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UNIQUENESS OF BEST APPROXIMATION
WITH COEFFICIENT CONSTRAINTS

CHENGMIN YANG

ABSTRACT. For given a = (a1,... ,an) and 8 = (B1,...

)

Bn), with —oco < a; < 8; < o0, ¢ = 1,...,n, and continuous
functions u1,... ,un, set
n
U(e,B) = {u: E aiu; |o; <a; <Bi, i=1,... ,n}.
i=1

This paper is concerned with the uniqueness and strong
uniqueness of best approximation of continuous functions from
U(a, B). We improve some results of [5] and construct an ex-
ample to answer a question raised in [5].

1. Introduction. Let B denote a compact Hausdorff space contain-
ing at least n + 1 points, and let C'(B) be the normed linear space of
real-valued continuous functions on B with the uniform norm:

[I£1l = max [ £(x)].

Let U, = span{us,...,u,}, a subspace of C'(B). For given oo =
(a1,...,0ap) and B = (B1,...,0s) with —c0 < a; < B; < +o0,
1=1,...,n, set

n

U(a,ﬁ):{u: au; | o < a; < B, i:l,...,n}.
1

i=

In [5] the problem of best approximation of functions in C(B) from
U(a, B) was studied and the following theorems were proved.

Theorem 1.1. Let f € C(B)\U(a,B). Then i =, @iu; is a
best approzimant to f from U(a, ) if and only if there exist distinct
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points {x;,i = 1,...,r} and nonzero numbers {c;,i = 1,...,r} with
1<r <n+1, satisfying

(f—a)(z;) =sgn(c)l|lf —all, i=1,...,r

and
" >0 ifa; =B,
chui(wj) =0 fa;<a; <p; 1=1,...,n.
Jj=1 <0 1ifa; =aq

Theorem 1.2. Let N = {i | a; = —00,8; = oo}. If {uiy,...,u; }
is a Haar system for every choice of distinct i1,...,4, € {1,...,n}
satisfying N C {i1,... ik}, then U(a,B) is a unicity set for C(B),
i.e., for each f € C(B) there exists a unique best approzimant to f
from U(a, B).

Theorem 1.3. Let N = {i | a; = —00,; = oo}, and assume that,
foralli ¢ N, —co < a; < B; < oo. IfU(w,B) is a unicity set for
C(B), then {u;,,... ,u; } is a Haar system for every choice of distinct
i1,--- ik €{1,...,n} satisfying N C {i1,... ,ix}

Theorem 1.4. Let N = {i | a; = —00,8; = oo}, and assume that,
for alli ¢ N, —co < a; < ; < oo. Assume that {u;,,...,u; } s
a Haar system for every choice of distinct iy,... i satisfying N C
{i1,... ik} € {1,...,n}. Let f € C(B), and let & denote the unique
best approzimant to f from U(a,B). Then there exists v = y(f) > 0
such that, for all u € U(«, B),

If =l 2 |If = all +~lla — .

As mentioned in [5] there is a gap between Theorem 1.2 and Theorem
1.3. Is the converse of Theorem 1.2 valid? In this paper an example is
constructed to show the converse of Theorem 1.2 is not valid. However,
we can further improve Theorem 1.3 and Theorem 1.4. The strong
unicity constant in this setting is also discussed.
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2. Main results.

Theorem 2.1. Let N ={i | a; = —00,8; =00} and J ={i | o =
—00,8; < oo} U{i | a; > —00,8; = oo}. If U(e,B) is a unicity set
for C(B), then for every choice of k distinct points x1, ... ,z; € B and
every choice of S = {iy,... it} C{1,... ,n} with N C S, the matriz

Wiy (1‘1) e Ugy (xk)
[ug, (zs)] = .

up (1) -0 g (Tn)

has its rank at least k — max{|J\S| — 1,0}, where |A| is the number of
indices in A.

Proof. Suppose the rank of [u;,(z,)] is r < k — max{|J\S| — 1,0}.
Let W be the null space of [u;,(xs)]. Then dim (W) = k —r >
max{|J\S|,1}. Suppose J\S = {m1,... ,mpy1} with p = |[J\S| — L.

Since k — r > p, we can find ¢ = (cq,...,c;) # 0 in W such that
k
(2) chumj (xs) = Oa .7 = ]-a <ee D
s=1

Replacing ¢ by —c, if necessary, we can also have

k >0 if /8 <00
> Mpt1

s=1

Choose (ay, ... ,ar) # 0 such that

k
Zajuij(acs)zo, s=1,...,k
j=1

and let Q(z) = >0, ;<4 ajui; () € Ux = span{u;,,... ,u;, }. We may
assume ||Q|| < 1. Choose g € C(B) with ||g|| = 1 and g(x;) = sgn (cs),
s=1,...,k. Set

fx) = g(x)(1 = [Q(z)]).
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Then A\Q(z) are all best approximants to f from Uy for 0 < A <1 (see
[2]) and

(4) (f = Qs =sgn(e)llf ~AQll,  s=1...,k 0<A< L.

ForieI={1,...,n}\(JUS), let

(5) b= o it 2 csui(zs) <0
Bi if Y0 csui(xs) > 0.
Also let
7% if U, > —00 .

Choose u(z) = 3, < djui; (z) € U with a;; <dj < Bij,j=1,... ,k
and define o

f(@) = f(2) +u(@) + D wuwi(@) + Y Yt

iel 1<i<p+1
Let
iy (z) = u(z) + A\Q(x) + Z%u, Z Vi Um; = Z a;u;.
el 1<i<p+1

Then 4y € U(a, ) for all sufficiently small A. We claim

k SO ifdi:()éi
(7) D esui(zs) 4 =0 if a; < d; < B i=1,...,n,

= >0 ifa=p
and
(8) (f —an)(@s) =sgn(es)llf —anll, s=1,....k
To prove this claim, first we note {1,2,... ,n} = SU (J\S)UI. Since
(c1,...,ck) € W, the null space of [u;;(zs)], (7) is valid for i € S.

By (2), (3) and (6), (7) is valid for ¢ € J\S. By (5), (7) is valid for
iel={L...,n}\(JUS). (8) comes from (4). This proves the claim.
Without loss of generality, we can assume cg,cs, ... ,c, are all nonzero



UNIQUENESS OF BEST APPROXIMATION 1127

numbers and ¢q41 = -+ = ¢ = 0 for some 1 < r < k. Then (7) and
(8) are valid for kK = r. Now, by Theorem 1.1 %, are best approximants
to f from U(a,B) for all sufficiently small ), and this contradicts the
unicity hypothesis. o

Corollary 2.2. Let N and J be defined as in Theorem 2.1, and
let U, B) be a unicity set. Then {u;,,...,u;, } is a Haar system for
every choice of S = {i1,...,ix} C {1,...,n} satisfying N C S and
|[J\S| < 1.

This improves Theorem 1.3 because in Theorem 1.3 J = & is
assumed, and hence |J\S| = 0 for any choice of S.

The next example shows the sharpness of Corollary 2.2 and, therefore,
the converse of Theorem 1.2 is not valid.

Example 2.3. Let B = [0,1] and n = 3. Let u3 = 1, uy = =z,
uz = 1+2?%, and U = span {uy, uz,u3}. Let a; > —00, ag = ag = —0o0,
B1 = B2 = o0, and B3 < co. Then N = {2} and J = {1,3}. It is easy
to check that {uy,u2}, {u1,us}, {uz,us} and {us,us,us} are all Haar
systems, but {us} is not a Haar system.

Now we show U(a, 8) is a unicity set. Suppose it is not. Then there
exist f € C[0,1] and @y,%s € U(a,B) such that both @; and @y are
best approximants to f from U(a, 3). Then by Theorem 1.1 there exist
nonzero numbers cy,...,¢ and 1 < -+ <z € [0,1], 1 < r < 4 (the
reason that we can pick the same z; and ¢;, j = 1,...,r is given in

[5]), such that
(f_ ﬂ1)(IJ) = sgn(cj)||f— ﬂi”’ 1= 172a ]: ]-7 Ty

T T
ZC]'SO, ZijjZO,
j=1 j=1

and
.

Cj(]- + w?) > 0.
j=1
Since ¢; # 0 we have r > 1. If » > 3, then @; = @3 because U is a Haar
system. So we assume r = 2. From the fact that both {u;,us} and
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{u2,u3} are Haar systems, we have

c1+e <0
(9) C1T1 + Colgy = 0
c1(1 4 x?) + c2(1 + z3) > 0.

From the middle equation we have c; = —(x1/x2)c;. Substitute this in
the first inequality and get

et (1 — ﬂ) < 0.
€2

Since x1 < w2 we obtain ¢; < 0. From the third inequality of (9), we
have

Xz
0<er(l+a2)+e(1+22) =c1(1+22) - x—1(1 +a22)ey
2

¢ ¢
= L(ay— 21 + 2y — 2123) = (2 — 1) (1 — 2122) < 0,
T2 L2

which is a contradiction. So we proved U(a, () is a unicity set.
The next theorem improves Theorem 1.4.

Theorem 2.4. If U(a,B) is a unicity set, then for every f € C(B)
there exists v = y(f) > 0 such that for all u € U(a, B)

If —ull Z [If = @ll + @ — ul],
where @ is the unique best approzimant to f from U(a, B).

Proof. Part of the proof is the same as the proof of Theorem 1.4. If
f € U(a, B), then nothing needs to be proven. Assume f # 4. Let
{z;;i=1,...,r}and {¢j,j =1,...,r} be as in Theorem 1.1. Let

n
U = E d,”u,i
i=1
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and I; = {i | Tesu;(xs) =0} and I = {1,... ,n}\I;. For u = Za,u; €
U(a, B) with u # @ and i € I, we have

T

(a; — a;) chui(xs) > 0.

Thus,
> es(ifms) — uls)) = Z(di —a;) Y coui(zs) >0

If @(zs) = u(zs), s =1,...,r, we denote v(z) = u(z) — @(x) and then
v(zs) =0, s =1,...,r, and @(z) + dv(z) = du(z) + (1 — N)a(z) €
U(a,B) for 0 < A < 1. Choose 0 < A9 < 1 such that Xo|v|| <
(1/3)||f — @/l Denote Ay = {z | |f(z) —a(x)| = (1/3)||f — al|} and
Ay = {z | f(z) = @(x)}. Since both A; and A, are closed sets, by
Tietze extension theorem we can find a g € C(B) such that

9(z) = sgn (f(z) — a(x))([f(z) — a(z)| = Aolv(2)])  if z € Ay,
g(xz) =0, if x € Ao,

191/ B\ (a1042) < llgllaB\(aruan)) < (L/3)If —all + Aollvl],

where 9(A) denotes the boundary of A.
Let §(z) = g(z) + @(z). Then for 0 < A < Ao,

3(z) = Av(z) —a(@)] < [If —ul[ = (Ao —N(z)| < [If—all, =€A,
and

|9(x)=v(z)—a(z)| < A/3)|[f—all+Ro+N)[[v]| < |[f=ull, =& Ai.
Therefore,

g — Av —al| <|[f — |
and

(5 — 3 — ) (@) =sgn (f () — ()| f — l| =sgn (c) | — Mo — ll,
s=1,...,r
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Since f # @ and ¢, # 0, we have ||f — 4|| = ||g — Av — 4.

Now, by Theorem 1.1, @(z) + Av(z), 0 < X < )y are all best approx-
imants to § from U(a, 8). This is a contradiction. This contradiction
shows that, for all u € U(a, 8) with u # @,

max (sgn (¢)(@ = v)(a;)) > 0.

By a standard compactness argument, we have

max (sgn (¢;)(@ = w)(,) = 7]la |

for all u € U(e, 3) and some y > 0. Then by Theorem 1.1,

1f = ull = max (sgn (c)(f — w)(a,))
= max fsgn ()(f — ) () + sgn (¢,) (i = u) ()]
— |1f — |+ max (sen ) (@ — u)(a,))
> |1f =~ all+la -l o

As in the unconstrained case, we define the strong unicity constant
in this setting.

Definition 2.5. Let f € C(B) have a strongly unique best approx-
imant 4@ from U(q, 3). The strong unicity constant vo = vo(f) > 0 is
defined by

7o = sup{y | If — ull > [|f —all + 1l —al| forall e Ula,B)}.

Theorem 2.6. If f € C(B) has a strongly unique best approximant
@ from U(a, B), then

0= anin | { max s (/2) - i(0)

uelU(a,p) | €k

(u(z) - ﬂ(x))] }

@ = ul]

where E = {z | |f(z) — a(z)| = [|f — al}-
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The proof of the above theorem is similar to that of the unconstrained
case, so we omit it (see [3, 4]).

Theorem 2.7. Let f € C(B) have a strongly unique best approzi-
mant @ = Xa;u; from U(a, ). Set
I={i|a =a; ora=p}

and
E={z|[f(z) —a(x)| = ||f —all}.
Then |I|+ |E| > n+1.

Proof. Suppose |I| = n—1r and |E| = p+ 1. If r > p, then we
can find r numbers ci,...,c. and u;,,... ,u;, with i; € {1,... ,n}\I,
j=1,...,r, such that

> cjui, (zx)sgn (f(zx) — G(ax)) <0, k=1,...,p+1.
j=1

Let uy = @ + AXcju;;, € U(a, () for small X > 0. Then we have

max(sgn (f(z) — @(x))(ua(z) — @(z))) <0,

zEE

and this contradicts Theorem 2.6. |
Combining Theorem 2.4 and Theorem 2.7, we have

Corollary 2.8. If U(w, ) is a unicity set, then for any f € C(B),
[I| + |E| > n+ 1, where I and E are defined as in Theorem 2.7.

Theorem 2.9. Let f € C(B) have a strongly unique best approzi-
mant @ from U(a, B), and let I and E be defined as in Theorem 2.7. If
|[I| + |E| =n+1 with E = {z1,... ,Tk11}, then

Ao < min{l/||g:|,i=1,... ,k+1}

where g; € span{u;,i ¢ I} satisfying gi(x;) = sgn (f(z;) — @(x;)) for
J# i



1132 C. YANG

Proof. Let {1,...,n}\I ={iy,...,ir}. First we claim

uip (21) g (@)
rank | Wi (@i-1) o wa(zi-a) | k.
Uiy (Tj41) o wi (Tj41)
Uiy (Tht1) o Ui (Tra1)
for j =1,...,k+1. If this is not true, we can find v = X1<j<pcju;; # 0

such that

v(zj)sgn (f(z;) — a(z;)) <0, j=1,...,k+1

Also, by the definition of I, @4(x) + Av(z) € U(e, ) for small A. This
contradicts Theorem 2.6. So we proved our claim and hence all g;
are well defined and Ag; € U(a,B) for sufficiently small \. Now by
Theorem 2.6

o= min L [sgn () e 51 =20

uelU(a,B) | =€k l|u — @l o
. - Agi(w)] } 1
< min max [sgn ) —ulx = .
< i { ma e 10— s | | = o
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