ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 23, Number 1, Winter 1993

EQUIVALENCE THEOREMS

PAUL HILL

1. Introduction. This is a revised and slightly expanded version of
a lecture given at the workshop on abelian groups held at the University
of Connecticut in October 1989. The lecture was actually a general
departmental colloquium held during the workshop, and therefore the
exposition is as nontechnical as possible. Because it is intended for a
more general audience, this paper is more basic and perhaps a little
less formal than most publications.

To begin, I would like to ask my audience and readers, in order to
be properly motivated, to accept principally the premise set forth in
the following quotation from Thomas Hungerford’s Algebra. “Ideally
the goal in studying groups is to classify all groups up to isomorphism,
which in practice means finding necessary and sufficient conditions for
two groups to be isomorphic.”

If the above level of achievement is thought of as the pinnacle of
the theory of groups, there certainly are many other high points of
interest that surround and support the pinnacle. The whole mass,
as it were from the foot of the mountain to the top, dealing directly
with the question of when two groups are isomorphic or are related in
some weaker sense is known as structure theory. This is the oldest
and most settled side of the mountain (of abelian group theory),
particularly for torsion groups. The other (some say softer) side of the
mountain is the homological face, which was first explored seriously by
D. Harrison [11] in 1959; it should be understood that we are going to
be dealing exclusively with abelian groups. However, before we decree
that all groups are abelian, let us mention in passing that although
the strategies and techniques employed by abelian group theorists and
nonabelian group theorists are quite different, the two camps share the
common goal, if on different paths, of reaching the pinnacle identified
above. Consider, for example, the effort in the 60’s and 70’s to classify
finite groups.
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Henceforth, all groups discussed here are abelian and are written
additively. Finite groups were classified over a hundred years ago, and
H. Priifer laid a large part of the foundation of the structure theory of
infinite abelian groups in the 1920’s. But it was H. Ulm and L. Zippin
who first reached the mountain’s pinnacle (for countable p-groups) in
the 1930’s; see, for example, [8].

Typically, we try to show that two groups are isomorphic if and only
if they have certain numerical invariants that agree. It should be noted
here that we are heavily indebted to I. Kaplansky and G. Mackey for
identifying and mapping out this route. Not only did they reach Ulm’s
theorem in a straight way, but nearly all who have journeyed after them
toward the classification problem have followed this path—at least for
a portion of the way. Indeed, current standards for the classification of
groups virtually insist on numerical invariants [16].

What are these numerical invariants and how do we find them? It
is, it seems, almost a characteristic feature of abelian groups that they
possess or produce a large variety of vector spaces over the various
prime fields, and these spaces in many cases are hereditarily linked to
the sustaining group (in the sense that they retain or reveal structural
characteristics). Principally for the benefit of the nonspecialist, in the
next section we identify some of the vector spaces derived from an
abelian group.

2. Numerical invariants. Let p denote a prime. Then p and
its powers operate on the abelian group G in an obvious and natural
way. Indeed, the set pG = {pz : = € G} is a subgroup, and we can
extend even to transfinite powers by the identities p**'G = p(p*G) and
PG = Na<g P*G when (3 is a limit. In contrast to pG, we define the
dual G[p] = {z € G : pz = 0}. Note that p*G|p|, which always means
(p*G)I[p], is a vector space over the prime field of characteristic p. The
cardinal number §, = dim (p®G|[p]/p*+1Gp]) is known as the a*® Ulm
invariant of a p-group G, but it would probably be more accurate to
call it the a'" Kaplansky-Mackey number. At any rate, these numbers
uniquely determine not only countable p-groups, but this same pinnacle
of success for the isomorphism problem has been reached for a much
wider class of p-groups known as simply presented groups. A group is
simply presented if it can be presented with generators and relations
with each relation involving at most two generators. Recognition of
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the fact that the numerical invariants dim (p*G/[p]/p*** G|[p]) singularly
determine such a wide class of p-groups seems to invite the following
philosophical question.

Problem 1. Do all the vector spaces that descend from the group G
determine it? In other words, if the dimensions of all the corresponding
vector spaces of G and G’ always match, must G and G’ be isomorphic?

A more practical problem than the one stated above is that of
identifying important vector-space descendants of GG, that is, of finding
those vector spaces associated with G that collectively codify all or
a significant part of the structure of G. Aside from the Ulm spaces
p*G|p]/p*T1G|p], we refer to [15] for a description of additional spaces
that determine a class of p-groups more general than simply presented
groups. It should be pointed out that vector spaces associated not with
G alone but with G and a fixed subgroup H of G are sometimes useful.
Indeed, these relative invariants were essential in the proof that the
Ulm invariants determine simply presented groups. To be specific, the
a'™ Ulm invariant of G relative to H is

dim (p*Glpl/p*Glp] N (p* T Glp] + H)).

Obviously, some of the vector spaces associated with a group G give
only minimal information about the group, for example, G/pG or G[p].
It should also be noted that, with the exception of G/pG, none of
the preceding vector spaces reveals anything at all about a torsion-free
group.

We shall now try to identify some vector spaces associated with
torsion-free groups that are relevant to the structure of the group.
First, however, we need a little more notation. For a prime p, we
write |z, = a if z € p*G\p**' G} in case the containing group G is not
clear from the context, we use the notation |z|$. The sequence {|z|,}
where p ranges over the set P of all primes (written in ascending order)
will be denoted simply by |z| (or by |z|® if necessary for clarity). A
function s from P to the set of nonnegative integers with co adjointed
is called a height sequence. A prime p, and by induction any positive
integer n, operates on s in a natural way: only one term is changed
and it is increased by 1. For a height sequence s = {s,}, we define as
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usual two invariant subgroups of G as follows:
G(s) ={x € G:|z|, > s, for each prime p},

and

G(s") = (x € G(s) : Y (|zp| = s,) = 00).

pEP

Vector spaces of interest for a torsion-free group G certainly include
G(s)/G(ps) and G ® Q. One might say, however, that these spaces
go about as far in uniquely determining a group as age and gender
go in determining the identity of a person. Other, perhaps more
sensitive, invariants include (the dimensions of) the vector spaces
G(3)/(G(ps) + G(s*)) and G(s)/G(s*) ® Q. I suspect that there is
much fruitful work that can be done in discovering important vector
spaces associated with torsion-free groups. Not forgetting the history
of torsion groups, I suggest also that relative spaces should not be
overlooked. One useful relative space seems to be the following. If H
is a subgroup of G, for a height sequence s and a prime p, define

Vip = (HNG(s) + G(s7) + G(ps))/(G(s") + G(ps)).

The dimension of V; , is denoted by Js 5.

We have barely tapped the large pool of vector spaces associated
with a group G. For more examples (in the torsion-free case) and for
a discussion of what are “good” invariants, see the paper by D. Arnold

[1].

3. Structure versus relative structure. We have been consider-
ing the problem of determining when two groups are isomorphic (via
numerical invariants) and have set this determination as our highest
goal. Let us now refine this problem and consider when two subgroups
are equivalent—equivalent not just as groups but as subgroups.

Definition 1. Two subgroups H and H' of a group G are equivalent
if there is an automorphism of G that maps H onto H'.

Our primary interest, in this section, is the following equivalence
problem.
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Problem 2 (Baer-Fuchs). Find necessary and sufficient conditions
for two subgroups H and H' of G to be equivalent.

Remark . The preceding problem restricted to p-groups is Problem
52 in [6], which is credited to Baer.

In the more general context of sets, the above problem has a simple
solution:

(1) H~H
and
(2) G/H = G/H'.

(Notice that we have, for the convenience of uniformity, used the nota-
tion G/H to denote the complement of H in G when the equivalence
problem is considered in the category of sets—a singular occurrence.)
The simple solution to the Baer-Fuchs problem given by conditions (1)
and (2) is also valid for vector spaces and even for cyclic groups, but
certainly not for groups in general. There is already a counter-example
in a finite group of order 64 (or of order p® for an arbitrary prime p).
To see this, let
G = (a) ® (b) @ (c),

where a has order 8, b has order 4, and ¢ has order 2. Consider
H = (2a + ¢) ® (2b) and H' = (2a) ® (c). It is easy to verify that
conditions (1) and (2) are satisfied, but H and H' are not equivalent
subgroups of G.

In the context where the isomorphism problem is the ultimate objec-
tive, one might criticize the attention given to the equivalence problem
at this time as being a diversion, but such criticism is not justified.
Indeed, we intend to use equivalences, in certain instances, to solve the
isomorphism problem. However, it would be appropriate to insert an
additional clause in the Baer-Fuchs problem.

Problem 3. Solve the Baer-Fuchs problem without assuming a
priori that H and H' are isomorphic.

To be specific and to relate to a well-known class of groups, we
remark that the isomorphism problem for Warfield’s S-groups (or
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more generally for the A-groups classified in [15]) can be solved most
efficiently with an appropriate equivalence theorem. This phenomenon
has set the trend for more far-reaching results on the isomorphism
problem, some of which will be described in more detail later. Let us
turn first, however, to some other applications or benefits of equivalence
theorems.

The Baer-Fuchs problem in particular and relative structure in gen-
eral illuminate what I consider to be some misconceptions. I will briefly
discuss two of these.

Misconception 1. Everything is known about countable torsion
groups.

We could make our point more dramatic by claiming that, in fact,
not everything is known about finite (abelian) groups! Consider, for
example, the Baer-Fuchs problem. One could argue, of course, that two
subgroups H and H' of the finite group G are equivalent if and only
if they are isomorphic as valuated groups, but this is simply to answer
a question with one. When are two finite valuated groups isomorphic?
In regard to the latter, we rest on the authority of Hunter, Richman,
and Walker [27]: “The study of finite valuated groups ... is only in its
initial stages.”

I have chosen the familiar and historic ground of finite groups to
distinguish as clearly as possible the difference between structure and
relative structure. Relative structure encompasses structure but not
the other way around. There have been two major approaches toward
relative structure, manifested by valuated groups on one hand and
equivalence theorems on the other. The main distinction between the
two approaches, at least in intuitive terms, is that in valuated groups
the containing group is only present in spirit, while for equivalence
theorems it is present in the flesh. Incidentally, valuated groups
being more flexible and general would seem destined to play a more
important role, but equivalence theorems probably because they are
more concrete, if ad hoc, have certainly up to now had a larger direct
impact on structure theory.

Now let me mention another misconception (perhaps more controver-
sial than the first).
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Misconception 2. Ext (B, A) represents the extensions of A by B.

Let p denote an odd prime and let C'(n) denote the cyclic group of
order n. Suppose that A = C(p) = B. The fact that Ext (B, A) = C(p)
would suggest that there are p different extensions of C'(p) by C(p). But
this is wrong. In no real sense are there but two. The explanation, of
course, if that there are p — 1 artificial distinctions of the extension

0— C(p) = C(»*) = C(p) = 0

associated with the automorphisms of C'(p). Before I go any further,
let me hasten to add that I am not suggesting that the definition of
Ext (B, A) should be changed. There are too many advantages that
accrue to the artificial distinctions (like those mentioned above) that
result from the narrow concept of the equality of extensions that has
been used from the beginning. Not the least of these advantages
is that Ext (B, A) becomes a group in a natural way and fits into
the homological scheme. What then? IfI am not suggesting that
Ext (B, A) be modified, what is the point? Simply that Ext (B, A)
should not be misinterpreted. Maybe I could best illustrate my point
this way. Recall in the introduction when we referred to the structure
side of the mountain and the homological face as the “other side.” In
this context, there is an amusing irony. The structure of Ext (B, A)
is not of much interest to the people on the “structure” side of the
mountain. To be sure, they are keenly interested in whether Ext (B, A)
is vital or vanishes but are not (or should not be) obsessed with its
size or structure. Basically, the point we are trying to make here
is that there is merit in considering again an old problem. How
many nonisomorphic extensions of A by B are there? Actually, a
better question probably is: after the subgroup A is identified, how
many nonisomorphic extensions are there? This question is directly
associated with the “equivalence” diagram:

L]

We mention [3] as an example of a recent solution to the former
problem in a special case.
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4. Equivalence theory: The initial phase. First, I will make a
few remarks about the early history of equivalence theorems and about
my own modest contribution to that theory with a brief indication of
how my interest evolved in taking this approach to the isomorphism
problem. The concept of two subgroups being equivalent is primitive
and has been around for a long time, and the idea is in no way
restricted to abelian group theory. (Sylow’s Second Theorem is a
special kind of equivalence theorem.) Nevertheless, until fairly recently
there were only a few equivalence theorems in the literature. This may
prove embarrassing, but the only equivalence theorem that I recall off-
hand from the standard sources is a theorem of J. Erdés concerning
subgroups of free groups.

Theorem (Erdés). Suppose that F is a free group and that K and
L are pure subgroups of F. Then K and L are equivalent subgroups of
F if and only if:

(i) rank (K) =rank (L) and
(i) F/K = F/L.

Erdds’ theorem is a beautiful (yet superficial) example of a case where
the equivalent subgroups are not assumed a prior: to be isomorphic. In
other words, his theorem is a solution to Problem 3 for pure subgroups
of free groups. Whether this theorem, however, should be distinguished
as the first equivalence theorem—even for free groups—depends on the
standards for classifying a result as an equivalence theorem. Should we
require that the theorem explicitly refer to a map (through the term
“equivalence” or in some other way), or is it enough for the existence
of the desired map to be a rather immediate consequence of the stated
result? If the latter suffices, the invariant factor theorem for a finitely
generated free group could be considered an equivalence theorem: if
G is a free group of finite rank, then two subgroups H and H' are
equivalent if and only if G/H = G/H'. In any case, we now recognize
the invariant factor theorem as being an equivalence theorem.

Leaving precedent aside, it is of interest to analyze Erdds’ theorem
in a broad context that includes motivation and consequences. As to
the former, there is little, if any, evidence that Erdos was particularly
interested in equivalence theorems, in the sense of relative structure.
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Let us not forget that he proved the above theorem (and related results)
as a means to an end, the end being the structure of torsion-free
groups. Indeed, he was attempting to do nothing less than to reach the
pinnacle in grand style by resolving the isomorphism problem for all
torsion-free groups. The title of his paper indicates that he might have
thought at first that he had succeeded, but it was soon realized that
the isomorphism problem had only been translated to another problem
(concerning the equivalence of infinite matrices) of equal difficulty [6].
Misinterpretations of this kind concerning the classification of groups
make a strong case in favor of using numerical invariants. Although the
preceding equivalence theorem is obviously not strong enough to serve
as a key to the classification (using numerical invariants) of all torsion-
free groups, the theorem does have substance. What the theorem
essentially amounts to is that a torsion-free group A has a unique free
resolution (modulo trivialities): K + F — A. (One of the trivialities
is adding a superfluous summand to both K and F'.) In 1970, 13 years
after Erdos’ theorem appeared, I published in [12] my first equivalence
theorem, which incidentally was of no great consequence; nevertheless,
it was the forerunner of more important results that followed years
later. It is noted that when I proved this theorem I placed emphasis
on the fact that my result meant that the automorphism group of G is
transitive on a certain set of (basic) subgroups of G as if the theorem
had more to do with the structure of the automorphism group of G than
it did with G itself. The opposite view, of course, would ultimately
prevail.

Theorem [12]. Two basic subgroups B and B’ of a countable p-group
G are equivalent if and only if G/B = G/B'.

At about the same time the preceding theorem appeared, D. Tarwater
and E. Walker [31] also published an equivalence theorem about basic
subgroups, an early sign perhaps that equivalence theorems would ac-
cumulate to form a recognized aspect of structure theory. Actually, a
preprint of this paper (minus Walker’s name) had been circulated prior
to my paper. The original version apparently contained a flawed proof,
but nevertheless could be considered the beginning of the equivalence
theory for p-groups. A few years later, Warfield [32] proved a more
substantial equivalence theorem concerning certain subgroups of arbi-
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trary simply presented p-groups. Warfield’s theorem is equivalent to
the following, where a subgroup H of a p-group G is said to be A-dense
in G if H 4+ p*G = G whenever a < A, A being a limit ordinal.

Theorem [32]. Let G be a simply presented p-group of length A, A
a limit ordinal. Let H and K be two \-dense, isotype subgroups of G.
Then H and K are equivalent if and only if G/H = G/K.

In private communications, Warfield later indicated to me an interest
in the equivalence-theorem approach to structure, and he discussed
results of this nature outside of group theory. Unfortunately, after the
result about basic subgroups cited above, I did nothing more worth
mentioning with equivalence theorems until the early 1980’s. In 1981
D. Cutler [5] proved that any two high subgroups of certain groups G
are isomorphic. Recalling my equivalence theorem for basic subgroups
and Warfield’s theorem, I had a hunch that the high subgroups in
Cutler’s theorem might in fact be equivalent, and I proceeded to prove
this conjecture. Recall that H is high in the p-group G if H is maximal
with respect to H N p“G = 0.

Theorem [13]. If G is a p-group and G /p*T1G is simply presented,
then any two high subgroups of G are equivalent.

Notice that the above theorem is a slight variance from the preced-
ing equivalence theorems inasmuch as the containing group G is not
required to be simply presented. It should also be observed that in all
nontrivial cases of all of the above equivalence theorems dealing with
p-groups, the quotient groups with respect to the equivalent subgroups
are divisible as well as isomorphic. Therefore, the next theorem breaks
new ground.

Theorem [14]. If H and K are balanced subgroups of a simply
presented p-group G, then H and K are equivalent if and only if they
have the same Ulm invariants and G/H =~ G/K.

The next theorem essentially encompasses and improves the preced-
ing one.
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Theorem [18]. If H and K are almost balanced subgroups of a simply
presented p-group G, then H and K are equivalent if and only if they
have the same Ulm invariants and G/H = G/K.

Somewhat arbitrarily we call this the end of the initial phase of the
development of an equivalence theory partly because the above was
developed piecemeal whereas the rest is more systematic but mainly
because the next stage will have a direct impact on structure.

5. Equivalence theory: The second phase. Although con-
siderable insight about equivalence theorems for p-groups was gained
during the initial and developmental phase discussed in the preceding
section, it is the next result which is definitive and which has signif-
icant implications for structure. Indeed, the next theorem provides
a solution to the isomorphism problem for a new class of groups. In
order to understand this theorem, one needs to be familiar with the
concept of coset valuation due to Fuchs [9]. If H is a subgroup of the
p-group (or p-local group) G, the coset valuation on G/ H is defined by
lg+ H|| =sup{lg+h|+1:h e H}.

Main Theorem [19]. Let H and H' be isotype subgroups of a simply
presented p-group G. Then H and H' are equivalent in G if and only

if
(1) H and H' have the same Ulm invariants

and

(2) G/H = G/H' as valuated groups (endowed with the coset
valuation).

The time has come for us to discuss how an equivalence theorem is
proved. After all, these automorphisms of G' that map a subgroup H
onto another subgroup H' do not just appear out of thin air. We will
use the preceding theorem as a model on how to prove an equivalence
theorem without really doing so. We might call the following discussion
something like “the generic proof of an equivalence theorem.”

In order to prove an equivalence theorem, we need first and foremost
an Axiom 3 system for G. This is required in order that partial
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automorphisms can be extended. This is why the hypothesis that
the containing group G is simply presented appears so often in the
preceding theorems and, in particular, in the Main Theorem. Next we
need a guide or a plan for the construction of the desired automorphism
beginning at zero and building up to G. Often, and in the case of the
Main Theorem, the guide is a chosen value-preserving isomorphism
¢ : G/H —» G/H'. Tt is perhaps surprising that frequently this can be
carried out regardless of the choice of ¢. In this case, more is proved
than is stated; in particular, when H = H' we conclude that every
automorphism of G/H lifts to an automorphism of G. After selecting
the guide ¢ (or whatever), the rest of the proof consists only of the
usually laborious details relevant to the case at hand (modeled after
my proof of Ulm’s theorem for totally projective p-groups).

One of the most important applications of the Main Theorem is
that it yields necessary and sufficient conditions for two A-groups
(in particular, for two S-groups) to be isomorphic. Therefore, this
particular equivalence theorem provides a way for us to reach the
pinnacle (at which point we can see when two groups are isomorphic)
for a significantly broader class of p-groups than simply presented
groups. For details, we refer to the original paper on A-groups [15],
and we refer to [16] for an expository account of the classification of
A-groups. It might be of sufficient interest to merit our pointing out
that the isomorphism problem for A-groups was first solved without
an equivalence theorem. But before publication, I realized that the
proof could be shortened significantly by utilizing the Main Theorem,
which at that time had just been proved (see [15]). Likewise, the most
efficient way to prove the uniqueness theorem for S-groups is to use
an equivalence theorem. These facts gave not only impetus to proving
equivalence theorems, but also standing to the theory.

Conceptually, there is no mystery as how an equivalence theorem (like
our Main Theorem) once it exists can be used to solve the isomorphism
problem for a class of groups. Suppose that H and H' are groups, not
subgroups, that belong to a certain class and have certain numerical
invariants that agree. We try to embed both H and H' in a common
Axiom 3 group G so that G/H and G/H' are isomorphic as valuated
groups (or at least so that there is an isomorphism between G/H and
G/H' that respects heights in some sense). As we already indicated,
this can be carried out for A-groups and S-groups. Two remarks are
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appropriate here.

Remark 1. In the context of the isomorphism problem, the limitation
of equivalence theorems to (isotype) subgroups of Axiom 3 groups is
not as restrictive, at least at this time, as might first appear. There
are many classes of isotype subgroups of Axiom 3 groups that have not
vet been classified.

Remark 2. Whereas simply presented p-groups have an Axiom 3
characterization, this was not originally the case for simply presented
mixed groups. However, this was achieved later not only for simply
presented groups but also for their summands, which are called Warfield
groups. In [20] and [21], respectively, Axiom 3 characterizations are
given for p-local and global Warfield groups. As we tried to explain then
and as I would like to say again now, these Axiom 3 characterizations
seem to be essential in order to classify isotype subgroups of Warfield
groups. We will soon encounter some of these groups that do not even
have decomposition bases, but yet can be classified.

Although, in a sense, I feel that equivalence theorems hardly get any
better than the Main Theorem stated above, it is true that M. Lane did
a little better. Lane [30] proved the same theorem for p-local balanced
projective groups, where of course the Warfield invariants are added to
condition (1). Notice that [29] provided the crucial Axiom 3 system
for balanced projectives; the rest follows the pattern of [19]. Lane’s
equivalence theorem is the following, which was generalized in [24].

Theorem [30]. Let H and H' be isotype subgroups of a p-local
balanced projective group G. The H and H' are equivalent if and only

if
(i) H and H' have the same Ulm invariants and the same Warfield
invariants, and

(i) G/H = G/H' as valuated groups (endowed with the coset
valuation).

Since equivalence theorems are now considered a primary means for
resolving the isomorphism problem and reaching the pinnacle defined
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in the introduction, it is not surprising that Lane’s enhancement of the
previously stated Main Theorem would lead even to a wider class of
(mixed) groups for which we can determine when two are isomorphic
by comparing numerical invariants. Indeed, this was accomplished in
[26] for a large class of mixed groups, many of which are without
decomposition bases. More precisely, it is shown that a certain set
of numerical invariants (modeled after the invariants of an A-group)
uniquely determine, up to isomorphism, a p-local B-group. Here is the
definition of a B-group in two stages. First, a B-group is a p-local group
that can be expressed as the coproduct (= direct sum) of a balanced
projective group and p-elementary B-groups for various limit ordinals
not cofinal with w. We say that H is a u-elementary B-group if H C G
where G is a reduced p-local balanced projective group of length not
exceeding p and where the following conditions are satisfied:

(a) H is an isotype in G.
(b) p*(G/H)=p*G + H/H for all a < p.
(¢c) G/H is a balanced projective group.

We remark that an A-group is a B-group, so the above theorem ex-
tends the uniqueness theorem of [15]. We believe that we have made
a pretty strong case already in favor of using equivalence theorems to
determine structure. We will next consider torsion-free groups where
some progress has been made dealing with structure via equivalence
theorems but we are hoping to obtain better results as our investiga-
tions continue.

Currently, there is great interest in Butler groups both of finite rank
and infinite rank. The “classical” case is the finite-rank case. A
finite rank Butler group is simply a pure subgroup of a completely
decomposable group of finite rank. Alternately, they can be described
as torsion-free homomorphic images of completely decomposable groups
of finite rank. A completely decomposable group is the traditional name
and description of a torsion-free simply presented group. These groups
have a natural Axiom 3 characterization, but nevertheless have offered
the most resistance to satisfactory equivalence theorems for its isotype
(= pure) subgroups. However, we do have a couple of results, and
we are still working toward more and better results. The first of our
theorems applies only to weakly *-pure subgroups. A pure subgroup
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H of a torsion-free group G is weakly *-pure if

HnN(G(s*)+ G(ps)) = HNG(s*) + HNG(ps).

Theorem [22]. If H and H' are weakly x-pure subgroups of a
completely decomposable group G, then H and H' are equivalent if and
only if

(1) HNG(o)/HNG(c*)®@ Q= H' NG(0)/H' NG(c*) ® Q and

(2) There is an isomorphism ¢ : G/H — G/H' that respects heights.

Recall that a Butler group G is a By-group if G(c*) is always pure,
where G(o*) = (G(s*) : s € o) for any type o. One application of this
equivalence theorem is the following.

Theorem [22]. There is a natural bijection between the isomorphism
classes of By-groups G with prescribed Baer invariants manifested by
A, = G(0)/G(0*) and the equivalence classes of balanced subgroups K
of the fixed group A = ®A, that satisfy K N A(o) = K N A(c™).

The next theorem applies to arbitrary pure subgroups of completely
decomposable groups, not just the weakly *-pure ones. Notice that the
theorem is a kind of reduction theorem to the homogeneous case. Since
the homogeneous case can probably be negotiated, the theorem should
prove to be useful. However, that remains to be seen.

Theorem [25]. Suppose that H and H' are pure subgroups of a
completely decomposable group G. Then H and H' are equivalent if
and only if. there exists a height-respecting isomorphism ¢ from G/H
onto G/H' such that, for each type,

o : Gy /Hy —» GU/H(',
lifts to an automorphism n, : G, — G,, where G, = G(o) +
G(c*)/G(c*), H, = H(0) + G(c*)/G(c*), and ¢, is induced by ¢.

6. Other applications of equivalence theorems. Throughout,
we have emphasized that the strong motivating force for equivalence
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theorems is structure, in particular, the isomorphism problem. And
success has been obtained by solving Problem 3 in a number of in-
stances. There are, however, other applications of equivalence theo-
rems. We want to mention a couple of these here.

The simultaneous decompositions of a group and a subgroup can be
related directly to an equivalence theorem just as Baer [2] related the
decomposition of a countable p-group to Ulm’s theorem. We cite here a
simple result which is a direct consequence of the following equivalence
theorem. Note that the subgroups do not have to be contained in the
same group (as long as the containing groups are isomorphic).

Theorem. Let C' and C' be direct sums of cyclic groups (finite or
infinite) with pure subgroups B and B’ respectively. Then there exists
an isomorphism w : C — C’ that maps B onto B’ if and only if B = B’
and C/B=C"/B'.

Corollary 1 [17]. Suppose that C is a direct sum of cyclic groups
and that B is a pure subgroup of C. Then B and C have a common
summand (in the set-theoretic sense) isomorphic to a given group K if
and only if B= K & B’, where

B —(C - A
is a pure revolution of A = C/B and C' is a direct sum of cyclic groups.

The above is only intended to introduce the flavor of simultaneous
decompositions and how they relate to equivalence theorems. For more
substantial results, we refer to [17].

The simplest of all simply presented groups are the free groups. How-
ever, equivalence theorems here are not relevant to structure because
a subgroup of a free group is again free, so the structure of the sub-
group is already known. Nevertheless, equivalence theorems are still
important and have another application in this (from the standpoint
of structure) degenerate case. We want to discuss here an application
of an equivalence theorem dealing with subgroups of free groups to an
old and famous problem of Kaplansky: the stacked bases problem.

Recall that, years ago, Kaplansky [28] raised the following question.
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If
K—F - A

is an arbitrary free resolution of an arbitrary direct sum A of cyclic
groups, must it be the case that F' and K have stacked bases? This
means that we can write F = @&(z;) and K = ®(n;z;) for some ba-
sis {x;} of F and suitable integers n;. Cohen and Gluck [4] provided
an affirmative answer in 1970. We would like to show how the an-
swer follows from the following equivalence theorem, which is a direct
generalization of the first equivalence theorem due to Erdds that was
discussed earlier.

Theorem [23]. Suppose that H and H' are subgroups of a free group
of G. Then H and H' are equivalent if and only if:

(a) dim (H + pG/pG) = dim (H' + G/pG) for every prime p, and
(b) G/H=G/H'.

To get a general idea of how the stacked bases theorem is a conse-
quence of this equivalence theorem, suppose that F' is a free group and
that F/K = A is a direct sum of cyclic groups. If F = ®(z;), it is
apparent that we can choose integers n; so that ®(z;)/ @ (n,z;) = A
because A is a direct sum of cyclics. Now, F/K =2 A = F/H where
H = ®(n;z;). With a little care (see [23] for details) we can arrange
it so that H + pF/pF = K + pF/pF for each prime p. The preceding
equivalence theorem permits us to conclude that H and K are posi-
tioned in F' in precisely the same way—up to an automorphism. Since
F and H have stacked bases by construction, then F' and K must also
have stacked bases.

Remark . We feel compelled to make a final comment for the
sake of clarity. From the introduction onward, beginning with the
quotation by Hungerford, we have identified the isomorphism problem
with the classification problem, but there is a distinction at least
for abelian groups. The classification problem requires a solution
to the isomorphism problem (uniqueness theorem) and a companion
existence theorem. In this discussion we have dealt exclusively with
the isomorphism problem, not the classification problem.
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