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SPECTRAL CONTINUITY IN SOME
BANACH ALGEBRAS

LAURA BURLANDO

ABSTRACT. In a previous paper by the author, a suffi-
cient condition for continuity of the spectral radius function
and two equivalent sufficient conditions for continuity of the
spectrum function at a point of a Banach algebra were given.
In this paper a new sufficient condition (which improves the
one above) for continuity of spectral radius at a point of a Ba-
nach algebra is provided. Moreover, these four conditions are
proved here to be less restrictive than those already known,
not only in the algebra of all linear bounded operators on a
generic Banach space, but also in its quotient algebra modulo
compact operators. The four conditions above are also char-
acterized in the algebras of all linear and continuous operators
on some particular Banach spaces and in their quotient alge-
bras modulo compact operators.

Introduction. Let L be a complex Banach algebra. We set L = L
if L has an identity. If L has no identity, let L denote the Banach
algebra obtained by canonical adjunction of an identity to L. We
consider the problem of continuity of the following two functions on
L: the spectrum function o : L — K¢ (where K¢ denotes the set of
all compact nonempty subsets of the complex plane C, endowed with
the Hausdorff metric, and o(a) denotes the spectrum of a in L for any
a € L) and the spectral radius function r : L — R (where r(a) denotes
the spectral radius of a in L for any a € L).

We recall that ¢ is upper semi-continuous on L, which means that,
for any a € L and for any neighborhood V of o(a), there exists a
neighborhood U of a such that o(b) C V for any b € U (see [19,
(1.6.16)]). Hence r too is upper semi-continuous on L. In general r
and ¢ are not continuous on the whole of L. We remark that if o is
continuous at a point a € L, then also r is continuous at a.

For any Banach space X, let L(X) denote the Banach algebra of all
linear and continuous operators on X, and let Ix denote the identity
of L(X). Moreover, let K(X) denote the ideal of compact operators
on X.
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In the cases of the algebras L(H) and L(H)/K(H), where H is a
separable Hilbert space, the continuity points of the functions r and
o were characterized by J.B. Conway and B.B. Morrel (see [8—10]).
Further characterizations of the continuity points of ¢ in the two
algebras above (for a separable Hilbert space H) are provided in [1].
It is known that the conditions given by Conway and Morrel and by
the authors of [1] are sufficient for continuity of r and o also in the
more general cases of the algebras L(X) and L(X)/K(X), where X
is a Banach space. Nevertheless, as far as we know, the problem of
characterizing the continuity points of spectrum and spectral radius is
still open also in the cases of the algebras L(X) and L(X)/K(X) for
a generic Banach space X, as well as in the more general one of an
abstract Banach algebra.

In our previous papers [3, 4] we prove that the conditions given by
Conway and Morrel and by the authors of [1] are not necessary for
continuity of r and o in L(X) if X is a generic Banach space.

In [3] we give the following sufficient condition for continuity of r at
a point a of a complex Banach algebra L.

Let e denote the identity of L. We define S(a) ={A e C:)le—ac

S} (where Sy denotes the set of noninvertible elements of M for any
Banach algebra M with identity) and y(a) = sup{|\| : A € S(a)} (we
also set sup{|\| : A € @} = 0). Notice that S(a) C o(a). For any
J € Ji (where, for any Banach algebra M, Jj; denotes the set of
all proper closed two-sided ideals of M), let m; denote the canonical
quotient map from L onto L/J. Then we set o (a) = o(m,(a)) and
ds(a) = sup{inf{|A\] : A € w}: w is a component of os(a)} for any
J € J. Notice that Jy,Jo € Jg and Jy C J, implies 04,(a) C 04, (a).
It follows that os(a) C o(a) for any J € Ji. Since S(a) and o;(a),
J € Ji, are subsets of o(a), we have that y(a) < r(a) and 6;(a) < r(a)
for any J € Jp.

Then (see [3, 1.5]):

(1) ifa € L is such that r(a) = max{y(a),sup{ds(a) : J € Jp}}, the
spectral radius function is continuous at a.

In [4] we give the following sufficient condition for continuity of o at
a point a of a complex Banach algebra L.

Let {(a) denote the set of all points A € o(a) such that any neigh-
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borhood of A contains a component of o;(a) for some J € J; (notice
that ¢(a) is a closed subset of o(a)). Then (see [4, 1.5]):

(2) if a € L is such that o(a) = S(a) U ((a), the spectrum function
s continuous at a.

We remark that condition (2) implies condition (1). In addition, if
L = L(X), where X is a Banach space, it can be proved that Conway
and Morrel’s conditions in L(X) for 7 imply condition (1) (see [3, 1.7])
and the conditions given by Conway and Morrel and by the authors of
[1] in L(X) for ¢ imply condition (2) (see [4, 2.1]). Therefore, if X is a
separable Hilbert space, conditions (1) and (2) characterize continuity
of r and o, respectively, in L(X). Several examples are constructed
in [3, 4] to illustrate less restrictiveness of (1) and (2) in L(X), for a
generic Banach space X, with respect to the corresponding conditions
given in [8, 9, 1].

Unfortunately, Conway and Morrel’s characterization of continuity
points of o in L(X)/K(X) (where X is a separable Hilbert space) can
be used to construct an example which shows how conditions (1) and (2)
are not necessary, in general, for continuity of r and o, respectively (see
[4, 3.5]). In order to overcome this counterexample, in another paper
to appear [6], we have given a sufficient condition for continuity of the
spectral radius function (implied by condition (1)) and two equivalent
sufficient conditions for continuity of the spectrum function (implied
by condition (2)) at a point a of a Banach algebra L. These three
conditions will be recalled in Section 1 of this paper.

One of our concerns here is to show how the conditions given in [6]
are less restrictive than (1) and (2) and are satisfied by the example
above. Moreover, in this paper we give a new sufficient condition for
continuity of the function r at a € L, which improves the one given in
[6]. We are also interested in studying our conditions in the algebras
of all linear bounded operators on some special Banach spaces and in
their quotient algebras modulo compact operators.

In Section 1 we recall the conditions of [6], and state and prove the
new sufficient condition above for continuity of the spectral radius
function (Theorem 1.1). This condition is implied by the sufficient
condition for continuity of r given in [6]. Besides, the condition of
Theorem 1.1 is (respectively, the two equivalent sufficient conditions
for continuity of o given in [6] are) characterized in the algebra L(X),
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where X is either a complex nonzero Hilbert space, or cg, or I,
p € [l,400), and is (respectively, are) proved to be equivalent to
both condition (1) and the sufficient condition for continuity of r
given in [6] (respectively, to condition (2)) in these particular algebras
(Propositions 1.3, 1.4, 1.5 and 1.6). Finally, two examples are given
in the algebra L(X X Y) (where X and Y are any two different
spaces of the set {co} U {lp}pe[1,+00)) t0 show how the two equivalent
sufficient conditions for continuity of o and the sufficient condition for
continuity of 7 given in [6] are less restrictive than conditions (2) and
(1), respectively (Example 1.7), and the condition of Theorem 1.1 is
less restrictive than the one given in [6] for the spectral radius function
(Example 1.8).

In Section 2 we prove that two equivalent sufficient conditions for
continuity of r in L(X)/K(X) (where X is a Banach space), due to
Conway and Morrel, imply the condition for continuity of r given
in [6] (and thus imply also the condition of Theorem 1.1), so that
all these conditions are equivalent and characterize continuity of the
spectral radius function in L(X)/K(X) if X is a separable Hilbert
space (Theorem 2.1). Still in the case of the algebra L(X)/K(X) for
a Banach space X, in Theorem 2.2 we prove that a condition given
by Conway and Morrel and a condition given by the authors of [1] for
continuity of o are equivalent; in addition, we give a third sufficient
condition for continuity of ¢ in this algebra, that is equivalent to the
two above, and we show how these three equivalent conditions imply
the two equivalent sufficient conditions of [6] for continuity of spectrum,
and are therefore equivalent to them if X is a separable Hilbert space
(so that also the two conditions of [6] characterize continuity of the
spectrum function in L(X)/K(X) if X is Hilbert and separable). In
the general case L = L(X)/K(X), where X is a generic Banach space,
our conditions for continuity of r and o given in Theorem 1.1 and in
[6] are less restrictive than the ones given by Conway and Morrel and
by the authors of [1].

Finally, the two equivalent sufficient conditions for continuity of o
and the sufficient condition for continuity of r given in [6], together
with the condition of Theorem 1.1, are characterized in the algebras
L(X)/K(X), where X is either a complex infinite-dimensional Hilbert
space, or ¢y, or l,, p € [1,4+00), and L(X)/J, where X is a complex
nonseparable Hilbert space and K(X) C J € Jy(x) (Propositions 2.4,
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2.5, 2.6, 2.7, 2.8 and 2.9).

Section 1. For any Banach algebra M with identity, let Gj; denote
the group of invertible elements of M and let Hy; denote the union of
all components of G; which do not contain the identity of M.

Now let L be a complex Banach algebra. If e denotes the identity
of L, for any a € L we set H(a) = {A € C: de —a € Hi} and
a(a) = sup{|A| : X € H(a)}. Notice that H(a) C p(a) (where p(a)
denotes the resolvent set of a, namely p(a) = C\o(a)). Although H(a)
is not a subset of o(a), the inequality a(a) < r(a) holds: in fact,
Ae — a can be connected with e by means of invertible elements of L
for any A € C such that |A| > r(a) (as the range of the continuous
map ¢ : [0,1] 3¢t — Xe — (1 — t)a € L, connecting e — a with Xe, is
contained in Gp,).

In [6, 1.4] we proved that the condition
(3) r(a) = max{a(a),y(a), sup{ds(a) : J € Jp}}
implies continuity of r at a. Now we are going to give a less restrictive
sufficient condition for continuity of r at a than (3).

For any Banach algebra M with identity and for any J € Jy;, let
Hj, denote the union of all components of w}l(G myg) which do not
contain the identity of M and have nonempty intersection with G ;.
We remark that H]{V?} = Hjy; and G C Sy for any component G of
ﬂ';l(GM/J) such that G NGy = &. Moreover, if G is the component
of Gy containing the identity, we have G N Hji, = @ for any J € Jy.

Now let L be a complex Banach algebra and let e denote the identity
of L. For any a € L and for any J € J, we set H;(a) = {\ €
C:)e—ac H/} and ay(a) = sup{|\| : A € Hy(a)}. Notice that
Hypy(a) = H(a) and agoy(a) = a(a).

Since Ae — a and e belong to the same component of G, for any

A € C such that |\| > r(a), we have a;(a) < r(a) for any J € Jp, even
if H;(a) may intersect p(a).

Theorem 1.1. Let L be a complex Banach algebra. Then:

i) the function ay : L 3 a — ay(a) € R is lower semi-continuous
forany J € Ji;
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ii) for any a € L which satisfies
(4) r(a) =max{y(a),sup{ds(a):J € Jp},sup{as(a): J € Jp}}

the spectral radius function is continuous at a;

iii) the set {a € L : a satisfies condition (4)} is a Gs-set.

Proof. Assertion i) is a consequence of H being an open subset of L
for any J € J. B

Now we prove ii).

We recall that the functions v : L 5 a +— ~(a) € R and 0, :
L > a— d;(a € R (J € Jr) are lower semi-continuous (see
[3, 1.4]). Then from i) it follows that also the function L > a
max{vy(a),sup{ds(a) : J € I}, sup{as(a) : J € I }} € R is lower
semi-continuous. Consequently, since max{vy(a),sup{ds(a) : J € J.},
sup{as(a) : J € Jp}} < r(a) for any a € L and r is upper semi-
continuous on L, the spectral radius function is continuous at a for any
a € L which satisfies condition (4).

Assertion iii) is a consequence of r(.) —max{~(.),sup{0,(.) : J € JL},
sup{a(.) : J € Jp}} being an upper semi-continuous function. o

We recall that the set of all continuity points of every map from a
topological space into a metric one is a Gs-set. We also remark that
condition (1) implies condition (3) and condition (3) implies condition
(4). Moreover, conditions (1), (3) and (4) are equivalent if G is
connected, and conditions (3) and (4) are equivalent if J;, = {0}.

Let L be a complex Banach algebra, let e denote the identity of L
and let a € L. For any G € ¢(GL) (where c(Z) denotes the set of all
components of Z for any topological space E) we set pg(a) = {\ €
C : de —a € G}. We recall that pg(a) is an open subset of C for
any G € C(GL), p(a) = UGGC(GA)p(;(a), H(a) = UGEC(HA)pg(a) and

besides Ngec(ay)(P(a)\pa(a)) C (Ugee(ar)dpa(a)) C o(a) (see [6, 2.6
and remark after 2.1]).

In [6] the following result is proved.

Theorem 1.2 [6, 2.7]. Let L be a complex Banach algebra, and let
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a € L. Then the following two conditions are equivalent:

(5) o(a) = S(a) U((a) U(Ngec(ar) (p(a)\pa(a)));

(6) o(a) = S(a) U((a) U (Ugec(cr)0pc(a)).

Moreover, if the equivalent conditions (5) and (6) are satisfied, the
spectrum function is continuous at a.

We recall that condition (2) implies the two equivalent conditions (5)
and (6) and is equivalent to them if G is connected. Moreover, the
equivalent conditions (5) and (6) imply condition (3) (see [6, remarks
after 2.7]), and therefore imply also condition (4).

For any Banach space X and for any T € L(X), let N(T) and R(T)
denote the kernel and the range of T, respectively.

Now let X be a complex nonzero Hilbert space of Hilbert dimension h.
Let A}, denote the set of all cardinal numbers « such that either o =1
or Xg < a < h. We recall that G(x) is connected (see [14, Problem
110]). We also recall that Jp,(x) = {Ka(X) : @ € Ap}, where K, (X) =

{T € L(X) : R(T) has Hilbert dimension less than a} for any o € Ay,
(see [15, Theorem 6.1, Theorem 6.4 and Corollary 6.1]), so that J(x)
is well ordered by inclusion. Notice that K;(X) = {0}, Ko(X) is self-
adjoint for any a € Ap and K(X) = Ky,(X) if h > Ro. For any
T € L(X), let d(T) denote the approximate nullity of T' (see [12, 1.3]).

Finally (see [3, 1.10]), we recall that Spx) = {T € L(X) : d(T) #
d(T*)}, where T* denotes the Hilbert adjoint of T for any T € L(X).
Then the result below is a consequence of [3, 2.2].

Proposition 1.3. Let X be a complex Hilbert space of Hilbert
dimension h > 0. Then, for any A € L(X), each of conditions (1), (3)
and (4) s equivalent to the following condition:

r(A) = max{sup{|\| : A\ € C and d\x — A) # d(AIx — A"},
sup{dx,(x)(4) : @ € Ay and o is not a limit cardinal number if
o> No}}

For any complex Banach algebra L and for any a € L, we set
P(a) = {\ € o(a) : {\} is a component of o(a)}. We remark that

¥(a) C ((a).
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Since J,(x) is well ordered by inclusion for any Hilbert space X, the
result below is a consequence of [5, 2.8].

Proposition 1.4. Let X be a complex nonzero Hilbert space. Then
for any A € L(X) each of conditions (2), (5) and (6) is equivalent to
the following condition:

o(A) = (A€ C:d(\x — A) £ d(\x — A%)} UB(A).

We recall that, if the Hilbert space X is not separable, in L(X) con-
ditions (1) and (2) are less restrictive than the corresponding Conway
and Morrel’s ones, which therefore are not necessary for continuity of
r and o, respectively (see [3, 2.1 and 4, remarks before 3.4]).

Now let X € {co} U {lp}pe[1,4+00)- We recall that G(x) is connected
(see [16, corollary of Proposition 2 and corollary of Lemma 11b]) and
Jrx) = {{0}, K(X)} (see [11, (5.4.23)]). If, for any A € L(X), US(A)
denotes the set of all isolated eigenvalues of A whose spectral projection
has finite-dimensional range, the following result is a consequence of the
remarks above and of [3, 1.6].

Propostion 1.5. Let X € {co} U {lp}pe1,400)- Then for any
A € L(X) each of conditions (1), (3) and (4) is equivalent to each
of the following conditions:

i) 7(A) = max{y(A),d¢03(A), 6x(x)(A)};
ii) r(A) = max{y(A),sup{inf{|A| : A € w}: w is a component of
ox (x)(4) Uop(A)}}.

The following result is a consequence of the remarks above and of
[5, 2.8].

Proposition 1.6. Let X € {co} U {lp}pe1,400)- Then for any
A € L(X) each of conditions (2),(5) and (6) is equivalent to the
following condition:

o(A) = S(A) Up(A).
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We recall that the groups of invertible operators on several classical
Banach spaces are connected, and indeed, contractible, but yet there
are examples of Banach spaces X such that G'p(x) is disconnected
(see [16] for a survey on this subject). In the following example
we use Douady’s construction of a Banach space with disconnected
linear group (recorded in [16, Section 1]) to show how the equivalent
conditions (5) and (6) are less restrictive than condition (2), and
condition (3) is less restrictive than condition (1), even in the algebra
L(X).

We recall that a linear bounded operator on a Banach space is
invertible modulo compact operators if and only if it is a Fredholm
operator (see [11, (3.2.8)]).

For any A € C and for any € > 0, let Bo()\, €) denote the set of all
points g € C such that |p — A| < e.

Example 1.7. Let us consider the complex separable Banach space
lp, X 1p,, with p1,ps € {0} U[L,4+00) (where Iy denotes ¢g) and p; # pa.
We recall that I, x I, is reflexive if p;,ps € (1,400), and is also
isomorphic to its dual if, in addition, 1/p; + 1/p2 = 1.

Now let us consider the operator A € L(l,, x lp,) defined by
A((mn)neNa(yn)neN) = ((anrl)neNamO@O + ZneN ynenJrl) (Where
{€n}nen is the canonical basis of ,,,) for any ((zn)neN, (Yn)nen) €
lp, X lp,-

We recall that A € G L(1,, x1p,) and A cannot be connected with the
identity by means of invertible operators (see [16, Section 1]. Hence
there exists G € c(HL(lP1 Xle)) such that A € G.

Let S; and S; denote, respectively, the backward shift on [,,, and the
unilateral shift on [, (which means that Si(z,)nen = (Tp4+1)nen for
any (Zn)neN € lp, and S2(Yn)nen = ZnEN Yneny1 for any (yn)nen €
lp,). Let T' € L(lp, % lp,) be defined by T'(z,y) = (Siz,S2y) for
any (z,y) € lp, X lp,. It is not difficult to verify that I, x;,, — T
is a Fredholm operator of index zero for any A € C\0B¢(0,1) and
OK (1, x1py)(T) = 0Bc(0,1) = 0k, )(S;) for any j =1,2.

Pj

Since A—T' € K(lp, xlp,), it follows that o, x1,,)(A4) = 0Bc(0,1)
and A, i, — A is a Fredholm operator of index zero for any A €
C\0Bg(0,1) (see [11, (4.4.2)]). It is not difficult to verify that
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N(AL,, xi,, —A) = {0} for any A € C\0Bc(0,1). Therefore, o(A) =
0Bc(0,1) and r(A) = 1.

Hence, Bc(0,1) C pg(A) € H(A) C Be(0,7(A4)) = Be(0,1), and
consequently pg(A) = Be(0,1). It follows that dpg(A) = 0B¢ (0,
o(4).

Therefore A satisfies condition (6) (so that the spectrum function is
continuous at A).

»—~
I

Now we prove that A does not satisfy condition (2).

We remark that S(A) C o(A), and consequently S(A) = @.
Now we prove that ((A) = @.

For any k = 1,2, let P, € L(lp,,lp, X lp,) and Q € L(lp, X lp,,1p,)
be defined by Pz = (0152, 62xx) for any x € I, and Qr(z1,z2) = xi
for any (z1,72) € lp, X lp,. We remark that QyP; = I, for any
k=1,2, Qi Py is the null operator if k # h, PiQ1 + P>Q2 = o, xi,,
and T =3, » PjQ;TP.Qy for any T' € L(lp, X lp,). Moreover, we
have Qx AP, = Si, for any k = 1, 2.

For any k =1,2, we set Ji, = {T' € L(lp, xIp,) : QuTPr € K(Ip,)}

Since either any linear bounded operator from [,, into l,, or any
linear bounded operator from I, into [,,, is compact (see [18, 5.1.2 and
following remark]) and L, xi,, ¢ Jr, it follows that Ji € I

p1 Xlpy)
Let us consider the linear and continuous operator ® : L(l,, ) —
L(lp, % lp,)/Ji defined by ®(T) = P,TQy, + Jy, for any T € L(l,, ).

We remark that for any T € L(l,, x l,,), we have QzTP;, =
Qk(zj,h:l,Q PijTPth)Pk = Qk,PkaTPkaPk and consequently,
T — PLQrTPLQy € Ji.

Then @ is surjective, as T+ Ji, = ®(QrTPy) for any T € L(l,, X lp,).
Using the equality QxPr = I, , it is not difficult to prove that @ is
a homomorphism of Banach algebras and N(®) = K(l,,). Hence,
® induces an isomorphism of Banach algebras from L(l,,)/K(lp,)
onto L(lp, x lp,)/Jx. Therefore, we have 0, (A) = o(®(QrAP:)) =
oK (1,,)(QkAPL) = 0k, )(Sk) = 0Bc(0,1) = o(A).

We recall that J; and J, are the maximal ideals of L(l,, x [,,) (see

[18, 5.3.2], where only the case p1,ps € [1,+00) is treated; the proof
can be repeated in the case 0 € {p1,p2}). Consequently, we have
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07(A) =0Bc(0,1) for any J € I, x1,,)- Hence ((4) = 2.

We have thus proved that S(A) U((A) = @ C o(A). Therefore A
does not satisfy condition (2).

Finally, we remark that the operator I;, xi,, + A satisfies condition
(3) (indeed, it satisfies the equivalent conditions (5) and (6)) but does
not satisfy condition (1). o

The following example shows how condition (4) is less restrictive than
condition (3) in the case of the algebra of all linear and continuous
operators on a generic Banach space.

Example 1.8. Let us consider the complex separable Banach space
lp, X lp,, with p1,p2 € {0} U[1, +00) (where [y denotes cy) and p; # p2.
Let A,T € L(lp, x l,,) be defined as in Example 1.7.

We remark that o(T) = Bc(0,1). Hence H(T) = @.

We recall that )\Illem — T is a Fredholm operator of index
zero for any A € Bg(0,1). Then there exists a component F of
71'1_{11191 le2)(GL(lp1 xlpy )/ K (Ip, lez)) such that )‘Ilpl xlpy, — L' €F for any
A € Be(0,1).

Since A —T € K(ly, X ly,) and A € G, x1,,) cannot be connected
with the identity by means of invertible operators, it follows that A € F

K(lp, x1p
and I, xi,,) ¢ F (see [11, (6.2.5)]). Hence, F C HLépfozpj))‘
Consequently, we have Bg(0,1) = Hg ) xlp2)(T)-

lp
For any A € Bc(0,1), since AIj, xi,, — T is a Fredholm operator of
index zero, it follows that A, xi,, —7 ¢ S Ly, xlpy) (see, for instance,
[13], or [17, 2.1]. Hence, S(T) = @.

Since T — A is a finite-dimensional operator, it follows that o;(T) =
07(A) = 0Bc(0,1) for any nonzero J € I, x1,,) (see [11, (5.2.1)]).

It fOHOWS that J(IlP1XlP2 + T) - BC(171) a‘nd UJ(Ilqulpz + T) =
0Bc(1,1) for any nonzero J € I, xi1,,.)-

Therefore, 6 (11,, x1,, + 1) =0 for any J € I, x1,,,)-

Since H(T) = S(T) = @, it fOHOWS that H(Ilpl Xle + T)
S(Ilm xlpoy + T) =, and Consequenﬂy7 a(Ilm xlp, + T) = 7(Ilpl Xlpy

+
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T) =0.
We have thus proved that max{a(IlP1 xlp, T T), 'y(Ilp1 xlpy T T),
Sup{(SJ(Ilpl Xlpy T T):J¢€ JL(lpl le)}} =0<2= T'(Ilpl xlpy T T
py lp, T T does not satisfy condition (3).
Since Hg i, lez)(T) = B¢/(0, 1) it follows that Hpeq,, lez)(Il
T) = Bc(1,1). Therefore, ak( (I, x1,, +T) =2 =r(l,

py Xlpy lpy xlpy

T), and consequently I, x1,, + T satisfies condition (4). O

Hence, I
+

p1 Xlpy

Section 2. Let X be a complex infinite-dimensional Banach space.
We shall denote the semigroup of all linear bounded Fredholm operators
on X by F(X). For any linear bounded semi-Fredholm operator 7" on
X, let ind (T) (¢ Z U {—00,+00}) denote the index of T. We recall
that {T € L(X) : T is semi-Fredholm and ind (T') = n} is open for any
n € ZU{—o0,+o0} (see [11, (4.2.1), (4.2.2) and (4.4.1)]). If we set
F,(X)={T € F(X) :ind (T) = n} for any n € Z, from [11, (6.2.5)] it
follows that TK(X) (Unez\{O}Fn(X)) C HL(X)/K(X)-

We remark that 7 x)(F(X)) C GL(X)/K(X) and the open set

Tr (x)(L(X)\F (X)) is contained in Sz x),x(x). Consequently, we have
LX)\F(X) = me(x) (Spex)/K(x))-

Now we set SF*®(X) = {T € L(X) : T is semi-Fredholm and
ind(T) € {—o0,+00}}. Then by the preceding remarks we have

Tr(x)(SF**(X)) C Sp(x)/K(x)-

For any T € L(X), we set ps—p(T) = {\ € C: AIx — T is semi-
Fredholm}, p? (T) = {A € C : AMx — T is semi-Fredholm and
ind (\[x — T) = n} for any n € ZU {00,400} and p= ,(T) = {) €
C : Mx — T is semi-Fredholm and ind (A\Ix —T) # 0}. By what we
recalled above, we have that ps_p(T), p* p(T), n € Z U {—00,+0},
and p¥_,(T) are open subsets of C. We remark that p(T) C p° . (T),
and consequently pZ_,(T) C o(T). Besides, we set oy (T) = {\ € C :
7 (x)(Mx — T) is neither left nor right invertible}. We remark that
O1e (T) C 0530)(T) = 01ee (T) U p 5 (T) U p (T (see [11, (4.3.4)]).
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Finally, we set

Toe(T) = {X € C: {\} is a component of (JK(X)(T)\pf_F(T))

U (Unez (pi_p(T)\pi—r(T)))}-

Let us consider the following conditions:

(7) r(mx(x)(T)) = max{sup{|Al : X € p;_p(T)}, 6x(x)(T)};

(8) r(mr(x)(T)) = max{sup{|A| : A € pE p(T)}, sup{inf{|A| : X €
w}: w is a component of o (T)};

(9) any neighborhood of any A € o (x)(T) \pE ,(T) contains a com-

ponent of oy (T'), and any neighborhood of any X € p? o (T)\p?_ r(T)
contains a component of oy, (T') for any n € Z\{0};

(10) oke)(T) = 9p% p(T) U pF5(T) U p, %5 (T) U Tou(T) and

owe () N p?_ g (T) C Loe(T) for any n € Z\{0}.

It is not difficult to verify that condition (9) implies condition (8).
Moreover, we recall that conditions (7) and (8) are equivalent (see [8,
2.14], where the space X is supposed to be Hilbert and separable; the
proof of this result can be repeated in the general case of a Banach
space, see [8, Section 4]). In Theorem 2.2 we shall prove that conditions
(9) and (10) are equivalent too.

Now suppose X is Hilbert and separable. Then each of conditions
(7) and (8) is equivalent to continuity of r at mx (x)(T’) (see [8, 2.15]),
and each of conditions (9) and (10) is equivalent to continuity of o
at mg(x)(T) (see [10, 4.1], and [1, Theorem 14.23]). The proof of
“(c) implies (a)” given in [10, 4.1] uses [10, 3.2(b)], which actually

proves only that Py(A)\Py(A) C liminf ¢%(4,,), as one of the authors
confirmed to us. Nevertheless, the assertion “(c) implies (a)” in [10,
4.1] is true. In fact, J.B. Conway kindly provided us with the small
modifications that make the proof work, so that the result can be
proved in the following way. From [10, 3.2] it follows only that

0e(A)\P+(A) C liminf0?(A,) and Py(A)\Px(A) C liminf 0%(A4,,) for



30 L. BURLANDO

any nonzero integer k. For any k € Z\{0} and for any A € 0P (A),
since 0. (A)\P+(A) C liminf 02(A,,) which is closed, it can be assumed

that A ¢ (0e(A)\P+(4)). Thus, any neighborhood of A intersects
Uje(zu{-oo,+00})\{k} Fj(A), which implies A € liminf 0%(A,,) by [10,
2.1]. Since Pio(A) C liminfo.(A,) by continuity of semi-Fredholm
index and closedness of liminf o.(A,), at this point the thesis follows
from [10, 2.2].

We remark that the proof above works also in the case of a generic
Banach space, as the assumption o(A) = 0%(A) U P1(A) is not needed.

Notice that [8, 2.15] deals with continuity of the function 7(mx (x)(.))
at T, and [10, 4.1] and [1, Theorem 14.23] deal with continuity of the
function ox(x) at 1T'. Nevertheless, it is not difficult to verify that
continuity of o (respectively, r) at 7y(a) is equivalent to continuity of
oy (respectively, r(m;(.))) at a for any complex Banach algebra L, for
any J € Ji, and for any a € L (see also [9, remarks at the beginning
of Section 4]).

We recall that each of conditions (7) and (8) (respectively, (9) and
(10)) is sufficient for continuity of r (respectively, o) at mg(x)(T) also
in the general case of a Banach space X (see [8, Section 4, 1, p. 312]
and remarks above about [10, 4.1]).

Theorem 2.1. Let X be a complex infinite-dimensional Banach
space and let A € L(X). Then the following two equivalent conditions

i) A satisfies condition (7)

ii) A satisfies condition (8)
imply

iii) mx(x)(A) satisfies condition (3).

Moreover, iii) implies

iv) mg(x)(A) satisfies condition (4)
and iv) implies

v) the spectral radius function is continuous at mg (x)(A).

Finally, if X is a separable Hilbert space, conditions i), ii), iii), iv)
and v) are equivalent.
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Proof. In Theorem 1.1 we proved that (4) is a sufficient condition
for continuity of r. We have also already remarked that condition (3)
implies condition (4). Finally, we have recalled above that the two
equivalent conditions (7) and (8) are necessary for continuity of the
spectral radius function at mx(x)(A) if X is a separable Hilbert space.

Then it is sufficient to prove that i) implies iii).

Let X be a complex infinite-dimensional Banach space and let A €
L(X). Suppose that A satisfies condition (7).

Then r(rx(x)(4)) = max{sup{|]A| : A\ € p=_p(A)}, dxx)(4)} =
max{sup{A| : A € Unezyoe? p(A)}, sup{Al + A € p%(4) U
P (A} 0k (x)(A)}-

By the remarks above, we have Upcz\(0}05_p(4) C H(Tk(x)(4))
and p/°%(A) U p,°%(A) C S(rg(x)(4)). Moreover, dx(x)(A) =
0103 (T (x)(A))-

It follows that r(mg(x)(4)) < max{a(rxx)(4)), 7(Tkx)(4)),

Sup{JJ(WK(X) (A)) :J e JL(X)/K(X)} and consequently WK(X)(A) sat-
isfies condition (3). o

For any complex Banach algebra L and for any J € Ji, we set

Yy(a) = ¢(ms(a)) for any a € L. We remark that ¢ ;(a) C ((a).

Theorem 2.2. Let X be a complex infinite-dimensional Banach
space and let A € L(X). Then the following conditions are equivalent:

D) o) (A) = pi°5(A) UpT°5(A) Uk (x) (A) U (Unezdpl p(A));
i) A satisfies condition (9);
iii) A satisfies condition (10).

Moreover, the equivalent conditions 1), ii) and iii) imply

iv) mg(x)(A) satisfies the equivalent conditions (5) and (6)
and condition iv) implies
v) the spectrum function is continuous at T (x)(A).

Finally, if X is a separable Hilbert space, conditions i), ii), iii), iv)
and v) are equivalent.
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Proof. We have already recalled that the equivalent conditions (5) and
(6) are sufficient for continuity of o (Theorem 1.2) and that conditions
(9) and (10) are necessary for continuity of spectrum at mg(x)(A) if
X is a separable Hilbert space (above). Hence, it is sufficient to prove
that conditions i), ii) and iii) are equivalent and imply condition iv).

Let X be a complex infinite-dimensional Banach space and let A €
L(X). First of all, we prove that i) implies ii).

For any n € Z\{0}, we have that p? .(A)\p?_r(A) does not intersect
PS5 (A) U p, %5 (A) U (Ukez0p® (A)). Since A satisfies condition i),

o

it follows that p” ,(A)\p?_p(A) C Yr(x)(A).
We prove that also 9p%_,.(A)\p_x(A) C Y (x)(4).

For any u € apg_F(A)\p;t_F(A), any neighborhood of y intersects
C\p"_,(A). Since u ¢ p=_p(A), it follows that any neighborhood of
p intersects C\ps_p(A) = UK(X)(A)\,OST(A). Since A satisfies i), we
have o (x)(A)\ps—r(A) C Y (x)(A) and consequently u € m

Hence JK(X)(A)\pf_F(A) C ¥k (x)(A), as condition i) is satisfied.
In view of [2, 1.6] we have that ¥k (x)(4) C {\ € one(4) : {A\} is
a component of oy (A)}. Hence, every neighborhood of any point

of oK(X)(A)\p;EF(A) contains a component of oy (A) and every

neighborhood of any point of p* . (A)\p?_r(A) contains a component
of oie (A) for any n € Z\{0}.

We have thus proved that A satisfies condition (9).

Now we prove that ii) implies iii).

We remark that o x)(A)\(9pF z(A4) U pI°%(A) U p, %% (4)) =
0K(x)(A)\p§t,F(A)- Since condition ii) is satisfied, it follows that
any neighborhood of any point of UK(X)(A)\(E)pSi_F(A) Up>%(4) U
ps 7 (A)) contains a component of oy (A). Since oire (A)\piF(A) =
UK(X)(A)\p;EF(A) and UK(X)(A)\piF(A) is an open set in the rela-

o

tive topology of (o (x) (4)\P_ p(4)) U (Unez(pi_ (A)\pi_p(4))) (as
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o

P2 p(A)\py_p(A) C ok(x)(A) for any n € Z), it follows from [2, 1.5]
that any neighborhood of any point of UK(X)(A)\p;EF(A) contains

a. component of (7(x)(AN\PE 7(A)) U (Unez (FE_ (NG (A))).
Hence, T'g.(A) is dense in UK(X)(A)\(ap;EF(A) U pjf}(A) Up, °3(4))
by [5, 2.1].

We have thus proved that o (x)(4) = OpE H(A) U pi(A) U
p7%.(4) UTo.(A).

Now let n € Z\{0} and let A € o (A4) N pY_p(A) = ogx)(4) N

Pt p(A) = p? p(A)\p?_p(A). Since A satisfies condition (9), any

)

neighborhood of A contains a component of oy (A). Since p? n(A)\

py_p(A) is an open set in the relative topology of (o (x) (A)\pE L(A)U

(Ukez(p*_ o(A)\p"_r(A))), it follows from [2, 1.5] that any neigh-
borhood of A\ contains a component of (O'K(X)(A)\p;t_F(A)) U (Ukez

o]

(p*_ (A)\p* p(A4))). From [5, 2.1] it follows that [y.(A) is dense in

pe_p(A\PE_p(A) = owe (A) N p5_p(A).
Hence, A satisfies condition (10).
We prove that iii) implies i).

First of all, we prove that og(x)(A)\(pi %(4) U p,°%(4) U

(Unezdpy p(A)))C(0k(x) (A)\p5 p(A))U(Unezy 0} (P (A)\pp(4))).

Let A € o) (AN (775 (A) U 7275-(A) U (Unezdp_(A))). Then
there exists ¢ > 0 such that Bgo(Me) N (pi°%(4) U p, % (A) U
(Unez0p?_r(A))) = @. Consequently, for any n € Z, either Bo (), ¢) C
py_p(A) or Bo(Ae) Npy_p(A) = 2.

o

Hence A € (0 (x)(A)\05p(4)) U (Unezy (0 (0 p(A)\p_p(4)))-
We have thus proved that oxx)(A)\(p/%(4) U p, 5% (AU

(Unezdpy_p(4)))  C  (0x0(A\P_p(A) U (Unez oy (p5— p(A)\
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Pir(A) = (ox (AN p(A) U p25(4) U p % (A))U

]

(Unez\{03 (5 (A) N owe (A))). Since A satisfies condition (10), it
follows that Igc(A) is dense in o (x)(A)\(pI°%(A4) U p;°%(A4) U
(Unezdpy p(A)))-

From the inclusion above it follows also that

75 () (AP Z5(A) U p, % (A) U (Unezdpl_p(4)))

]

= ((0x (x) (A\PZ 1 (A)) U (Unez (pi_p (A)\pi_ p(4))))
\(0,Z5(A) U p 25 (A) U (Unezdp_p(4))).

Then by [2, 1.5] we have that ¥ (x)(A) is dense in ox(x)(A4)\
(5% (A)Up; %5 (A)U(Unez0p™_1(A))). Hence condition i) is satisfied.

We have thus proved that conditions i), ii) and iii) are equivalent.

Now we prove that the equivalent conditions 1), ii) and iii) imply iv).

We remark that mx(x)(G) €c(Gr(x)/k(x)) and G:ﬂl_{}x)(ﬂK(x)(G))
for any G € c(F(X)) (see [11, (6.2.5)]). Consequently, for any
n € Z, since F,(X) = Ugee(r,(x))G we have that p?_p(4) =
UGEc(Fn(X))PwK(X)(G)(T"K(X)(A))- Thus, for any A€ apg_F(A) and

for any £ > 0, since A € Ugec(r,(X))Pry x)(G) (T (x)(A)) there exists
Go € ¢(F,(X)) such that Bc(A, €) N pry ) (Go) (Tx (x)(4)) # 2. More-

over, since A € 0p” (A), we have also that Bc(\,e)N(C\p?_p(A)) #
@ and consequently Bc (A, €) N (C\pry «,(Go) (Tr(x)(4))) # &. Hence
Bc()\, E) N 8p7‘l’}{(x)(G0)(7TK(X) (A)) 7é .

We have thus proved that Be(\€) intersects
UGec(Fn(X))apﬂ.K(X)(G)(ﬂ'K(X)(A)) for any ¢ > 0. Therefore, A €

(UGEC(FH(X))apWK(X)(G) (ﬂ-K(X) (A)))

We  have  thus  proved that  (Unez0p?_ p(4)) C

(UGGC(GL(X)/K(X))apG(ﬂ-K(X) (A)))
We have already remarked that p°%(A) U p;%%(4) C S(mx(x)(4)).

Moreover, we have 1k (x)(A) = (7 (x)(A4)) C ((Tx(x)(A)).
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Since A satisfies i), it follows that
o(mr(x)(4)) C

S(mr(x)(A)) U (T (x)(A4) U (Ugee(Grix), xix)) 06 (Tr(x) (4)))
and consequently condition iv) is satisfied.

The proof is thus complete. ]

We recall that [4, 3.5] provides an example of a linear bounded
operator on Iy which satisfies conditions (9) and (10) and whose coset
x in the Calkin algebra L(l3)/K (l2) does not satisfy conditions (1) and
(2). We remark that x satisfies the equivalent conditions (5) and (6)
by Theorem 2.2.

Lemma 2.3. Let X be a Hilbert space of Hilbert dimension h > Ny.
Then ﬂ-l_{i(X)(SL(X)/Ka(X)) = {T € L(X) : d(T) # d(T*) and
max{d(T),d(T*)} > a} for any o € Ap, with o > Ny.

Proof. We have already recalled that SL x) =1T € L(X) : d(T) #
d(T*)}. Consequently, mx x)({T € L(X) : d(T) = d(T*)}) C
6L(X)/K (x)- We also recall that any 7" € L(X) which satisfies
max{d(T),d(T*)} < a is invertible modulo K, (X) (see [12, 2.6]).

Therefore, WKQ(X)(SL(X)/KQ(X)) C {T S L(X) : ( ) #* d(T*) and
max{d(T),d(T*)} > a} = Ua<pen,{T € L(X) : min{d(T),d(T*)} <
B < max{d(T),d(T")}}.

From [12, 2.6] it follows also that, for any 8 € Ay, with 8 > a, {T €
L(X) : min{d(T),d(T*)} < 8 < max{d(T),d(T*)}} ={T € L(X): T
is either left or right invertible modulo Kg(X) and is not invertible
modulo Kz (X)}, which is an open subset of L(X) (see [19, (1.5.5)]).

Hence, mx (x)({T" € L(X) : min{d(T),d(T*)} < f < max{d(T),
d(T*)}}) is an open subset of L(X)/K,(X) and does not intersect
Gr(x)/Kk.(x) for any B € Ay with 8 > a. It follows that mx (x)({T €

L(X) : d(T) # d(T*) and max{d(T),d(T*)} > a}) C Sp(x)/K.(x)-

We have thus proved that ﬂ';(i(X)(‘%L(X)/Ka(X)) ={T € L(X) :
d(T) # d(T*) and max{d(T),d(T*)} > a}. o
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Let X be a complex infinite-dimensional Banach space such that
Gr(x) is connected. We recall then that c(Grix)/kx(x)) =
{TrK(X)(FH(X))}HEZ:FH(X)?fQ and Fn(X) = ﬂ-[_(}X)(TrK(X)(Fn(X))) fOT
any n € Z (see [11, (6.2.5) and corollary of (6.2.6)]).

Now let X be a complex Hilbert space of Hilbert dimension h > Ng.
Since JL(X) = {K,B(X) : B € Ah}, it follows that JL(X)/KQ(X) =
{Kg(X)/Ku(X) : B € Ap,B > a} for any o € Ay with a > N,.
Hence, J1(x)/k,(x) is well ordered by inclusion for any o € A} with
a > Ry. We also recall that Gr(x)/k,(x) is connected for any o € Ap
with @ > Ry (see [7, Corollary 3]). Hence H; = @ for any

. L(X)/Ka(X)
J € Jp(x)/K.(x) and for any a € Ay with a > Ry. Moreover, for any

a € Ay with a > Ry, since G(L(X)/K(X))/(Ka(X)/K(X)) is connected we

—1 .
have that 7 (X)/K( X)(GL(X)/K(X))/(Ka(X)/K(X)) is connected by [11,
(6.2.5)]. Therefore, H LX) K(x) =9 for any nonzero J € Jp(x)/k (x)-

We set Qp, = {a € Ap : @ > Ry and « is not a limit cardinal number}.
Since G'1,(x) is connected, the two results below follow from Lemma 2.3
and from [3, 2.2].

Proposition 2.4. Let X be a complex Hilbert space of Hilbert
dimension h > Ry, and let A € L(X). Then the following conditions
are equivalent:

i) mr(x)(A) satisfies condition (3);
ii) 7 (x)(A) satisfies condition (4);
i) (e 0 (4) = max{sup{|A| : A € Unez o0 (4)), sup{|\ :
AecC, d()\IX A) # d(Mx —A*) and max{d(\x — A), d(\x — A*)} >
No}, 6K(X)(A),sup{6Ka(X)(A) s € Ot}

Proposition 2.5. Let X be a complex Hilbert space of Hilbert
dimension h > o, let « € Ay, a > Ny, and let A € L(X). Then
the following conditions are equivalent:

i) « (X)(A) satisfies condition (1);
ii) 7x,(x)(A) satisfies condition (3);

i) g, (X)( ) satisfies condition (4);

)

r(mx.(x)(A)) = max{sup{|A| : A € C, d(\Ix — A) # d(Ax —A*)

iv



SPECTRAL CONTINUITY IN BANACH ALGEBRAS 37

and max{d(Mx — A),d(Ax —A*)} > a}, sup{dx,(x)(A) : B € W, B >
at}.

The following two results are consequences of the remarks preceding
Proposition 2.4, of Lemma 2.3 and of [5, 2.7].

Proposition 2.6. Let X be a complexr Hilbert space of Hilbert
dimension h > No, and let A € L(X). Then mgx)(A) satis-
fies the equivalent conditions (5) and (6) if and only if ox(x)(A) =
PeC:dMx— A)#d(Mx— A*) and max{d( N\ x—A),d(Mx—A*)}>Ry}

Uk (x)(A) U (Unez0pl_(4)).

We remark that for any nonseparable Hilbert space X the operator
A € L(X) introduced in [3, 2.3] does not satisfy conditions (9) and
(10) (indeed, it does not satisfy (7) and (8) either). Nevertheless, A
satisfies the condition of Propositon 2.6, so that o is continuous at
T (x)(A). Hence conditions (9) and (10) (respectively, (7) and (8))
are not necessary for continuity of o (respectively, r) at mx(x)(4) in
the case of a nonseparable Hilbert space.

Proposition 2.7. Let X be a complex Hilbert space of Hilbert
dimension h > Ng, let « € Ap, a > Ry, and let A € L(X). Then
the following conditions are equivalent:

i) 7k, (x)(A) satisfies condition (2);
ii) 7x,(x)(A) satisfies the equivalent conditions (5) and (6);
iii) ok, (x)(4) =
eC: d(Mx—A) £d(Mx—A*) and max{d(Mx—A),d(\ x— A*)}>a}
U ¥k, (x)(4).

Now let X € {co}U{lp}pe[1,4+00)- We recall that the only proper closed
two-sided ideal of L(X)/K(X) is the null one, as J 1, x) = {{0}, K (X)}.
Then, since G'1,(x) is connected and Wgtx) (Srix)/r(x)) = L(X)\F(X),
the following result holds.
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Proposition 2.8. Let X € {co} U {lp}pe[1,4+00) and let A € L(X).
Then the following conditions are equivalent:

i) mr(x)(A) satisfies condition (3);
ii) 7 (x)(A) satisfies condition (4);

iii) r(mx(x)(4)) = max{sup{|A| : X € Upez\{0}0s_r(A4)}, sup{|A| :
A€ CMx — Ae L(X)\F(X)},0x(x)(A)}-

The result below follows from the remarks preceding Propositions 2.4
and 2.8, and from [5, 2.7].

Proposition 2.9. Let X € {co} U {lp}pe[1,400) and let A € L(X).
Then g (x)(A) satisfies the equivalent conditions (5) and (6) if and
only if

o) (A) = {A € C: My — A € L(X)\F(X)} U g x)(A)
U (Unez0py_(4))-

Finally, we remark that the operator I, xi, + T (where T €
L(lp, x1,,) is defined in Example 1.7) does not satisfy conditions (7)
and (8) (so that, in particular, it does not satisfy conditions (9) and
(10) either), and yet mr(,, xi,,)(]1,, xt,, + 1) satisfies the equivalent
conditions (5) and (6) (and thus also conditions (3) and (4)) in view
of what we proved in Example 1.8 and of [11, (6.2.5)]. Notice that the
operator I, xi, +A (where A € L(l, x1p,) is defined in Example 1.7)
shares the properties above with T', as A — T € K (I, X Ip,).
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