now show that fzz; (x)sw™(z) dip(z) (s € ZZp) is an element
of the Iwasawa algebra, cf. [14, p. 235-244]. From this, we obtain
rather strong congruences for subsequences of {¢j}r. At this point,
we have fzz; (z)*w™(z) dii(x) = [, x*dB(z). Let u be a topological
generator for U; then [, z°dB(x) = [, u¥*dB(uw’). Let G(z) =
fzp ¥y (2) dB(uY). Then notice that if we let 1 +9(z) = u®, we get z =
g (u® —1). Therefore, fzp w?*dB(u¥) = G(g t(u®* —1)) = H(u®* — 1)
where H(z) = G(97'(2)) € Op[[z]]. Thus, [,,.(x)*w™(z)di(z) is in
the Iwasawa algebra. In particular, by Serre [14, p. 243], the sequence
{&h1jp-1)}520 satisfies
Z(—l)r_j <;> Crtj(p—1) = 0 mod p" Oy (r,m >0)

and

chrémﬂ-(p_l)p*j = 0 mod r!O,, (r>1)

i=1
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where
. , Y
ZCJTY] = r!( >
i=1 !
and where
k Ik
Ok =D (-1 ( .>5;;j'
=0 J

(Actually these congruences follow easily from the fact that [;; z* d3(z)
= ¢;.)

We now want to recover our original Kummer congruences for
{cx}r- So in our equation f(e(t)) — 1/pX ¢ f(=() + 97(C = 1)) =
> reo Ck(t*/k!) make a change of variable t — v~ 1t to obtain f(e(y~*(t))
—1/p>c fle(v™1) +g_1( 1)) = Y pe, Gr(th/K!). We consider the

left-hand side. Flrst notice that since A\(z) = y~!log(l + g(2)), we get
by inverting £(t) = A~1(t) = g7 (e?*—1). Hence, e(y~1t) = g~ 1(ef-1).
Also, let fog™' = h and notice that h(z) € O,][[2]]. Then the left-hand
side becomes

fl7 e = 1) = S H e = 1) a7 (- 1)
¢
—HME 1) = S f M = 1) + (¢ 1)
D c Gm

— h(et— 1) — %Zh(get ~1).
¢

We now claim that 1/p3°. h(¢e' — 1) = > o ek (th/k!) where e =
0 mod p*O,. To see this, let h(2) = > o2, dyz” (d, € O,). Then

—Zh et —1) Zd et — 1)
—;,,z_odu(z><—1>"-“;<“e“

u=0

=2 A X () e = Sty

plu



p-adic INTERPOLATION 349

with €, € Op.

By all our previous considerations, we have

- r—i (T =
0=> (-1 J<j>cm+j(p—1>
j=0
Ny gy (T Emtie=D N~ gy (7
- -ZOH) J(j) ymie=1) ZOH) ] (z) crie=
j= j=
_ : r—i [T\ Cm+ji(p—1) T

=0

for all » > m. Multiplying this congruence by the unit v™+" =1 we
obtain

ad T dr—i .
>0 (1) 0P s = 0mod 70,

for all » > m.

Finally, we claim v*~! = £, mod pO,. One way to see this is to
differentiate A\(z) = v !log(l + g(z)) p times with respect to z and
set 2 = 0. Then A\P)(2) = 30 (k+1)...(k+p — Legypz®. So
AP)(0) = (p — 1)!ep, = —¢, mod p. On the other hand, by [17, p. 6],

(di)p (v Llog(1 + g(2)))

_~—1 -
g @O+ 19" () mod 2Oy a1

Thus,

d p
() (7101 + ge)lmn =~ mod 40,

Therefore, €, = 47~ mod p.

This implies that in the Kummer congruences above, we may replace
4P~! by ¢, and still retain valid congruences, cf., e.g., [9].
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In the case that the formal group has height greater than 1, two
difficulties arise: Determining the exact structure of A, or, equivalently,
the p-divisible dual of the formal group and, secondly, determining the
image of the map M(A,O,) — Op[z] which is no longer onto. For
partial results, see [6, 7]. Also, see Andrew Baker’s article [1], which
contains some rather extensive extensions of [6, 7].
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