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A LITTLE WEDDERBURN PRINCIPAL THEOREM

FRANCIS J. FLANIGAN

ABSTRACT. We point out that, even if A/rad A is insep-
arable, the finite-dimensional algebra (or, more generally, left
Artinian ring) A admits a canonical ideal direct sum decompo-
sition A = A% @ A# such that rad A® = (0), rad A% = rad A,
rad A# is an essential ideal of A#, and A# is unital if and
only if A is unital. This is a consequence of a general and
maximally elementary splitting of an arbitrary ring relative
to a suitable nil ideal. This process of essentializing a nil
ideal is useful in the study of categories of ideal and radical
embeddings.

1. Background. We begin with an associative algebra A, not
necessarily unital, which is finite-dimensional over the field k. Let IV
denote the nilpotent radical rad A of A. Suppose we wish to explore
the interactions of N with other parts of A (the third main problem in
the study of algebras). How might the standard theory guide us?

The celebrated Wedderburn principal theorem [1, Theorem 3.23; 2,
Theorem 72.19; 5, Theorem 11.6] assures us that if the semi-simple k-
algebra A/N is separable, in particular, if the scalar field k is perfect,
then A contains at least one separable subalgebra ( Wedderburn factor)
S such that

(1.1) A=S+N (k-direct sum).

Next, by Wedderburn’s comparatively elementary results on semi-
simple algebras, we have a canonical decomposition of S into two-sided
ideals

S=5S65 (S-direct sum)

provided we define Sy = anng(N) = the two-sided annihilator of
the S-bimodule N. Thus, Sy is either zero or semi-simple and S; =
ann g(Sp) is the unique multiplicatively orthogonal complement of Sy
in S.

Received by the editors on September 4, 1990.
Copyright ©1993 Rocky Mountain Mathematics Consortium

105



106 F.J. FLANIGAN

Pushing further, we note that if 7" is another Wedderburn factor in
A, and if T'= Ty ®T; as above, then in fact Ty = Sy. This follows easily
from the Malcev addendum to the principal theorem, which assures us,
still assuming A/N separable, that any two Wedderburn factors are
conjugate in the strong sense that 7 = (1 + x)S(1 + z)~! for some x
in N. (The 1 here is possibly formal.) Thus we discover that Sy is in
fact a two-sided ideal of the full algebra A (not so in general for S;)
and we thereby arrive at the canonical ideal decomposition

(1.2) A=A A* (A-direct sum)

with A% = S5 and A# = ann 4(A°) = the two-sided annihilator of A°
in A. Thus, A* = (1 —u)A(1 — u), where u is the unity of A° and the
1 is possibly formal.

This decomposition of A illuminates interactions of N with other
parts of A as follows:

i) the ideal A° has zero overlap with N and comprises those
nonradical elements of A which interact trivially with IV;

ii) in contrast, the ideal A* contains N as its radical, just as A
does, but now N is an essential ideal of A%, having nonzero overlap
with every proper ideal of A#. Note also that A* = (0) if and only if
N = (0) and A is unital (cf. the idempotent 1 — u above) if and only
if A is unital. This means, of course, that in studying A as algebra-
with-radical, a good first step is to forget A and focus on A#, thereby
essentializing the radical.

The point of this note is that the canonical decomposition (1.2) is
both more general and more elementary than indicated above: every
finite-dimensional k-algebra A admits a canonical decomposition (1.2)
even if A/N is inseparable and A fails to admit a full Wedderburn
decomposition (1.1). In fact, the same is true if A is merely a left
Artinian ring (Corollary 2.3 below). Both of these assertions are special
cases of a very general statement about arbitrary rings having nil ideals
of suitable type (Theorem 2.1).

Our proof below is, of course, much more elementary than that of the
full Wedderburn principal theorem. In particular, we require no notion
of separability, no conjugacy results, no cohomology, and no facts about
the structure of simple algebras. Some such machinery would surely be
required to lift complete systems of primitive orthogonal idempotents;
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our observation here, stated for A/N, is simply the existence of one
particular idempotent which can always be lifted, easily, uniquely, and
usefully.

Application. The decomposition (1.2) and its generalizations to other
rings are useful in studying categories of embeddings, particularly
radical embeddings, of a given nilpotent N, that is, pairs (A, a) with
a : N - A a monomorphism such that «(N) = rad A [3, 4]. The
procedure of replacing A with A# determines an idempotent functor
on the category of radical embeddings of N. It follows that, over
an arbitrary field of scalars, not necessarily perfect, every radical
embedding (A, @) of N is stably equivalent to one in which the radical
is an essential ideal [3, Section 2]. This in turn yields a canonical form
for equivalent radical embeddings and leads to a proof of the existence
of extreme radical embeddings.

2. Statements. We fix an associative ring R, not necessarily unital,
containing a nil ideal N. Although N need not be an R/N-bimodule
in any natural way (alas!), it is true that the additive group N/N?
becomes an R/N-bimodule if we define, for all ¢ in R and = in N,

(a4 N)(z + N?) = azx + N?

and similarly for R/N acting on the right.

Having this, we denote Q(R; N) = ann g/y(N/N?) = the two-sided
annihilator of the bimodule N/N? in the ring R/N. We will be
interested in ideals @ of R/N which are contained in Q(R; N) and
which are unital as rings. Such an ideal @ will be called an Q(R; N)-
factor. Note that the ideal @ is unital if and only if it is generated by
an idempotent e central in ) (which idempotent is thereby central in
R/N).

We write N*© = miZI Ni.

Theorem. Let R be a ring, not necessarily unital, containing a nil
ideal N with N*° = (0). Let Q be an Q(R; N)-factor of R/N. Then
there exist unique ideals Q™, Q" of R such that

i) R=Q"®Qt,
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ii) Q7 contains N,
iii) the natural map R — R/N induces an isomorphism Q" — Q.

We will prove this in Section 3 below. Meanwhile, observe that if
Q1,Q2 are Q(R; N)-factors with unity elements ej, e, respectively,
then the join @) + Q2 has unity e; — ejes + e2 and therefore is also an
Q(R; N)-factor. Thus, if a maximal Q(R; N)-factor @ exists, then it
must be unique and an invariant of the pair R, N. Putting R°(N) = Q"
and R¥(N) = Q*, we deduce

2.2 Corollary. Let R be a ring, not necessarily unital, containing a
nil ideal N with N> = (0). Suppose R/N contains a mazimal Q(R; N)-
factor. Then there exist unique ideals R°(N), R#(N) of R such that

i) R= R°(N)® R*(N),
ii) R°(N) is a unital ring,
i) R°(N)NN = (0),

)

RY(N) is maximal with respect to i), ii), iii),
v) R#(N) contains N,

vi) if Q(R;N) is a unital ring, then R¥(N) contains N as an
essential ideal.

=H

iii

iv

Finally, we observe that if A = R is left Artinian and N = rad A,
then Q(A4;N) is (0) or a semisimple ideal in A/N. This gives us the
result of the title, as follows.

2.3 Corollary. Let A be a left Artinian ring, not necessarily unital.
Then there exist unique ideals A°, A# in A such that

) A=A @ A*,
ii) rad A° = (0),

iii) A° is mazimal with respect to i) and ii). In particular, rad A =
rad A% is an essential ideal of A¥.
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A consequence of 2.3 is the observation that ann 4(rad A), the two-
sided annihilator of rad A in a left Artinian ring A, decomposes uniquely
as A° @ ann ;4 a(rad A), an A-direct sum. The second summand here
is the self-annihilator of rad A.

3. Proof of Theorem 2.1. Let 7 : R — R/N be the natural
epimorphism, and let e be the unity element of the given Q(R; N)-
factor Q.

(3.1) Claim. We claim there is an idempotent u in R with (u) = e.

Proof of Claim (3.1). We construct u as in the proof [2, p. 160] of
Brauer’s lemma that every nonnilpotent left ideal in a left Artinian ring
contains a nonzero idempotent element. (Curiously enough, Brauer’s
lemma itself is not quite sufficient to prove 2.1, even if R is Artinian.)
Thus, we choose any f in R such that 7(f) = e. Since 7(f?) = e, we
have f2— f =z in N. If z # 0, define f; in R by

fi=f+zx—-2fux.

Note that m(f;) = e also. One checks that, crucially, fZ — f; is of the
form az? = z%a. It follows that, since  is nilpotent, repetitions of this
procedure will eventually construct an idempotent v = f,. as claimed.
O

Note that this part of the proof requires only that N be a nil ideal.
(3.2) Claim. We claim that uN = Nu = (0).

Proof of Claim (3.2). To prove this, note that, for n in N, we have
un+N? = (u+N)(n+N?) = e(n+N?) = 0, since e is in Q C Q(R; N).
Thus, ulN C N2. But u is idempotent. Thus, uN C N fori =1,2,...,
and so uN C N°°, which is zero by hypothesis. The claim follows. a

(3.3) Claim. We claim that u as the unique idempotent of R with
m(u) =e.
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Proof of Claim (3.3). For if v in R has w(v) = e, then v = u+n with
nin N. By (3.2), we have v2 = (u+n)? = u+n?, and this equals u+n
if and only if the nilpotent n = 0. O

(3.4) Claim. We claim that u is central in R.

Proof of Claim (3.4). Let a be in R. Then w(ua — au) = en(a) —
m(a)e = 0, so that ua — au = n in N. Multiplying this by u both on
the left and on the right and applying (3.2) gives both ua — uau = 0
and uvau — au = 0, whence ua = au. u]

(3.5) Note. The rest of the proof is entirely straightforward. We
define Q" = wRu and Q1 = (1 — u)R(1 — u). Here the 1 is possibly
formal. Note that Q" is unique because u is (3.3). Since Q7 is the
orthogonal complement to Q" with respect to the central idempotent
u, the ideal Q7 is also unique. Statements i), ii) and iii) are immediate.
This completes the proof of the theorem. o
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