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BOUNDED ANALYTIC FAMILIES OF
CAUCHY-STIELTJES INTEGRALS

R.A. HIBSCHWEILER AND T.H. MACGREGOR

1. Introduction. Let A= {z€ C:|z| <1} and A = {z: |z| = 1}.
Let M denote the set of (finite) complex-valued Borel measures on A.
For a > 0, let F,, denote the family of functions f having the property
that there exists p € M such that

1
1 = = 4
1) 16) = [ g @)
for |z| < 1. If f € F,, let ||f||F, = inf||n|| where p varies over all
members of M for which (1) holds and where ||u|| denotes the total
variation of . Then F, is a Banach space with respect to this norm and
the usual addition of functions and multiplication by complex numbers.

Properties of F,, were studied in [8] and [5], where the related family
denoted Fy was introduced. A function f € Fy provided that there
exists 1 € M such that

) 10 =10+ [1og (1= ) aute)

for |z| < 1. The family F; has been studied extensively. The survey
article [1] gives a number of references in this area.

A Banach space of analytic functions is defined in this paper for each
real number «. It is shown that when o > 0 the space is equivalent to
Fa. This provides a natural extension of F, for o < 0. The results
obtained also clarify why JFy is an appropriate choice for F, when
a=0.

Let « be a real number. Define the function G, by

(3) Go(z) = Zn("*lz"
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for |z| < 1. Let G, denote the family of functions f having the property
that there exists 4 € M such that

(4) f(z) = £(0) + /A G (22) dp(z)

for |z2| < 1. Let ||f|lg, = |f(0)] + inf||x|| where p varies over all
members of M for which (4) holds. Then G, is a Banach space.

Theorem 1 shows that if o > 0, then f € F, if and only if f € G,,.
Moreover, the two norms are comparable. In the case a = 0 this is
evident since Go(z) = Y.,- ,(1/n)z" = log(1/(1 — z)), and hence (2)
and (4) are the same. As a comparison of (1) and (4), note that (1)
can be written

(5) f(2) = / Fo(22) du(z)

where F,(2) =1/(1 — 2)°.

If Fo(z) = Y00 An(a)z", then Ag(a) = 1 and A,(a) =
ala+1)---(a+n—1)/n! for n = 1,2,.... A function f(z) =
Yoo v an2"(]z| < 1) belongs to F, if and only if there exists yp € M
such that

(6) o = An(0) / " du(x)

for n = 0,1,.... Likewise, f € G, if and only if there exists p € M
such that

(7) an =n*"! /A =" du(z)

forn=1,2,....

It follows from (7) that the Taylor coefficients of a function in G,
satisfy

(8) |an] < 0| |ul]

for n = 1,2,.... In particular, if f € G, and o < 0, then
Yoo olan] < 4+o00. Hence f extends continuously to A. Later some
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additional facts are proved about the boundary behavior of such func-
tions. One of these concerns the smoothness of the derivatives of the
boundary function in terms of Lipschitz conditions. Another concerns
weak LP membership of these derivatives.

Several results about F, obtained earlier are extended to G, for all
real a. This includes the fact that G, is closed under composition with
analytic automorphisms of A. For easy reference, a few facts about F,
are stated below. The proofs are contained in [5, 8].

Theorem A. 1. f € F, if and only if f' € Foy1.
2. If0<a<p, then Fo C Fg.

3. If ¢ is an analytic automorphism of A and f € F,, then the
composition fop € Fy.

This paper also contains results on sequence multipliers of the space
G into G or into I? for 0 < p < 4o0.

2. Comparison of 7, and G,. Our comparison of 7, and G, for
a > 0 is based on Lemma 2 which appears below. This lemma shows
that the sequence {A,(a)/n® '} has an asymptotic expansion. This
is more than needed to make the comparison which only uses the first
two terms in the expansion. Two facts about the gamma function
I’ are required, and they are stated first. The proofs are given in
[2, pp. 209, 211, 223].

For all complex numbers z, except the nonpositive integers,
(z = 1)I'(z — 1) = I'(2), and hence

, ke
() L e pooragy puy peprmyrpg ¥

The following asymptotic expansion holds
(10) (2m) V27220 (2) & 1 + Z ay/ 2"
k=1

as |z| = 400 and |argz| < m—¢ for each e (0 < & < 7).
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Lemma 1. Let n be a positive integer and let o be a complexr number
such that « #0,—1,-2,.... Then

(11) (n+1I'(n+ @) = A, (a)l'(a)T(n + 2).

Proof. Let n and « satisfy the stated conditions. In (9) let z = n+a,
z=o and z =n + 2. Hence

I'(n+ )
I'(o)'(n+2)

lim{ 1 a(a+1)---(a+k—1)(n+2)(n+3)---(n+k+1)}
k—oo | k- k! (n+a)(n+a+l)---(n+a+k-—1)
 Ap(a) 1 (a+n)(a+n+l)---(a+k—1)
on+1 klggo{k-k! (n+a)(n+a+l)--- (n+a+k—1) -(n+k+1)!}
_ Ay(a) im{ 1 (n+k+1)! }
 n+1 koo kK (E+a)k+a+1) - (k+a+n—1)
~ Ay(a) I (n+k+1)!
T ntl ;Hoo{k-k! ke }
~ Ag(a) " {(k+1)(k+2)---(k+n+l)}
o n+1 k- kntl
:An(a)

n+1

Lemma 2. For a > 0 the asymptotic expansion

A, (o Sy
(12) @y
k=0

nOL

holds as n — oo and by = 1/T'(«).

Proof. In (10), let z =n + o and z = n + 2. Also note that for any
B, then for large n, 1/(n + B)* = 1/(nk(1 + B/n)k) and 1/(1 + B/n)*
can be expanded in a power series in 1/n. Hence

(13) (2m) 7 2em ¥ (n 4+ )M (n 4 o) & 1 + Z c/n”
k=1
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and

(14) (2m) "1/ 2em 2 (n 4+ 2) " 32 M(n + 2) ~ 1 + Z di/nF
k=1

as n — oo, for suitable sequences {c;} and {di}. Division of (13) by
(14) yields

a2 (M+2)"3/2 T(n+
€

@) -~ S k
(15) (n+ a)n+te=1/2 D(n + 2) ~1+ kzlek/n

as n — 00, for suitable {ey}.

It will be shown that if v, = (n + 2)"*t3/2/(n + a)"** /2, then
(16) Yo = n*"%* {1 + p(1/n)}

where p is a power series which converges in a neighborhood of 0 and
vanishes at 0. The power series expansion of log(1+x) at = 0 implies
that for sufficiently large n,

log v, = (n+ 3/2)[logn + log(1 + 2/n)]
—(n+a—1/2)[logn + log(1 + a/n)]
=2—-a)logn+2—a+4q(1/n)
where ¢ is a power series which vanishes at 0. Exponentiation of this
relation gives (16).
Lemma 1 gives
Ap(a) n+1 1 T(n+a)

(17) ne1 ~ no1D(a)T(n+2)

An asymptotic expansion for I'(n 4+ ) /T'(n + 2) follows from (15) and
(16). Applied to (17) it yields (12) and by = 1/T(«). O

Theorem 1. If a > 0, then f € F, if and only if f € G,. There
is a positive constant C' depending only on o such that if f € F,, then

/O lze < fllg. < ClIfll 7
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Proof. Suppose that f € F, and f(z) = Y .. anz" for |z| < L
There exists p € M such that

(18) an = An(a)/ 2" du(z)
A
forn =0,1,.... Lemma 2 implies that
(19) An(a) = n*7H(1/T(a) + Bn(a))
for n = 1,2,... and there is a positive constant B(«) such that
|B,(a)] < B(a)/n for n = 1,2,.... Forn = 1,2,... let Cp(a) =

By (a) [, " du(z) and define the function g by g(z) = Y277, Cn(a)2"
for |2| < 1. Since |Cy(a)| < [Bn(e)| [l < B(a)llull/n, 32,21 |Cn()]?
< B*(a)||u|]? Y202, 1/n? < +oo. Hence g belongs to the Hardy space
H?2. Since H? C H' C Fy, there exists v € M such that

(20) o(z) = /A L ()

1—2xz

for |z] < 1. This implies that Cp(a) = [, 2™ dv(x) for n = 1,2,....
Thus, (18) and (19) yield

an :na_l<ﬁ/l\x"d,u(x)+/1\w" du(m)) :no‘_l/Ax"d)\(x)

for n = 1,2,... where A\ = (1/T'(a))p + v. Since A € M and
f(z) = f(0) + [, Ga(xz) d\(z), this proves that f € Gq.

Conversely suppose that f € G, and let f(z) = Y .o, a,2" for
|2] < 1. There exists u € M such that

(21) an, = no‘_l/ z" dp(x)
A
forn =1,2,.... Lemma 2 implies that
(22) n®~t = Ap(e)[0() + Dy (a)]
for n = 1,2,... and |D,(a)] < D(a)/n for some positive constant

D(a). For n = 1,2,..., let E,(a) = Dp(a) [, 2" dpu(z) and define
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the function h by h(z) = ¢ En(a)z” for |z] < 1. Then h € H?

n=1

since > o0 | |En(a)? < D*(a )HuH >oo2 1 1/n? < +oo. Hence there
exists v € M such that h(z) = [, 1/ (1 — zz)dv(z) for |z| < 1.
Th1s glves E.(a) = [ Ax d1/ ), and thus (21) and (22) yield a,, =

a) [z" d)\ ) for n = 1,2,... where A\ = ['(a)u +v. Let b =

f(O) —A(A) and let 0 = A+br Where 7 is normalized Lebesgue measure.

Then o€ M and ap, = An(a) [, z"do(z) for n = 0,1,.... Hence

fA (zz) do(z) and therefore f € F,. This proves the first
statement in the theorem.

It remains to verify that the norms are comparable. This will be
done by examining the arguments given above. In the first half of the
argument, the measure v satisfies

1 27 " 1 27 .
2 < . (2
Wil < 5 [ latean < (5 [lae) ao)

<s@(X5) Iul

n=1

1/2

Hence ||)\|\ < (/I ))||p||+\|1/|| < B'(a)||v|| for some constant B’ ().
Also |£(0)| = | [y du(x)| <|lpll- Thus [f(0)] + [|Al] < (1 + B'(e))||pll,
and therefore ||f||g, < (14 B'(«))|/u||. This inequality holds for every
p € M for which (1) holds. Hence ||f||g, < (1 + B'(a))||f||#,.- The
reverse inequality ||f||z, < C||f||g. can be proved in a similar way.
O

3. Properties of the family G,.

Theorem 2. For all real numbers o, f € G, if and only if f' € Gut1.

Proof. Suppose that f € G, and let f(z) = Y . a,2" for |z| < 1.
There exists 4 € M such that a,, = n*~! [, 2" du(z) for n =1,2,....
If f'(z) = Y00 obnz™ for |z| < 1, then b,/n* = (n + 1)apt1/n® =
((n+1)*/n®) [, &" " du(x) for n =1,2,.... This can be written

(23) b /n® = (1+ Bu(a)) /A " ()

where dv(z) = zdp(z) and |B,(a)] < B(a)/n for n = 1,2,...
and B(a) is a positive constant. Let Cp(a) = By(a) [, ™ dv(z) for
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n=1,2,... and let g(z) = ZZOIC()Z for |z| < 1. Then g € H?
and there exists A € M such that Cp(a) = [, 2" d\(z). Thus (23)
yields b, = n® fA z"do(z) forn=1,2,. where o = v+ \. Therefore

f, S ga+1'
Conversely, suppose that f' € Goy1. Let f(z) = Y.~ a,z" and
f'(z) = D207 o bnz™ for |z| < 1. There exists p € M such that bn =

n® [, " du(z) for n = 1,2,..., and hence a, =
((n—1)*/n) [, 2"~ dp(z) for n = 2, 3, ... . This implies that

(24) 4 /noL = (1+Dn(a))/ 2" dv()

A
for n = 2,3,..., where dv(z) = Zd ( ) and \D ( )| < D(a)/n for

some positive constant D(a). Let E,(a) = @) [,z dv(z) for
n = 2,3,. ., and let g(z) = Y .0, En(a)z”. Then g € H? and
hence E, (o) = [, #™ d\(x) for some A € M. Hence (24) yields a,, =

alf:vda (z) forn =2,3,..., where 0 = v+ . Let b = [, xdo(x),
c=a;—bandw=o0+ecr where dr(z) = Zdy(z ) and ¢ is normalized
Lebesgue measure. Then w € M, [, z"dw(z) = [, z"do(z) for
n=23,...,and [, zdw(z) = a;. Hence an—n"‘ ! [, a"dw(z) for
n=1,2,..., and therefore f € G,,. O

The argument given for Theorem 2 also shows that there is a constant
C' depending only on « such that if f € G,, then (1/C)||fllg. <

1" NGasr < Cllfllg.-
Theorem 3. If a < 3, then G, C Gg and G # Gg.

Proof. Suppose that a < 8 and f € G,. Let n be a positive integer
such that o + n > 0. Theorem 2 implies that f(") € Goyn- Since
a+n > 0, Theorem 1 implies that f(™ e Fotn- Statement 2 of
Theorem A yields f(™) e Fp+n. By Theorem 1 this is the same as
f(") € Gg4n and Theorem 2 implies f € Gg. Therefore G, C Gg.

When 0 < o < 3, it is clear that F, # Fg. For example, Fg € Fg
and F3 ¢ F,. Hence the argument given above yields G, # Gs. (In
fact, Gg € Gg and G ¢ G,.) ]

Lemma 3. If g is analytic in A and f € Gy, then gf € Gq.
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Proof. The lemma holds when & > 0 due to [5] and Theorem 1. An
inductive argument is given to treat the case o < 0. For n =1,2,...,
consider the proposition: if g is analyticin A, —n+1 < a < —n+2 and
f € G,, then gf € G,. The first sentence asserts that the proposition
holds when n = 1. Assume that it holds for the positive integer n.
Suppose that g is analytic in A, —n < a < —n+ 1 and f € G,.
Theorem 2 implies that f' € Go41. Since —n+1<a+1< —n+2,
the inductive assumption yields gf’ € Goy1. Theorem 3 implies that
f € Gat1, and because ¢’ is analytic in A, the inductive assumption
gives ¢'f € Got1. Thus, gf'+g'f € Gor1. Thisis the same as h' € Gyyq
where h = gf. Theorem 2 yields h € G,. This completes the induction.
]

A function g is called a multiplier of G, provided that g is analytic in
A and f € G, implies gf € G,. By Lemma 3, every function analytic
in A is a multiplier of G,. For a > 0, the following stronger result is
proved in [6]: If > 0 and g’ € H!, then g is a multiplier of F,.

Suppose that g is a multiplier of G,. Since the constant function
1 € G, for every «, it follows that ¢ = g-1 € G,. In particular, the
Taylor series of a multiplier of G, is absolutely convergent in A when
a < 0. For a > 0, multipliers of F, are bounded in A [4, 6].

Theorem 4. If f € G, and ¢ is an analytic automorphism of A,
then fop € G,.

Proof. Assertion 3 of Theorem A and Theorem 1 imply that this
theorem holds when o > 0. An inductive argument will be given for
a < 0. It is required to show that for n = 1,2,..., the following holds:
if —n+1<a<-n+2, f € G, and ¢ is an analytic automorphism of A,
then f o ¢ € G,. This assertion holds when n = 1 by the first remark.
Assume that it holds for the positive integer n. Let —n < a < —n +1,
f € G,, and let ¢ be an analytic automorphism of A. Theorem 2
implies that f° € G,11, and hence the inductive assumption gives
f'o ¢ € Gay1. The function ¢ has the form p(z) = w(z + ¢)/(1 + (2)
where |w| = 1 and |¢| < 1. In particular, ¢ is analytic in A. Hence
Lemma 3 and f' o p € G, 1 imply that ¢’ - (f' o ¢) € Goy1. This is the
same as ¢’ € Go11 where g = f o 9. Thus Theorem 2 yields g € G,,.
O
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The next two theorems concern the boundary behavior of a function
f € Gu. The first result concerns the smoothness behavior of f(e)
when o < 0.

For 0 < 8 <1 let Ag denote the set of functions F' defined on [0, 27]
which satisfy a Lipschitz condition

(25) |F(61) — F(6s)] < Al6r — 6/°.

Suppose that f is analytic in A. Then f is continuous in A and
f(e®) € Ag if and only if there is a positive constant B such that

(26) |f'(2) < B/(1 = |2])* 7

for |z2] < 1[3, p. 74]. Let A, denote the set of functions F' that are
continuous on [0, 27] and for some A > 0 satisfy

(27) |F(6 + k) — 2F(0) + F(6 — h)| < Ah

for all 6 in [0, 27] and all A > 0. Suppose that f is analytic in A. Then
f is continuous in A and f(e?®) € A, if and only if there is a constant
B > 0 such that

(28) [f"(2)] < B/(1—|2])

for |z| < 1 [3, p. 76].

Theorem 5. Suppose that f € G, and a < 0. If a is not an integer
and n = —[a], then f™=Y is continuous in A and f=1 (') satisfies
a Lipschitz condition of order 1—a+[a]. If a is an integer and a = —n,
then f=1 is continuous in A and F(0) = f Y (e?) satisfies (27).

Proof. Suppose that f € G, and a < 0. Assume that « is not an
integer and let n = —[a]. Let v = a +n and g = f(®~Y. Theorem 2
implies that g € G,_; and ¢’ € G,. Since 0 < v < 1, Theorem 1 implies
that there exists p € M such that

(29) /() = [ 1/0 =) duta)
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for |z| < 1. Hence |¢'(z)] < ||p]l/(1 — |2])Y for |z| < 1. From the
result quoted about (26) this shows that f("~!) is continuous in A
and f("~1)(e") satisfies a Lipschitz condition (25) where f =1 — v =
1—a+ ol

Next assume that o is an integer and let @ = —n and g = f(*~1),
Then g € G_; and ¢’ € G;. Hence by Theorem 1

(30) ') = [ 1/(1~w2) du(a)

for [2] < 1 and p € M. This implies that [¢"(2)| < ||u]|/(1 — |2|) for
|z| < 1. The result quoted about (28) yields f("~1) is continuous in A
and F() = f("~V(e'?) satisfies (27). O

The next theorem concerns weak LP membership of functions in
Go when a < 1. A measurable function F defined on [0,27] is
called weak LP provided that there is a constant A > 0 such that
{6 : |F(0)| > s}| < A/sP for all s > 0. Here |E| denotes the Lebesgue
measure of the set E C [0, 27].

Theorem 6. Suppose that f € G, and o < 1, and let n = [—al].
Then £tV (') is weak LP where p = 1/(a + [—a] + 1).

Proof. Suppose that f € G, and a < 1. Let n=[-a],y=a+n+1
and g = £t where f(©) = f. Theng € Gyand 0 <y <1. Henceg €
F., and therefore g € H? for p < 1/ [8]. Thus g(e'?) = lim,_,;_ g(re'’)
exists for almost all § and defines a measurable function.

First consider the case o = 1, that is, suppose that f € F;. The
fact that f(e'?) is weak L' follows from a theorem of Kolmogorov
about conjugate functions [7, p. 66]. Indeed, the Jordan decomposition
theorem implies that f = a1f1 — asfz + tasfs — iasfs where ax > 0
and Re f(z) > 1/2 for |z| < 1 and f(0) = 1. Kolmogorov’s theorem
implies that Im f; is weak L'. Since Re fr and Im f; are weak L' for
k=1,2,3,4,s0is f.

Next suppose that f € F, and 0 < a < 1. By the Jordan
decomposition theorem it suffices to assume that

(31) f(z) = /A /(1 2)* dy(w)
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for |z| < 1 where p is a probability measure. The function F, is a
convex univalent mapping when 0 < o < 1. Because p is a probability
measure, the convexity and (31) imply that f(A) C F,(A). Indeed,
each probability measure is a weak * limit of convex combinations
of point masses. Hence for each z(|z| < 1), f(2) is a limit of
numbers having the form Z;'l:l tjFo(z;z) where t; > 0, |z;| = 1 and
>iati =1 (n =1,2,...), and such numbers belong to {w : w =
Fy(Q), [¢| < |z|}. Since f(A) C Fy(A) and F,(z) # 0 for |2z| < 1, we
have f(z) # 0 for |2| < 1. Hence h = f/® is analytic in A and satisfies
Reh(z) > 1/2 for |z| < 1. Also h(0) =1 and hence the Riesz-Herglotz

formula gives

(32) h(z) = /A 1/(1 - 22) dv(z)

for |z| < 1 where v is a probability measure. In particular, h € F;. By
the result proved in the case oo = 1, it follows that there is a constant
A > 0 such that |{6 : |h(e??)| > s}| < A/s for every s > 0. This is the
sarjle as [{0: |f(e")| > s*}| < A/s, which implies that f(e*?) is weak
LY/«

Finally consider the case o < 0. Since n = [—a], we have g =
ft) ¢ F, where v = a+n+ 1. Also 0 < v < 1 and hence
the results above apply to g. Therefore f("“‘l)(ew) is weak LP where
p=1/y=1/(a+[-a]+1). O

If f€ F,and 0 < a <1 then f(e) is weak L'/* and hence f(e*)
belongs to L for every p < 1/a [7, p. 65]. Thus Theorem 6 is an
improvement of the result in [8] that f € HP for p < 1/a. Also note
that if f € HP then |f(2)] < A/(1 — [2])"/? for some A > 0 [3, p. 36].
In the opposite direction, there are functions f that are analytic in A
and satisfy |f(z)] < A/(1 — |z])” for |z|] < 1 where ¥ > 0 and A > 0
but belong to no H? class. Hence such a function cannot be weak L?
for any p > 0. Theorems 5 and 6 give independent information about
the boundary behavior of functions in G,.

4. Sequence multipliers. Sequence multipliers of G, into Gg and
of G, into [P will be discussed. The arguments depend on the fact that
members of G, are so directly related to the sequence {n®*~'}. The
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following lemma concerns the case of multipliers of G; into G;. It is
stated in the more convenient form relating to F;.

Lemma 4. Suppose that f, g € F1 and let f(z) = >.." ;a,2™ and
g(z) = D02 o bp2™ for |z| < 1. If h(z) = Yooy anbnz™ for |z] < 1,
then h € F;.

Proof. The Jordan decomposition theorem implies that it suffices to
assume that

(33) 1) = [ 1/~ 22) du(o)
and
(34) g(z):/Al/(l—wz)dy(w)

where p and v are probability measures in M. Hence Re f(z) > 1/2
and Reg(z) > 1/2 for |z| < 1 and f(0) = g(0) = 1.

The conditions on f and g imply that h also satisfies Re h(z) > 1/2
for |z| < 1 and h(0) = 1. It is clear that h(0) = 1. That Reh(z) > 1/2
is a known fact, and the simple argument is included here. Suppose
that 0 < r <1 and 0 <6 <27. Then

1 27

h(r2ei®) = Fre 0= )g(re™?) dg

2 Jo
LT s e e a
27 J, A 1 —zrei@—¢) HAT) pgire =)@

- [z L e e o)

- [ sterte) o)

The last equality follows from Cauchy’s formula. Since Reg(z) >
1/2 for |z| < 1 and p is a probability measure, Reh(r?e??) =
[y Reg(zr?e®) du(z) > [,(1/2) du(z) = 1/2. Therefore Reh(z) > 1/2
for |z| < 1.
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Since h(0) = 1 and Reh(z) > 1/2 for |z| < 1, the Riesz-Herglotz
formula implies there exists a probability measure A € M such that
h(z) = [, 1/(1 — zz) d\(z) for |z| < 1. Therefore h € F;. u]

In terms of the moments of measures, Lemma 4 can be reexpressed
in the following way.

Lemma 5. Suppose that p,v € M and for n = 0,1,..., define
the sequence {cp} by cn = {[, " du(x)}{ [, " dv(x)}. There exists
A € M such that ¢, = [, ™ d\(z) forn =0,1,... .

Theorem 7. A sequence {\,} (n=0,1,...) multiplies G4, into Gga
if and only if there is a measure A\ € M such that

(35) A = P / 2" dA(z)

form=1,2,....

Proof. Suppose that {\,} multiplies G, into Gg. In other words,
if f € Go and f(2) = Yo janz"(]z| < 1) then g € Gz where
g(z) = >0 o Manz". In particular, if f = G, this requires that
h € Gg where h(z) = > 2 A,n® 12", Hence there exists A € M

such that A,n*~! =nP~! [, 2" dA(z) for n = 1,2,... . Therefore (35)
holds.

Conversely, suppose that A € M and let the sequence {\,} be
defined by (35) for n = 1,2,.... Assume that f € G, and let
f(z) = 300 yanz™(|z] < 1). There exists 4 € M such that a, =
ne—1 fA 2" dp(z) for n = 1,2,.... Lemma 5 implies that there exists

v € M such that
Anln = nﬁfl/ " dA\(z) - / " du(z) = nﬁfl/ " dv(x)
A A A

forn=1,2,.... Hence k € Gg where k(z) = Y_° ) Ana,2™. Therefore
{An} multiplies G, into Gg. O

Theorem 7, of course, does not give an intrinsic characterization of
the multipliers of G, into Gg. It shows that such a problem is equivalent
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to the characterization of moment sequences of complex Borel measures
on A.

Theorem 8. For 0 < p < +o00, a sequence {A\,} (n = 0,1,...)
is a multiplier of G, into IP if and only if the sequence {n® 1\,}
(n=1,2,...) belongs to IP.

Proof. Suppose that {\,} is a multiplier of G, into [°°. Since G, € G,
this requires that {\,n*"'} (n = 1,2,...) belongs to [*°. Conversely,
assume that {n®*1\,} (n = 1,2,...) belongs to [°°. Suppose that
f € Ga and f(z) = > 07 yanz"(|z| <1). Then a, = n* ! [, 2™ du(z)
for n = 1,2,... and for some pu € M. Since |a,| < n* H||pu|| and
{n®~1),} is bounded, the sequence {\,a,} is bounded. Therefore
{\n} multiplies G, into [*°.

Let 0 < p < +oo. Suppose that {\,} multiplies G, into [P. Since
Go € G, this implies that {\,n® 1} (n =1,2,...) belongs to [?. Con-
versely, suppose that {n®*~1\,} (n = 1,2,...) belongs to [’. Assume
that f € G, and let f(z) = Yo7 a,2"(|z] < 1). There exists p € M
such that a,, = n®~! [, " du(z) for n =1,2,.... Since {n*~'A,} be-
longs to 7, this implies that > | [Ananl? < [|u|[P Yoo (n* HAn|)P <
+00. Therefore {\,} multiplies G, into IP. O

The sequences {\,} described in Theorems 7 and 8 induce bounded
mappings between the spaces. This is seen from the arguments. It also
follows from the closed graph theorem.
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