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INVERSE LIMIT MEANS
AND SOME FUNCTIONAL EQUATIONS

J.J. CHARATONIK

ABSTRACT. Nonexistence of inverse limit means on arc-
like continua whose coordinate means satisfy some functional
equations is demonstrated.

1. Introduction. A mean on a topological Hausdorff space X is a
(continuous) mapping p: X x X — X such that u(z,y) = p(y,x) and
p(x,z) = z whenever z,y € X. Let an inverse sequence {X,, fn} be
given each coordinate space X,, of which admits a mean y,, : X, xX,, —
X, such that for each n € N the functional equation,

(1) fn(ﬁ"n-‘rl(xay)) :P'n(fn(w)afn(y))

holds for all z,y € X,,11. Then the inverse limit space X = lim{X,, f,}
admits a mean g : X x X — X defined by

(2) p({zn} {yn}) = {n(Tn, yn)}

([1, Theorem 1], which is called an inverse limit mean with respect to
the sequence {X,, fn}.

In what follows all mappings are assumed to be continuous. We let
I denote the closed unit interval [0, 1], and let g : I — I stand for the
surjection defined by

o(z) = {2x, if x €10,1/2],

(3) 2 -2z, ifzell/2,1].

The following result is Theorem 4 of [1].
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Theorem 4. (Baker and Wilder). There does not exist any sequence
{pn} of means on I such that, for all n € N and for all z,y € I the
functional equation

(5) 9(pn+1(2,9)) = pn(9(2), 9(y))
holds.

A much stronger version of Theorem 4 is proved in [4, p. 550]. It
reads as follows.

Theorem 6. (Wilder). There exists an integer ng > 3 such that

there does not exist any no-term sequence fi1, fta, . . . , ftn, Of Mmeans on
I such that, for each n € {1,2,... ,nyg — 1}, the functional equation
(5) 9(pns1(2,y)) = pn(9(z), 9(y))

holds for all z,y € I.

The aim of this paper is to prove similar results to that of Theorems
4 and 6 above, with some other mappings in place of g in functional
equation (5). In particular, a countable family of open surjective
mappings on [ is exhibited, each member of which can replace g in
(5) provided the means y,, satisfy some additional conditions.

Two surjective mappings f; : X; — Y7 and f; : Xo — Y5 between
topological spaces are said to be equivalent provided there are homeo-
morphisms hyx : X; — Xz and hy : Y7 — Y5 such that foohx = hyof.

2. The results. The theorem below generalizes, and is an applica-
tion of, Theorem 6 of Wilder.

Theorem 7. Let a mapping f : I — I be such that there are
subintervals [a,b] and [c,d] = f([a,b]) of I and homeomorphisms
(8) hi:I—a,b] and hg:[c,dl —1
which satisfy the condition

9) g =ha o (flla,b]) o hy.
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Then there exists an integer ng > 3 with the property that there does
not exist any no-term sequence (1, [z, . - . , ny Of means on I such that,
for each n € {1,2,... ,n9}, the following conditions are satisfied:

(10)  ha(pn(2,y)) = pn(a(2), Pa(y))  for all z,y € I,

(11) tin([c,d] X [c, d]) C e, d],

(12) ha(pn(z,9)) = pn(ha(z), ha(y)) for all z,y € [c,d],
and that, for each n € {1,2,... ,ny — 1}, the functional equation
(13) flnia(z,y)) = pn(f(2), F(y))

holds for all x,y € I.

(14) Remarks. 1) The existence of homeomorphisms h; and ho
satisfying (9) is another way of asserting that the restriction f|[a,b] :
[a,b] — [c,d] and the mapping g : I — I defined by (3) are equivalent.

2) Condition (11) ensures that the composition hgopu, is well defined.

(15) Proof of Theorem 7. Suppose on the contrary that for every
integer ng > 3 there is an mo-term sequence p1, o, ... , fin, of means
on I such that, for each n € {1,2,...,n¢}, conditions (10)—(13) hold.
To get a contradiction to Theorem 6, it is enough to show that the
assumed conditions imply that the means p,, satisfy functional equation
(5). For shortness, put fo = f|[a, b], take an arbitrary no > 3 as above,
n€{1,2,...,n9— 1} and z,y € I, and observe the following sequence
of equivalences.

9(pnt1(z,y)) = ha(fo(h1(pn+1(z,9)))) by (9)
= ha(fo(pn+1(h1(x), h1(y)))) by (10)
= ha(n(fo(h1(z)), fo(h1(y)))) by (13)
= pin(h2(fo(h1(2))), ha(fo(R1(y)))) by (12)
= pn(9(x),9(y)) by (9).
Thus the proof is complete. O

As a consequence of Theorem 7 we obtain the following result which
corresponds to Theorem 4 above, and which can obviously be proved
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independently from Theorems 6 and 7 using the same sequence of
equivalences to reach a contradiction with Theorem 4.

Theorem 15. Let a mapping f : I — I be such that there are
subintervals [a,b] and [c,d] = f([a,b]) of I and homeomorphisms (8)
which satisfy (9). Then there does not exist any sequence {un} of
means on I satisfying conditions (10)—(12) and such that the functional
equation (13) holds for all z,y € I.

3. Applications. A mapping f : I — [ is said to be open if it maps
open subsets of the domain onto open subsets of the range. Now we
construct a countable family of open mappings of I onto itself. Fix a
positive integer k and define a surjection g : I — I as follows. Let
m € {0,1,...,k}. If m is even, then gx(m/k) = 0; if m is odd, then
gx(m/k) = 1; for each m, the restriction

grllm/k,(m+1)/k] : [m/k,(m+1)/k] = I

is defined to be affine. Thus for each k£ € N the mapping g is an open
surjection. Note that gi(0) = 0 and that g (1) is either 0 or 1 according
to whether k is either even or odd. Observe that g; is the identity and
g2 =g-

Now we apply Theorems 7 and 15 to prove certain versions of
Theorems 6 and 4 in which the function g is replaced by gi for an
arbitrary fixed £ > 2, provided that the means u, satisfy an extra
homogeneity condition. Recall that a mapping p: I x I — I is said to
be homogeneous if, for each t € I, the equality

(16) ultz, ty) = tu(z,y)

holds for every z,y € I.

Theorem 17. Let an integer k > 2 be fized. Then there exists
an integer nyg > 3 with the property that there does not exist any
no-term sequence pi, 42, .- ,ny, Of means on I such that, for each
n € {1,2,...,np}, the equality

(18) pun((2/k)x, (2/k)y) = (2/k)pn (. y)  for allz,y € 1
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holds, and if n # ng, the functional equation

(19) Ik (n+1(2,Y)) = pnlgr(®), 9k (y))

is satisfied for all z,y € I.

Proof. In Theorem 7 put a = 0, b = 2/k, ¢ = 0 and d = 1. Define
hi : I — [a,b] = [0,2/k] by hi(z) = (2/k)z for all z € I and take
he : I — I as the identity, i.e., ho(z) = z for all x € I. We have to
verify that all the assumptions of Theorem 7 are fulfilled. Indeed, (8)
follows by the definitions of h; and hs. It can easily be observed that
92 = (9x|[0,2/k])ohy, whence (9) follows. Further, (10) is an immediate
consequence of the definition of h; and of (18). Since [¢,d] = [0, 1] and
since hq is the identity, conditions (11) and (12) trivially hold. Finally,
(19) leads to (13). Thus, Theorem 7 can be applied, and thereby the
conclusion follows as needed. O

(20) Remark. Note that if k = 2, then the coefficient 2/k equals 1, so
that (18) is redundant. Indeed, if £ = 2, Theorem 17 is identical with
Theorem 6 of Wilder. Thus, the following question is natural.

(21) Question. Is condition (18) on the means p, an essential
assumption in Theorem 17 for k > 27

Since condition (18) is a very particular case of the homogeneity
condition (16) for the means u,, we get the following corollary to
Theorem 17.

Corollary 22. For each integer k > 2 there exists an integer ng > 3
such that there does not exist any ng-term sequence pi, ft2, ... ; fn, Of
homogeneous means on I satisfying, for eachn € {1,2,... ,ng—1} and
x,y € I, the functional equation

(19) Ik (tnt1(2,Y)) = pn(gr (), gr(y))-

In the same way as Theorem 7 leads to Theorem 17 and Corollary 22,
Theorem 15 leads to the next two results which can also be deduced
from Theorem 17 and Corollary 22.
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Theorem 23. Let an integer k > 2 be fixed. Then there does not
exist any sequence {u,} of means on I such that, for alln € N and all
z,y € I, we have

(18) pn((2/k)x, (2/k)y) = (2/k)pn(z,y)
and
(19) Ik (Bn+1(2,9)) = pn(gr(2), 95(y))-

Corollary 24. Let an integer k > 2 be fixred. Then there does not
exist any sequence {u,} of homogeneous means on I such that, for all
n € N, the functional equation

(19) Ik (Bn+1(2,Y)) = pn(gr(2), 9x(y))

holds for all z,y € I.

Recall that a surjective mapping f : I — [ is open if and only if f
is equivalent to g : I — I for some positive integer k (see [3, (1.3),
p. 184]). In the light of this characterization, it is tempting to attain
a much more general result, namely to replace the mapping g in (5) of
Theorems 4 and 6 or the mapping gx in (19) of Theorems 17 and 23 by
an arbitrary open mapping f not being a homeomorphism. In other
words we have the following question.

(25) Question. Is it true that for each open mapping f : I — I
which is not a homeomorphism there exists an integer ny > 3 having
the property that there is no ny-term sequence py, p2, . . . , fin, of means
on I such that, for each n € {1,2,... ,n9 — 1} and for all z,y € I the
functional equation

f(pns1(z,9) = pn(f(2), f(y))
holds?

4. Final conclusions. A continuum (i.e., a compact connected
metric space) X is said to be arclike provided for each positive number
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€ there exists a mapping of X onto an arc such that all the point
inverses have diameters less than . It is well known that every arclike
continuum is homeomorphic to an inverse limit space X = im{X,, f»},
where each coordinate space X, is the unit interval I and each bonding
mapping f, is surjective.

Consider now an arclike continuum X = lim{X,, f,} such that, for
each n € N, we have X,, = I and f,, = gi for some fixed k > 2, and
assume that for each n € N the coordinate mean p,, satisfies condition
(18). Then, by Theorem 23, the functional equation (1) cannot be
satisfied, and we obtain the following result.

Corollary 26. If an arclike continuum X is the inverse limit of an
inverse sequence of closed unit intervals X, = I with bond mappings
fn = gk for some fized integer k > 2, then X does not admit an inverse
limit mean p defined by (2) such that the coordinate means p,, satisfy
condition (18). In particular, X does not admit an inverse limit mean
whose coordinate means are homogeneous.

Let us recall that taking in Theorem 4 a constant sequence of means,
i.e., pp = p for all n € N, it follows (see [1, Corollary 4.2]) that the
functional equation

g(u(z,y)) = n(9(z), 9(y))

has no solution among the means on I. Similarly, Theorem 23 leads to
the following corollary.

Corollary 27. Let an integer k > 2 be fized. Then the functional
equation

(28) gk (u(z,y)) = p(gr(z), 9x(y))

forz,y € I has no solution y among means on I satisfying the condition

(29) w((2/k)x, (2/k)y) = (2/k)p(z,y)

for all z,y € I, thus among homogeneous means on I.
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Remark. The methods presented in this paper can also be applied to
produce a corresponding version of Baker and Wilder’s Theorem 5 of
[1, p. 92]. For details, see [2].
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