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K-THEORY AND EXT-THEORY FOR
RECTANGULAR UNITARY C*-ALGEBRAS

KEVIN McCLANAHAN

1. Introduction. Much study has been done on the C*-algebras O,,
generated by n isometries Sy, Sa, ... , Sy, such that S;57+---+S5,5; =
1. These algebras were introduced by Cuntz in [9] (see also [6, 7, 8, 11,
15, 16]). The K-theory of these algebras has been computed by Cuntz
in [7]. The Ext-groups have been computed by Pimsner and Popa
n [16] (see also [15]). In [3], Brown introduced the C*-algebra U2¢
generated by elements u;;, 1 < ¢, j < n, satisfying the relations which
make the matrix [u;;] a unitary matrix. The K-groups of U}°® were
computed in [14], where it was also shown that U~ has no nontrivial
projections. In [18], Voiculescu defined the m X n version of UR® which
we will denote U e ) The algebras O,, and UL correspond to US° (Ln)
and U( )’ respectlvely We will show that U(“C n) is isomorphic to the
commutant of the m + n by m 4 n matrices in a certain amalgamated
free product C*-algebra. We will also prove some partial results about
the K-theory of U(nC n) and also compute their Ext-groups.

2. The C*-algebra U(“Tfhn). We define U(rlC n) 38 follows. U(“ni’n)
is generated by elements w;;, 1 < ¢ < m, 1 < J < n, subject to
the following relations on w = [w;;] @ w*u = I, and wu* = I,
where Ij, denotes the k by k identity matrix. U(nC n) has the universal
property that if B is any unital C*-algebra with elements Vi for which
v = [v;;] satisfies the same relations as u, then there is a unique unital
*-homomorphism ¢ : Ui’ — B such that #(uij) = vij. Clearly,
any two C*-algebras which satisfy the above property are canonically
isomorphic. If u;; and vy; denote the generators of U(;m) and U(n m)>
respectively, then the map wu;; — v}; induces an isomorphism from
U(“ncl ny ONtO U (nm)* As a result of this observation, we will restrict our

attention to the m < n cases.

There are two special cases of interest. If m = n, then U(“nc n) is the
C*-algebra US° defined by Brown in [4]. If m = 1, then let S; = uy;.
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1064 K. McCLANAHAN

The relations defining Uy’ are equivalent to the relations 57 5; = di;1
and Y., S;Sf = 1. Thus, U(nf’n) is isomorphic to the Cuntz algebra
O, [9, 1.12]. It was observed by Paschke that O,, is isomorphic to the
relative commutant of M, in the amalgamated free product C*-algebra
(see [3] for a definition) M, ,.c2 M2, where (a, 3) € C? is identified
witha®8®---®f € My, and a @ [ € M,. The following theorem
extends this result to U(nnc%n) for all cases of 1 < m < n.

Theorem 2.1. Let M, ., xcz My be the amalgamated product C*-
algebra where (o, ) € C? is identified with a ® - - G a BB D --- OB
in My1n (m copies of a and n copies of 8) and a @ 3 in M. Then
U(anW) is isomorphic to the relative commutant Mf, .. of My, in

m+n *Q2 Mg.

n

Proof. The amalgamated free product of the unital C*-algebras A and
B over a common subalgebra D with 14 = 15 = 1p (denoted A xp B)
can be described by the following universal property. A *p B contains
isomorphic copies of A and B, 14 = 1g = the unit of A xp B and
for any unital C*-algebra E containing an isomorphic copy of D (also
denoted D) with 1p = 1g and any pair of homomorphisms a: A — E
and 8 : B — FE satisfying a|p = 8|p = Idp, there is a unique unital
*-homomorphism a * 8 : Axp B — E such that a * B|4 = « and
ax(|p = . This property will be used in order to produce the elements
ui; € My, ,, which satisfy the universal property defining U);

n (m,n)*

Let E be a unital C*-algebra, and suppose v;; € E are such that
the matrix v = [v;;] satisfies v*v = I,, and vv* = I,,,. The C*-algebra
E® My, = M,,+,(E) contains an isomorphic copy of C? through
the following correspondence.

(,B) <10 (ad - dadfd- o f).

Let e;; and fr; be matrix units for M, and Mp,4n, respectively.
Consider the following homomorphisms

¢1 : Mm+n —F X Mm+n
¢2:M2_)E®Mm+n

defined as follows;
p1(z) =10
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baler) = |

Note that ¢o does in fact extend to a unital homomorphism of M,
since P = ¢y(e12) is a partial isometry satisfying PP* + P*P = 1.
Since @1|lcz = ¢Pa|cz = Idce, it follows that there is a unique -
homomorphism ¢1 * ¢o : My 4y *c2 M2 - E ® My, 4, extending both
¢1 and ¢72. Since (¢1 * ¢2)(M7cn+n) C (1 ® Mm-i-n)c = FE® Im+n7
¢ = P * ¢2|an+n is a unital *-homomorphism from My, ,, into
E® Iyhin =2 E. Since

n

m—+n

Vij @ Iy = Z (1® fri)P(1® fntjk)s
k=1

it follows that ¢(u”) = U;j X Im-{—n < Vij, where

m+n

Uiy = Z Jri€12 fmyjk-

k=1

It is routine to check that u;; € M, ,, and u = [uy;] satisfies u*u = I,
and uu* = I,,.

All that remains is to show that if ¢ : M, ,, — E satisfies ¢(u;;) =
v;j, then ¢ = ¢. Suppose 1 is such a unital *-homomorphism. Consider
Y as a map from My, ® I,y into E ® My, ;. Extend ¢ to

Qﬁ:M:n+n®Mm+n_>E®Mm+n

by letting (1 ® ) = 1 ® = for £ € M, . Now it is routine to check
that the map a ® b +— ab defines an isomorphism of M . ® My,
and M, 4, *c2 M>. Thus, we have a homomorphism

V: Mypyn %c2 My — E @ Myyin

induced from 1 and the above isomorphism. It is enough to show that
¥ = ¢1 * ¢y since ¢y * Pa|me, = and Plue = Vlne, @ln. = V-

m+n

To see this, we need only check that ¢|Mm+n = ¢y and Y|y, = oo
Now if x € M4, then

Y(z)=9(1®z) =10z =d(2).
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To check that the two maps agree on My, it suffices to check that they
agree on ej3. Now ejo Corresponds to > oo, Z;l 1Uij ® fim+y; under
the isomorphism of M}, ,, ® My 1y and My, *c2 M. To see this,
first notice that u;; € My, ,,, and ey = Zl 1 fii, e22 = ijl Jmtjm+j
in My,4p *c2 M2. The correspondence just mentioned follows from the
following computation.

€12 = €11€12€22

- <§: fi,-> €12 < XZ: fm+j,m+j>

11612fm+j m+j

Mz 11 -

-
Il
-

M 104: "M:

m+n
( Z fki€12fm+j,k> fi,m+j

IO

-
Il
-
~.
I
-

Uij fimtj-

The computation below completes the proof of the theorem.

612 (Zzum®f1m+3>
i=1 j=1
ZZI/J uz] ® fim+j
i=1 j=1
= Z Z’U” ® fz m+j = ¢2(612) =
i=1j=1

Remark. By [12, Proposition 3.10], it follows that the algebras Uln.n)
are semi-projective as is defined in [12]. Thus, if A is isomorphic to
the C*-algebraic direct limit 1i_n>1A and A has elements v;; satisfying
the same relations as the u;; in Umn), then, for some n, A, also
has elements w;; satisfying these relations. In fact, there is a norm

continuous path v;;(t) in A of elements satisfying these relations such
that Uij(O) = Uij and Uij(]-) = Wjj.
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3. K-Theoretic results for U, (“TE o) 1t was remarked earlier that if
m =1, then Uiy ) = On. In [7] it was shown that Ko(Oy) = Zp—1 and

K1(0y) =2 01n,Z. In [14] it was shown that Ko(UE®) = Z = K, (UR©).
In light of these known facts, we make the following conjecture.

Conjecture.
KO (Unc ) = anm

(m;n)

K (U™ )~ §pun.

(m,n)
We will prove some results which support the above conjecture in the
unknown 1 < m < n cases. Let

"/}mn : Ur;q(;n) — On—m+1
be defined as follows

1
[wmn (U’ij)] = 1
St Snomat
where the wu;; are the generators of U(“;l n) and the Sy are the
generators of Opn_p,y1. Because [¢pn(wif)]*[¥mn(uij)] = I, and
[Ymn (Wij)] [¥mn(uij)]* = In, the above rule induces a unital -

homomorphism. Note that this implies that U(nr:’:),,n) is not simple for
m # 1 (contrary to the m = 1 case where Cuntz showed that O,, is
simple [9]). The following proposition shows that Ky(U;°) contains
Z, _., as a direct summand.

Proposition 3.1. There is an tsomorphism KO(U(HTSL n)) > Zpm @

Ko(ker hmn) such that [1]o in Ko(Uy, ) corresponds to 1 ® 0.

(m.n

Proof. Let P denote the n by n matrix whose top m by n block
is equal to [u;;] and whose bottom n — m rows are identically zero.
Then P € Mn(U(nny,n)) and PP* = I, ® 0,,_y,, P*P = I,,. Thus,
m[llo = [Im]o = [InJo = n[l]o- So (n — m)[1]p = 0. Now, since
Ko(Op—m+1) = Zy_y, with [1]o as a generator [7], it follows that the
group homomorphism

v Ko(on_m+1) — K()(Unc )

(m,n)
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defined by ([1]g) = [1]o satisfies Ym0 © 7 = Id, where Yy « 0 is the
map on Ky-groups induced by ¢,,,. Consider the following short exact
sequence,

0 — ker '(»bmn — UI;SL’n) djgn Onferl —0

and the induce six term exact sequence on K-groups,

Ko(ker $mn) —— Ko(URS ) —222 7,

(m,n)

] :

0 e Ky (UFS 1))+ K1 (ke Ymn)

The vertical map on the right side is zero because ¥, «,0 is surjective.
The top row is thus a short exact sequence which splits because of the
map 7. The conclusion now follows easily. ]

In the next theorem the map ¢, : UPS

) M, (UP¢ ) will be
needed.

(m,n)
Grmn () = [uij] [wij]*.
X

Notice that, in the case m = 1, if we write S; = uyj, then ¢1,(z) =
Z?:l SjxzS;. This coincides with the map ¢, : O, — Oy, used by
Cuntz in [7] in order to compute K;(O0,,).

We claim that ¢mn,s; @ K;(Upy, ) = K;(UGy, ) is multiplication
by n for j = 0,1. To see this, let z ® I,, denote @ --- @ z (n times)
and u = [u;;]. Thus, ¢pmn(z) = u(z @ I,)u*. Let V = [v;;] be a unitary
in MT(U(H;L’H)). Then

(Idwm, ® ¢mn)(V) = [$mn(vij)]
= [u(vi; ® In)u’]
= wo[vij ® In]ug
where up = u @ --- @ u (r times). Let U = ug @ up*, a unitary in

MT(,Hm)(U(n;L n)). Then, since ujug = Ipp, wotfy = Ly, it follows that

(IdMT ® ¢mn)(V) 3] Ir(2m+n)
= (U & U")([v5 ® L) & Liomim)(U” @ V).
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Since U @ U™ is path connected to the identity matrix Is.(,,4n) by a
path of unitaries, it follows that

Gmn,e1 [V = [(Ida, ® ¢mn) (V)1 = [[vij ® L]]1 = n[V]1.

If P = [p;;] is a projection in MT(U(’;Z’”)), then let X = uglp;; ® I,].
Then
XX* = uO[pij ® InJug = (Idas, ® Gmn)(P)

X*X = [pij X In]

Hence,
Gmn,0[Plo = [(Ida,. ® imn ) (P)]o = [[pij ® In]Jo = n[Plo.

The following theorem shows that the K-groups of U(“T‘;L n) are torsion
groups.

Theorem 3.2. (n—m)K;(UpS 1) =0 for j =0,1.

(m,n)

Proof. We follow closely the proof given in [7] of the fact that
(n = 1)K;(On) = 0. Let ¢mn : Ufyy, ) = Mm (U, ,)) be defined as
in the preceding remarks. Let u;; be the generators of U(nrfl,n)' Let
x ® I, denote the matrix x ® --- @ x where there are m copies of x.
If we let W denote the matrix [@,n (ui;)][wi; ® Ir,]*, then we have the

following equation
[P (wij)] = [Gmn (wij)][wij @ L) *[uwij @ L] = Wuij ® I,

Notice that W is a unitary in My, (Upy, ) = UGy ) © My @ My, Now
we will prove the following claim.

Claim. There is a path w; of unitaries in U(n,fl ny ® M, ® M, from
wy=1® I, ®I,, tow; =W.

To do this, we must first compute the entries of W. W has the form

m
W: Zwij@)eij

i,j=1
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where the e;; are matrix units for M,,. By the definition of W, one has

n
Wi5 = Z ¢mn(u1k)(u;k & Im)
k=1
Elementary computations show that

m
_ rs
Wi = E w5 X €rs,

r,s=1

where
n

* *
w;? = g Up Ui Ug U, -
k=1

So we have that W is given by the following formula,

n m
W = g g urluiku:lu;k ® ers @ €.

k=1 4,j,r,s=1

Define the following matrix Z € 1 ® M,,, ® M,,

m
Z = Z 1®€¢j®6ji.
4,j=1

Then it is easily seen that Z is a self-adjoint unitary. Computations
show that W Z is given by the following expression

n m
WZ = g g U Uik Ug U @ €rj @ €.

k,l=114,5,r,5=1

An elementary computation shows that WZ is a self adjoint unitary.
Hence, there exist paths v;, z; of unitaries in Un;w) ® M, ® M,, such
that v9 = 20 = 1® L, ® I,,, vi = WZ, and 21 = Z. Now let
w; = vszg. Then w; is a path of unitaries in U“Tfhn ® My, ® M,,
from wg = vozo = 1Q I, ® I, to w1 = v121 = Z = W. This
establishes the claim.

The unitaries w; in the above claim induce unital *-homomorphisms
Yy UPC | — Mm(U(“Tf1 n)), where ¢p(X) = X ® I, and Y1 = ¢y It

(m,n)



K-THEORY AND EXT-THEORY 1071

is easy to check that ¢;(X) is a norm continuous path for each X in
the *-algebra generated by the u;;’s and, hence, for each X € Ups n)*

Thus, ¥o«,; = t1,+,; for j =0,1. So for X € Kj(UI;fL,n))’
mX = to,u,5(X) = ¢P1,4,(X) = nX,

and the proof is complete. a
Corollary 3.3. K;j(Up_1,n)) =0 forj=0,1.

A few useful observations can be made about the proof of Proposition
3.1. First of all, the map ¢, is equal to am, o (z — = ® I,,) where
Qmp is the map from Mn(U(nny n)) into Mm(U(nrfL n)) defined as follows

mn ([Tri]) = [wij)[zr] [uis]"

This map is an isomorphism. In fact, the inverse is given by the
following formula

A ([212]) = i) [ra] [wiz)-

This proves the following result, which in the case m = 1 reduces to
the known result O,, = M,, ® O,, [15].

Proposition 3.4. M, @ U7 n) = M, ® U(“C

m,n)°

Another useful idea in the proof of Proposition 3.1 is that of associ-
ating a unitary matrix with a homomorphism. Given any homomor-
phism ¢ from U“Tfl’n) into M ® U(nr‘r’w), we can associate a unitary Wy
in M, ® U(“Tfm) as follows

Wy = [p(uij)][uij ® Ix]".
Thus,
[p(uif)] = Wy[uij @ I].

Conversely, given a unitary W in M, ® U(“ni )’

homomorphism ¢y from U(“ni n) into My @ Uy, n)

we can associate a

[Ow (uij)] = Wui; ® I
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The correspondences W <+ ¢y and ¢ <+ Wy are clearly inverses. Let
Hom (U(“nc%n), M, ®U‘;fm)) have the point-norm topology, i.e., the weak-
est topology making the maps z — ||¢(z)|| continuous. Then it is easy
to see that the correspondence just mentioned is a homeomorphism.

We have just proven the following proposition.

Proposition 3.5. The map W +— ¢w is a homeomorphism of
UMk @ Uy, 1)) onto Hom (UG M @ Upyy, )

(m,n)

Considering the special case k = 1, we have the following corollary.

Corollary 3.6. The map W — ¢w is a homeomorphism of U( M, ®
Ure ) onto End (UPC ).

(m,n) (m,n)

This corollary generalizes the known result that ¢(0,,) is homeomor-
phic to End (O,,) [7, Proposition 2.1] by letting m = 1.

4. Ext groups of U n)* We will now compute the strong and
weak Ext groups of Ugy .\ which will be denoted Ext*(Ug ) and

Ext“’(U(n;l,n)), respecti(vely). First, we will give a brief dis(cussion of
the Ext semigroups Ext®(A) and Ext " (A) for a separable unital C*-
algebra A following the exposition presented in [15]. Let H denote a
fixed separable infinite dimensional Hilbert space, and, once and for
all, we will make a fixed identification of H with H @ C" for each
n € N. This induces identifications of B(H ® C") = B(H) ® M,, with
B(H) as well as Q(H ® C™) = Q(H) ® M,, with Q(H), where Q(H)
is the quotient of B(H) by the ideal of compact operators on H. We
let E(A) be the set of all unital *-monomorphisms or eztensions of A
into Q(H). Let w : B(H) — Q(H) denote the quotient map. We say
that extensions 73 and 7, are strongly (respectively weakly) equivalent
if there is a unitary U € B(H) (respectively u € Q(H)) such that
11(a) = 7(U)72(a)m(U*) (respectively 71 (a) = ur(a)u*) for all a € A.
We write [7]s (respectively [r],) for the strong (respectively weak)
equivalence class of 7. Let Ext®(A) (respectively Ext*(A)) denote
the set of strong (respectively weak) equivalence classes on E(A). If
71,72 € E(A), define 11 @ 72 € E(A) by 11 @ 12(a) = 11(a) & 72(a).
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Note that we have used the identification of Q(H) ® My with Q(H) in
the definition. This addition is associative, commutative, and respects
both the strong and weak equivalence classes. Thus, Ext®(A) and
Ext“(A) become commutative semigroups when equipped with this
addition. The zero elements of these semigroups can be defined as
follows. We say that an extension 7 is trivial if there is a unital *-
representation § : A — B(H) such that 7 = 7 o 6. Voiculescu showed
in [17] (see also [2]) that all trivial extensions of A are strongly (and
hence weakly) equivalent and that, if 75 is a trivial extension, then
[To]s (respectively [0, ) is the zero element of Ext®(A) (respectively
Ext“(A)). Trivial extensions always exist (see [2, Section 4]). However,
additive inverses do not always exist [1]. In the case that additive
inverses do exist in Ext®(A) (and hence in Ext*(A4)), Ext“(A) is
isomorphic to the quotient of the group Ext®(A) by the subgroup
consisting of all elements of the form [7]; where 7 is weakly equivalent
to a trivial extension. For further references on extension theory of
C*-algebras, see [2, 4, 5].

Now we are ready to determine Ext *(Uf7 ) and Ext *(Uf; ). It
has been shown by Pimsner and Popa [16] that Ext*(O,) = Z and
Ext¥(0,) 2 Z,,1 for n > 2. We will follow closely the approach used
by Paschke and Salinas in [15] in their computation of the Ext groups
of O,,. Much of what is presented here is repeated from [15] for the sake
of completeness. The most significant differences occur in the proofs
of Lemmas 4.2 and 4.3 where adjustments had to be made in order to

circumvent the problem of U(nr:’:),,n) not being simple for m # 1.

In order to compute the Ext semigroups of U(n;l ny We need the
following lemma, the proof of which can be found in [15, Lemma 1.1].

Lemma 4.1. Let P and Q be projections in B(H) and v a partial
isometry in Q(H) such that vv* = w(P) and v*v = 7(Q). There is a
partial isometry V in B(H) such that

(a) ©(V)=wv; and
(b) VV* <P and V*V < Q.

Moreover, the integer dim (Q — V*V) — dim (P — VV™*) is uniquely
determined by these conditions.
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Now let 7 € E(U(“Tz n)). Let v, € M, (Q(H)) = Q(H™) be defined as
follows

M 7(urr) -+ 7(urn) T
v = T(um1) -+ T(Umn)
0 0
L0 0 ]

Let P = I,,, ®0,—p,. Then v,vX = n(P) and v v, = 7([,). By Lemma
4.1, there exists a partial isometry V, € B(H"™) = M,,(B(H)) such that
w(V;) = v, and V. V* < P. Also the integer

m(r) = dim (I, — V*V;) — dim (P — V, V*)

is well defined. We now show that m is constant on strong equivalence
classes. Suppose o is strongly equivalent to 7. Let U be a unitary on
H such that

o) = w(U)r()m(U").
Let U be the direct sum of n copies of U. Then UP = PU. Let v,
be defined as v, is with ¢ in place of 7. Then vy, = 7(U)v.7(U").
Let V0 = UV,U". Then n(V?) = v, and VOV < P follows from
V.V < P and UP = PU. So in the definition of m(c) we can take
V, = V2. The fact that m(c) = m(7) now also follows from the fact
that U and P commute. We also have that m(r @ o) = m(7) + m(o).
This can be seen by observing that there exists a unitary matrix v in
M, such that v,q, = u(v,®v,)u* and taking Vg, to be u(V, ®V, )u*.
Thus m induces a semigroup homomorphism

m: Ext *(Ufy o) — Z.

(m,n)

In the following two lemmas, we compute the kernel and range of m.
Lemma 4.2. m(7) = 0 < 7 is trivial.

Proof. (=). Suppose T € E(Upy;, ) and m(7) = 0. Let V; be as in
Lemma 4.1. Then

dim (I — V;*V;) = dim (P — V, V).
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So if we replace V, with V, + X,, where X, is a finite rank partial
isometry with initial space (I —V*V,)H and final space (P — V,V*)H,
then we can assume V)V, = I and V,V = P. Now, since V; =
VV¥V, = PV,, it follows that the last n —m rows of V. are identically
zero. If we let T be the m by n matrix [T;;] consisting of the first m rows
of V., then the relations on V, imply that T*T = I, and TT* = I,,.
Then, by the universal property of U(‘}f%n), there is a unique unital
*-homomorphism
To : Ur;%m) — B(H)

such that 79(u;;) = T;;. Now 7(V;) = v, is equivalent to saying that
m(Ti;) = 7(usj) for all ¢, 7. Thus, (7o 79)(ui;) = 7(Ti;) = 7(us;) for all

i,j. Since U(nr(r:), n) is generated by the u;;, it follows that 7 = m o7y and
T is trivial.
(«<). Now suppose that 7 € E(Uglnin)) is trivial. Let 7o : Uy ) —

B(H) be a unital *-homomorphism such that 7 = 7 o 7. Let

[ 7o(u11) To(Uin) ]
VO = TO(Uml) 7o (umn)
T 0 0
L O 0o

- n

Then VYV = P and V2*V? since 79(1) = 1. Also, m(V?) = v,
follows from 7o 79 = 7. Hence, we can take V, = V! in the definition
of m(7o). Since

dim (I, — VV,) = dim (P — V, V) = 0,
it follows that m(r) =0. O
Lemma 4.3. m(Ext*(U")(m.n))) = Z.

Proof. Since m is a semigroup homomorphism, it suffices to show
that +1 € m(Ext*(Ufy;, ,)))- To see this, let @ be a one-dimensional
projection in B(H). Decompose H into the following two internal direct
sums

H=H,¢%---®H,

H=H'®---® H" ¢ QH,
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where H; and HY are infinite dimensional for all 1 < i < m and
1 <j<mn For2 <i<m,let R;, be an isometry of H; onto
H™ @ QH which vanishes on Hj, for k # 4. For all other (i, j), let R;;
be an isometry of H; onto H? which vanishes on Hy for k # i. If R is
the m by n matrix [R;;] and Q = Q®0& -+ ® 0 € M,,(B(H)), then
the following relations hold.

RR* =1, - Q, R*R=1I,.

Let Q=Q®0®---®0 € M,(B(H)). A similar construction yields an
m by n matrix T' = [T};] such that the following relations hold

T7* =1, T'T=I,-0.

The above relations on R and 7 imply the following relations on
m(R) = [r(Rij)] and 7 (T') = [r(T3;)]

7(R)m(R)* = n(T)w(T)* = Iy,
m(R)*n(R) = n(T)*n(T) = IL,.

So there are unique unital *-homomorphisms
7,0 : Ul ny — Q(H)

such that 7(u;;) = 7(R;;) and o(u;;) = 7(T;;). By adding trivial
extensions to each, we can assume that 7 and o are *-monomorphisms.
Let V.2 be the n by n matrix whose first m rows are the rows of R and
whose remaining rows are zero. Similarly, define V! with respect to
the matrix 7. It not follows easily that 7(V.°) = v, and 7(V?) = v,.
We also have the following inequalities

VOV =RR*®0,_m=P - Q<P
V>*V? = R*R = I,.

Similarly, V.2*V? = I,, — Q and V'V * = P. Thus, we can take V; and
V, as in Lemma 4.1 to be V.2 and V.2, respectively. Hence

m(r) = dim (I,, — V;*V,) — dim (P — V,V*) = 0 — dim (Q) = —1
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and

m(o) = dim (I, —V;V,)—dim (P—V,V;) =dim(Q)-0=+1. O

Theorem 4.4. Ext(UP¢ ) is a group isomorphic to Z.

(m,n)

Proof. To see that Ext *(UP° ) is a group, let 7 € E(UPS ). Then,

by Lemma 4.3, there is a 7'5 € )E(U(nrzn)) such that m(T(') :) —m(7).
Hence, m(t @ 1') = m(7) + m(r') = 0. By Lemma 4.2, 7 & 7' is trivial
and hence [r]; 4+ [t']s = 0. Now m is a group homomorphism from
Ext 5( (“Tfm)) to Z which is injective by Lemma 4.2 and surjective by

Lemma 4.3. O

Theorem 4.5. Ext*(UPS ) = Zy_p,.

(m,n)

Proof. Let G denote the subgroup of Ext *(U(;, ,)) consisting of the

elements [7]; where 7 is weakly equivalent to some trivial extension.
It was remarked earlier that Ext* (U ) = Ext (U, ))/G. So we
need to compute the subgroup G. To this end, let 79 = w06 be a trivial
e})itension where 6 : UGS — B(H). Let u € Q(H) be a unitary such
that

7() = urp(-)u”.

The unitary w lifts to either an isometry or a coisometry in B(H).
Let V be such a lift of u. By the von Neumann-Wold decomposition
(13, Problem 118], V' is unitarily equivalent to U} @ W where W is a
unitary and U, is the unilateral shift operator. So we can replace T by
a strongly equivalent extension and write

() = m(Uf)7o(-)w(UL").

So G is the subgroup of Ext *(Ufy ) generated by [r1]s, where

71(:) = (U)o ()m(U3).-
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Let V) € M,(B(H)) be defined by

B U+9(u11)UJ*r e U+9(’U/1n)Uj; 7]
T 0 e 0
i 0 e 0 _
Then 7 (V) = vr,. Also V2 V>* is the direct sum of m copies of U, U}

(and is thus majorized by P) and V2*V? is the direct sum of n copies
of U Ux. So we can take V;, = V in the definition of m(r). Letting
p denote the one-dimensional projection 1 — U, U7 we see that

m(r) = dim (I, -V, V; ) — dim (P -V, V)

nVr
p p
= dim — dim
p ! On—m
=n—m.
So G = (n —m)Z and hence Ext“(Ufy, ) £ Zp—m. O

5. Concluding remarks. In the computation of K;(O,) in [8],
Cuntz made much use of the algebra &, defined as follows. If O,,41
is generated by the isometries Si,...,Sht1, then &, is defined to be
C*(S1,...,8,). &, was shown to be isomorphic to C*(11,...,Ty)
where the T} are any isometries satisfying 1117 +-- - +1, 1, < 1. If we
let T = [Ty - - - Tp,], then we can describe the above relations as T7* < 1
and T*T = I,,. So &, has a natural generalization &,,, with respect
to the algebra U(“Tfm). Let Emn be C*(uij |1 < i <m,1 < j < n)
where u;; are the generators of U(“nczn +1)- Then the generators wu;; of
Emn satisfy the relations UU* < I, and U*U = I,,, where U is the
m X n matrix [u;;]. Cuntz used the map from &, to O, which sends
S; € Opy1 to S; € O, in order to compute the K-groups of O,,. He
showed that the kernel of the above map is the ideal generated by the
projection P =1 —5;5f — - — S,S,;,. The elements of the form

(5.1) Siy - Si PSE - Sk
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form a system of matrix units €(ix,er i) (e 1) This fact follows from
the relation S;S; = d;;1 which is not the case for the u;;’s in Um )
when m # 1. Thus, the span of the elements in (5.1) is isomorphic to
M,,~. This was then used to show that the kernel of the map from &,
to O, is isomorphic to the algebra of compact operators on a separable
Hilbert space. This fact was used often in the K-theory computations.
In the case of the algebra Uf;. . there does not appear to be a simple
method of determining the kernel of the natural map from &, to

U( ny OF its K-groups.
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