MIXED CUSP FORMS AND POINCARÉ SERIES

MIN HO LEE

Introduction. Let $G \subset PSL(2,\mathbf{R})$ be a torsion-free Fuchsian group of the first kind acting on the Poincaré upper half plane \mathcal{H} by linear fractional transformations, and let $X = G \backslash \mathcal{H}$. Let E be an elliptic surface over X in the sense of Kodaira [5]. In [2], Hunt and Meyer introduced mixed cusp forms of type (2,1) and showed that the space $S_{2,1}(G,\omega,\chi)$ of mixed cusp forms of type (2,1) associated to ω and χ is isomorphic to the space of holomorphic 2-forms on E, where the holomorphic map $\omega: \mathcal{H} \to \mathcal{H}$ is the period map of the elliptic fibration $E \to X$ and the homomorphism $\chi: G \to SL(2,\mathbf{R})$ is the monodromy representation of G satisfying $\omega(gz) = \chi(g)\omega(z)$ for all $g \in G$ and $z \in \mathcal{H}$.

Let E be an elliptic surface over $X = G \setminus \mathcal{H}$. If m is a positive integer, an elliptic variety E^m is obtained by resolving the singularities of the compactification of the m-fold fiber product of E over X (see, e.g., [9] for details). In [6] some of the results of Hunt and Meyer were extended to higher weight cases. In particular, cusp forms of type (2, m) for m > 1 were introduced in that paper, and it was shown that the space $S_{2,m}(G, \omega, \chi)$ of cusp forms of type (2, m) associated to ω and χ is isomorphic to the space of holomorphic (m+1)-forms on E^m .

It is well known that the space of modular forms for $SL(2, \mathbf{Z})$ has a basis consisting of Poincaré series (see, e.g., [8, Section 8.3]). In [3], S. Katok considered relative Poincaré series associated to hyperbolic elements γ_0 of a Fuchsian group Γ of the first kind and showed that the space of cusp forms for Γ is generated by these Poincaré series. In [4], Katok and Millson reformulated the main results of [3] in terms of the homology $H_1(\Gamma, (S^{2m}V)^*)$ of the group Γ , where $S^{2m}V$ is the mth symmetric power of the standard two-dimensional complex representation of $SL(2, \mathbf{R})$.

In this paper we give a more precise definition of mixed automorphic forms of type (k,l), where k and l are nonnegative integers with k

Received by the editors on January 30, 1991.

even, and obtain results that extend some of the ones in [3] and [4] to mixed cusp forms. More precisely, we define the Poincaré series $\theta_{2,2k}(g_0,\omega,\chi)$ for each hyperbolic element g_0 of G and show that under certain conditions the space $S_{2,2k}(G,\omega,\chi)$ of mixed cusp forms of type (2,2k) is generated by a certain set of Poincaré series $\theta_{2,2k}(g_0,\omega,\chi)$.

1. Mixed automorphic forms. In this section we give a more precise definition of mixed cusp forms considered in [6] and [7]. Let $G \subset PSL(2, \mathbf{R})$ be a torsion-free Fuchsian group of the first kind acting on the Poincaré upper half plane \mathcal{H} . Let $\chi : G \to SL(2, \mathbf{R})$ be a homomorphism, and let $\omega : \mathcal{H} \to \mathcal{H}$ be a holomorphic map such that

$$\omega(gz) = \chi(g)\omega(z)$$

for all $g \in G$ and $z \in \mathcal{H}$. We assume that the inverse image of a parabolic subgroup under χ is also a parabolic subgroup. Let k and l be nonnegative integers with k even. Suppose that $f: \mathcal{H} \to \mathbf{C}$ is a holomorphic function such that

$$f(gz) = f(z)j(g,z)^k j(\chi(g),\omega(z))^l$$

for all $g \in G$ and $z \in \mathcal{H}$, where j(h, w) = cw + d if

$$h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbf{R}) \quad \text{or} \quad SL(2, \mathbf{R})$$

and $w \in \mathcal{H}$. Let $s \in \mathbf{R} \cup \{\infty\}$ be a G-cusp such that $\rho s = \infty$ and $\alpha s = s$, where α is a parabolic element of G and ρ is an element of $SL(2,\mathbf{R})$. If G_s is the subgroup of elements of G that fix s, then we have

$$\rho G_s \rho^{-1} \cdot \{\pm 1\} = \left\{ \pm \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}^n | n \in \mathbf{Z} \right\}$$

for some $h \in \mathbf{R}$. Since $\chi(\alpha)$ is a parabolic element of $\Gamma = \chi(G)$, there is a Γ -cusp s' such that $\chi(\alpha)s' = s'$. Let ρ' be an element of $SL(2, \mathbf{R})$ such that $\rho's' = \infty$, and assume that

$$\omega(\rho z) = \rho' \omega(z)$$

for all $z \in \mathcal{H}$. We set

$$\Phi_{\rho}(z) = f(\rho^{-1}z)j(\rho^{-1},z)^{-k}j(\rho'^{-1},\omega(z))^{-l}.$$

Using the relations

$$j(\rho g \rho^{-1}, z) = 1,$$
 $j(\rho' \chi(g) \rho'^{-1}, \omega(z)) = 1$

and

$$j(\alpha\beta, w) = j(\alpha, \beta w)j(\beta, w)$$

for $\alpha, \beta \in SL(2, \mathbf{R})$ and $w \in \mathcal{H}$, we obtain

$$j(\rho^{-1}, \rho g \rho^{-1} z) = j(g \rho^{-1}, z) j(\rho g \rho^{-1}, z)^{-1}$$
$$= j(g, \rho^{-1} z) j(\rho^{-1}, z)$$

and

$$\begin{split} j(\rho'^{-1}, \omega(\rho g \rho^{-1} z)) &= j(\rho'^{-1}, \rho' \chi(g) \rho'^{-1} \omega(z)) \\ &= j(\chi(g), \rho'^{-1} \omega(z)) j(\rho'^{-1}, \omega(z)). \end{split}$$

Hence, we have

$$\Phi_{\rho}(z+h) = \Phi_{\rho}(\rho g \rho^{-1} z) = \Phi_{\rho}(z).$$

Therefore, there exists a function ϕ on the punctured unit disk $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ such that

$$\Phi_{\rho}(z) = \phi(e^{2\pi i z/h})$$

for all $z \in \mathcal{H}$. If the Laurent series expansion of ϕ at 0 is

$$\phi(w) = \sum_{n=N}^{\infty} a_n w^n,$$

then we obtain the expansion of Φ_{ρ} of the form

$$\Phi_{\rho}(z) = \sum_{n=N}^{\infty} a_n e^{2\pi i z/h}$$

for $z \in \mathcal{H}$ with $\operatorname{Im} z > M > 0$ for sufficiently large M. This series will be called the Fourier expansion of f(z) at the cusp s. The function f is said to be holomorphic at s if $N \geq 0$, and it is said to vanish at s if N > 0. Now we are ready to define mixed automorphic forms.

Definition. A holomorphic function $f : \mathcal{H} \to \mathbf{C}$ is said to be a mixed automorphic form of type (k, l) if f satisfies the following conditions:

- (i) $f(gz) = f(z)j(g,z)^k j(\chi(g),\omega(z))^l$ for all $g \in G$ and $z \in \mathcal{H}$.
- (ii) f is holomorphic at each G-cusp.

The function f is said to be a mixed cusp form of type (k, l) if (ii) is replaced by

- (ii)' f vanishes at each G-cusp.
- **2.** The inner product. Let G, ω , and χ be as in Section 1, and let k and l be nonnegative integers with k even. In this section we define the inner product $\langle \ , \ \rangle$ on the space $S_{k,l}(G,\omega,\chi)$ of mixed cusp forms of type (k,l) associated to G, ω , and χ , which generalizes the Petersson inner product on the usual cusp forms.

Proposition 2.1. If $f, h \in S_{k,l}(G, \omega, \chi)$, then the integral

$$\int_{G\backslash \mathcal{H}} f(z)\overline{h(z)}(\operatorname{Im} z)^{k-2}(\operatorname{Im} \omega(z))^{l} dx dy$$

is well defined.

Proof. It can be easily shown that both

$$f(z)\overline{h(z)}(\operatorname{Im} z)^k(\operatorname{Im} \omega(z))^l$$

and

$$(\operatorname{Im} z)^{-2} dx dy$$

are G-invariant. Therefore, it suffices to show that the integral converges. To prove the convergence, it is sufficient to show that $f(z)\overline{h(z)}(\operatorname{Im} z)^k(\operatorname{Im} \omega(z))^l$ is continuous as a function on the quotient space $G \setminus \mathcal{H}^*$ at the points corresponding to the cusps of G. Thus, let s be a cusp of G, and let ρ be an element of $SL(2,\mathbf{R})$ such that $\rho(s)=\infty$ as in Section 1. If $G_s=\{g\in G|gs=s\}$, then

$$\rho G_s \rho^{-1} \cdot \{\pm 1\} = \left\{ \pm \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}^n \mid n \in \mathbf{Z} \right\}$$

for some $h\in {\bf R}.$ If $q=e^{2\pi iz/h},$ there are functions $\phi(q)$ and $\psi(q)$ holomorphic at q=0 such that

$$f(\rho^{-1}z)j(\rho^{-1},z)^{-k}j((\rho')^{-1},\omega(z))^{-l} = \phi(q)$$

and

$$h(\rho^{-1}z)j(\rho^{-1},z)^{-k}j((\rho')^{-1},\omega(z))^{-l} = \psi(q),$$

where ρ' is an element of $SL(2, \mathbf{R})$ associated to ρ as in Section 1. Hence, we have

$$\begin{split} f(\zeta)\overline{h(\zeta)}(\operatorname{Im}\zeta)^k(\operatorname{Im}\omega(\zeta))^l \\ &= f(\rho^{-1}z)\overline{h(\rho^{-1}z)}(\operatorname{Im}\rho^{-1}z)^k(\operatorname{Im}\omega(\rho^{-1}z))^l \\ &\cdot \phi(e^{2\pi iz/h})\overline{\psi(e^{2\pi iz/h})}(\operatorname{Im}z)^k(\operatorname{Im}\omega(z))^l. \end{split}$$

Since $\phi(0) = \psi(0) = 0$, we see that this function is continuous at the point in $G \setminus \mathcal{H}^*$ corresponding to the cusp s.

Now we define the inner product $\langle f, h \rangle$ of $f, h \in S_{k,l}(G, \omega, \chi)$ by the integral in Proposition 2.1, which is a generalization of the Petersson inner product for classical cusp forms.

3. Poincaré series. Let G, ω , and χ be as in Section 1. We denote by $S_{k,l}(G,\omega,\chi)$ the space of mixed cusp forms of type (k,l) associated to G,ω,χ . If χ is a monodromy representation of an elliptic surface E, then it is known [6, Theorem 3.2] that the space $S_{2,2k}(G,\omega,\chi)$ is canonically isomorphic to the space of holomorphic (2k+1)-forms on an elliptic variety E^{2k} . In this section we discuss Poincaré series associated to a mixed cusp form in $S_{k,l}(G,\omega,\chi)$. If $f:\mathcal{H}\to \mathbf{C}$ is a holomorphic function and $g\in G$, we set

$$(f|_{(k,l)}g)(z) = j(g,z)^{-k}j(\chi(g),\omega(z))^{-l}f(gz)$$

Proposition 3.1. Let G_0 be a subgroup of G, and let $f: \mathcal{H} \to \mathbf{C}$ be a holomorphic function such that

$$f|_{(2,2k)}g = f$$

1014

M.H. LEE

for all $g \in G_0$ and

$$\int_{G_0 \setminus \mathcal{H}} |f(z)| (\operatorname{Im} z) (\operatorname{Im} \omega(z))^k dV < \infty.$$

Then

(i) The series

$$F(z) = \sum_{g \in G_0 \setminus G} (f|_{(2,2k)}g)(z)$$

converges absolutely on ${\mathcal H}$ and uniformly on compact sets.

(ii) F(z) is a mixed cusp form of type (2,2k) in $S_{2,2k}(G,\omega,\chi)$.

Proof. (i) This follows from a more general statement in $[\mathbf{1},$ Theorem 9.1].

(ii) If $h \in G$, then we have

$$\begin{split} &F(hz)j(h,z)^{-2}j(\chi(h),\omega(z))^{-2k} \\ &= \sum_{g \in G_0 \backslash G} f(g(hz))j(g,hz)^{-2}j(\chi(g),\omega(hz))^{-2k}j(h,z)^{-2}j(\chi(h),\omega(z))^{-2k} \\ &= \sum_{g \in G_0 \backslash G} f(ghz)j(gh,z)^{-2}j(\chi(gh),\omega(z))^{-2k} \\ &= \sum_{g \in G_0 \backslash G} (f|_{(2,2k)}gh)(z) = F(z). \end{split}$$

The cusp condition follows from the finiteness of the integral. Hence, it follows that $F(z) \in S_{2,2k}(G,\omega,\chi)$.

The series in Proposition 3.1(i) will be called a relative Poincaré series determined by the holomorphic function f.

Proposition 3.2. Let $\phi \in S_{2,2k}(G,\omega,\chi)$, and let

$$F(z) = \sum_{g \in G_0 \setminus G} (f|_{(2,2k)}g)(z)$$

for some holomorphic function $f: \mathcal{H} \to \mathbf{C}$ that satisfies $f|_{(2,2k)}g = f$ for all $g \in G_0$. If $\langle \ , \ \rangle$ is the inner product defined in Section 2, then we have

$$\langle \phi, F \rangle = \int_{G_0 \setminus \mathcal{H}} \phi(z) \overline{f(z)} (\operatorname{Im} z)^2 (\operatorname{Im} \omega(z))^{2k} dV$$

where $dV = dx \, dy/(\operatorname{Im} z)^2$.

Proof. Using the definition of the inner product \langle , \rangle , we have

$$\begin{split} \langle \phi, F \rangle &= \int_{G \backslash \mathcal{H}} \phi(z) \bigg(\overline{\sum_{g \in G_0 \backslash G} (f|_{(2,2k)}g)(z)} \bigg) (\operatorname{Im} z)^2 (\operatorname{Im} \omega(z))^{2k} \, dV \\ &= \sum_{g \in G_0 \backslash G} \int_{G \backslash \mathcal{H}} \phi(z) \overline{f(z)j(g,z)}^{-2} \overline{j(\chi(g),\omega(z))}^{-2k} (\operatorname{Im} z)^2 \\ & \cdot (\operatorname{Im} \omega(z))^{2k} \, dV \\ &= \sum_{g \in G_0 \backslash G} \int_{G \backslash \mathcal{H}} \phi(gz) j(G,z)^{-2} j(\chi(g),\omega(z))^{-2k} \overline{f(z)j(g,z)}^{-2} \\ & \cdot \overline{j(\chi(g),\omega(z))}^{-2k} \\ & \cdot (\operatorname{Im} gz)^2 |j(g,z)|^4 (\operatorname{Im} \omega(gz))^{2k} |j(\chi(g),\omega(z))|^{4k} \, dV \\ &= \sum_{g \in G_0 \backslash G} \int_{G \backslash \mathcal{H}} \phi(gz) \overline{f(gz)} (\operatorname{Im} gz)^2 (\operatorname{Im} \omega(gz))^{2k} \, dV \\ &= \int_{G_0 \backslash \mathcal{H}} \phi(z) \overline{f(z)} (\operatorname{Im} z)^2 (\operatorname{Im} \omega(z))^{2k} \, dV. \quad \Box \end{split}$$

4. Hyperbolic elements. Let g_0 be a hyperbolic element of G, and let $\chi: G \to SL_2(\mathbf{R})$ be as in Section 1. We assume that the fixed points of g_0 and the fixed points of $\chi(g_0)$ correspond in the sense described in the next paragraph.

Let $z_1, z_2 \in \mathbf{R} \cup \{i\infty\}$ be the two fixed points of g_0 , and let $h \in PSL(2, \mathbf{R})$ be an element that transforms the geodesic between z_1 and z_2 to the ray $[0, i\infty]$ with $hz_1 = 0$ and $hz_2 = i\infty$. Similarly, let

1016

 $w_1, w_2 \in \mathbf{R} \cup \{i\infty\}$ be the fixed points of $\chi(g_0)$, and let $h' \in SL(2, \mathbf{R})$ be an element that transforms the geodesic between w_1 and w_2 to the ray $[0, i\infty]$ with $h'w_1 = 0$ and $h'w_2 = i\infty$. Then we assume that h and h' satisfy the relation

$$\omega(hz) = h'\omega(z)$$

for all $z \in \mathcal{H}$.

If the hyperbolic element g_0 of $G \subset PSL(2, \mathbf{R})$ can be represented by the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{R})$$

with $\operatorname{tr} g_0 > 0$, then we set

$$Q_{g_0}(z) = cz^2 + (d - a)z - b.$$

Similarly, we set

$$Q_{\chi(q_0)}(\omega(z)) = c_{\chi}\omega(z)^2 + (d_{\chi} - a_{\chi})\omega(z) - b_{\chi}$$

if

$$\chi(g_0) = \left(egin{array}{cc} a_\chi & b_\chi \ c_\chi & d_\chi \end{array}
ight) \in SL(2,{f R}).$$

Lemma 4.1. If $\alpha \in PSL(2, \mathbf{R})$ and $\beta \in SL(2, \mathbf{R})$, then we have

$$Q_{g_0}(\alpha z)j(\alpha,z)^2 = Q_{\alpha^{-1}\cdot g_0\cdot \alpha}(z)$$

and

$$Q_{\chi(g_0)}(\beta\omega(z))j(\beta,\omega(z))^2 = Q_{\beta^{-1}\cdot\chi(g_0)\cdot\beta}(\omega(z))$$

for all $z \in \mathcal{H}$.

Proof. Let g_0 and α be represented by the matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$,

respectively, in $SL(2, \mathbf{R})$ with a + b > 0 and $a_1 + b_1 > 0$. Then the matrix $\alpha^{-1} \cdot g_0 \cdot \alpha$ is represented by

$$\begin{pmatrix} aa_1d_1-a_1b_1c+bc_1d_1-b_1c_1d & ab_1d_1-b_1^2c+bd_1^2-b_1dd_1\\ -aa_1c_1+a_1^2c-bc_1^2+a_1c_1d & -ab_1c_1+a_1b_1c-bc_1d_1+a_1dd_1 \end{pmatrix}$$

and

$$Q_{g_0}(\alpha z) = (c_1 + d_1)^{-2} [c(a_1 z + b_1)^2 + (d - a)(a_1 z + b_1)(c_1 z + d) - b(c_1 z + d_1)^2]$$
$$= j(\alpha, z)^{-2} Q_{\alpha^{-1} \cdot g_0 \cdot \alpha}(z).$$

Thus, the first relation of the lemma follows. The second relation follows easily from the first. \Box

5. Periods of mixed cusp forms. In this section we define Poincaré series associated to a hyperbolic element of G and express the inner product of this Poincaré series and a mixed cusp form in terms of the period of the mixed cusp form. Let g_0 be a hyperbolic element of G, and, as in Section 4, let $h \in PSL(2, \mathbf{R})$ (respectively, $h' \in SL(2, \mathbf{R})$) be an element that transforms the geodesic between the fixed points of g_0 (respectively, $\chi(g_0)$) to the ray $[0, i\infty]$ with $\omega(hz) = h'(z)$, $z \in \mathcal{H}$. Then we have

$$h^{-1} \cdot g_0 \cdot h = \begin{pmatrix} \delta & 0 \\ 0 & \delta \end{pmatrix}$$

where $\delta = \operatorname{tr} g_0 + \sqrt{(\operatorname{tr} g_0)^2 - 4}$. We also have

$$h'^{-1} \cdot \chi(g_0) \cdot h' = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix}$$

where

$$\varepsilon = \begin{cases} \operatorname{tr}(\chi(g_0)) + \sqrt{(\operatorname{tr}\chi(g_0))^2 - 4} & \text{if } \operatorname{tr}\chi(g_0) > 0\\ \operatorname{tr}(\chi(g_0)) - \sqrt{(\operatorname{tr}\chi(g_0))^2 - 4} & \text{if } \operatorname{tr}\chi(g_0) < 0. \end{cases}$$

For $g \in G$, by Lemma 4.1 we have

$$\begin{split} Q_{\chi(g_0)}^{-k}(\omega(z))Q_{g_0}^{-1}(z)|_{(2,2k)} \\ &= j(g,z)^{-2}j(\chi(g),\omega(z))^{-2k}Q_{\chi(g_0)}^{-k}(\omega(gz))Q_{g_0}^{-1}(gz) \\ &= Q_{\chi(g^{-1}g_0g)}^{-k}(\omega(z))Q_{g^{-1}g_0g}^{-1}(z). \end{split}$$

Thus, if $g \in G_0$, then we have

$$Q_{\chi(g_0)}^{-k}(\omega(z))Q_{g_0}^{-1}(z)|_{(2,2k)} = Q_{\chi(g_0)}^{-k}(\omega(z))Q_{g_0}^{-1}(z).$$

1018 M.H. LEE

Now we denote by $\theta_{2,2k}(g_0,\omega,\chi)$ the Poincaré series determined by $Q_{\chi(g_0)}^{-k}(\omega(z))Q_{g_0}^{-1}(z)$, i.e.,

$$\theta_{2,2k}(g_0,\omega,\chi) = \sum_{g \in G_0 \setminus G} Q_{\chi(g_0)}^{-k}(\omega(z)) Q_{g_0}^{-1}(z)|_{(2,2k)}.$$

Theorem 5.1. Let $\langle \ , \ \rangle$ be the generalized Petersson inner product defined in Section 2, and let $\phi(z)$ be a mixed cusp form in $S_{2,2k}(G,\omega,\chi)$. Let $z=re^{i\theta}$ and $\omega(z)=Re^{i\theta}$ be the polar representations of z and $\omega(z)$. If we assume that φ is a function of θ only, then we have

$$\langle \phi(z), \theta_{2,2k}(g_0, \omega, \chi) \rangle = C \int_{z_0}^{\gamma z_0} \phi(z) Q_{\chi(g_0)}^k(\omega(z)) dz,$$

where

$$C = D_0^{1/2} (D_0')^k \left(\int_0^{2\pi} (\sin 2\varphi)^{2k} d\theta \right)^{-1},$$

 z_0 is an arbitrary point in \mathcal{H} , and the integral is taken along a piecewise continuous path joining z_0 and gz_0 .

Proof. By Proposition 3.2, we have

$$\begin{split} &\langle \phi(z), \theta_{2,2k}(g_0, \omega, \chi) \rangle \\ &= \int \int_{\mathcal{F}} \phi(z) \overline{Q_{\chi(g_0)}^{-k}(\omega(z)) Q_{g_0}^{-1}(z)} (\operatorname{Im} z)^2 (\operatorname{Im} \omega(z))^{2k} (\operatorname{Im} z)^{-2} \, dx \, dy \\ &= \int \int_{\mathcal{F}_1} \phi(hz) \overline{Q_{\chi(g_0)}^{-k}(h'\omega(z))} \overline{Q_{g_0}^{-1}(hz)} (\operatorname{Im} hz)^2 (\operatorname{Im} h'\omega(z))^{2k} \\ &\qquad \qquad \cdot (\operatorname{Im} z)^{-2} \, dx \, dy \\ &= \int \int_{\mathcal{F}_1} \phi(hz) \overline{((-1)^{\operatorname{tr} \chi(g_0)} \sqrt{D_0'}\omega(z))}^{-k} \overline{j(h', \omega(z))}^{2k} (\overline{\sqrt{D_0}z})^{-1} \overline{j(h, z)}^2 \\ &\qquad \qquad \cdot |j(h, z)|^{-4} (\operatorname{Im} z)^2 |j(h', \omega(z))|^{-4k} (\operatorname{Im} \omega(z))^{2k} (\operatorname{Im} z)^{-2} \, dx \, dy, \end{split}$$

where \mathcal{F} is a fundamental domain of G in \mathcal{H} , $\mathcal{F}_1 = h^{-1}\mathcal{F}$, $D_0 = (\operatorname{tr} g_0)^2$ and $D'_0 = (\operatorname{tr} \chi(g_0))^2 - 4$. Thus, if

$$C_1 = (-1)^{k \operatorname{tr} \chi(g_0)} (D_0')^{-k/2} (D_0)^{-1/2}$$

then the last integral becomes

$$C_{1} \int \int_{\mathcal{F}_{1}} \phi(hz) \overline{\omega(z)}^{-k} \overline{z}^{-1} j(h', \omega(z))^{-4k} j(h, z)^{-2} (\operatorname{Im} \omega(z))^{2k} dx dy$$

$$= C_{1} \int \int_{\mathcal{F}_{1}} \phi(hre^{i\theta}) \rho^{-k} (e^{-i\varphi})^{-k} (re^{-i\theta})^{-1} j(h', \omega(z))^{-2k}$$

$$\cdot j(h, z)^{-2} \rho^{2k} (\sin \varphi)^{2k} r dr d\theta$$

$$= C_{1} \int \int_{\mathcal{F}_{1}} \phi(hre^{i\theta}) \rho^{k} e^{-ik\varphi} j(h', \omega(z))^{-2k} j(h, z)^{-2} (\sin \varphi)^{2k} e^{i\theta} dr d\theta$$

$$= C_{1} \int \int_{\mathcal{F}_{1}} \phi(hz) \omega(z)^{k} j(h', \omega(z))^{-2k} j(h, z)^{-2} (\sin \varphi)^{2k} dz d\theta$$

$$= C_{1} C_{2} \int_{0}^{\infty} \phi(hz) \omega(z)^{k} j(h', \omega(z))^{-2k} j(h, z)^{-2} dz,$$

where

$$C_2 = \int_0^{2\pi} (\sin 2\varphi)^{2k} d\theta.$$

On the other hand, if z_0 is a point in \mathcal{H} , we have

$$\begin{split} & \int_{z_0}^{\gamma z_0} \phi(z) Q_{\chi(g_0)}^k(\omega(z)) \, dz \\ & = \int_0^{i\infty} \phi(hz) Q_{\chi(g_0)}^k(\omega(hz)) j(h,z)^{-2} \, dz \\ & = \int_0^{i\infty} \phi(hz) ((-1)^{\operatorname{tr} \chi(g_0)} \sqrt{D_0'} \omega(z))^k (j(h',\omega(z))^{-2})^{-k} j(h,z)^{-2} \, dz \\ & = C_3 \int_0^{i\infty} \phi(hz) (\omega(z)^k) j(h',\omega(z))^{-2k} j(h,z)^{-2} \, dz, \end{split}$$

where

$$C_3 = (-1)^{k \operatorname{tr} \chi(g_0)} (D_0')^{k/2}.$$

Now the theorem follows from the above computations.

6. The Kronecker pairing. Let V be the space of the standard two-dimensional complex representation of $SL(2,\mathbf{R})$, and let V^* be its dual; let $S^{2k}V$ be the $2k^{\text{th}}$ symmetric power of V, and let $(S^{2k}V)^*$ be its dual. If $\{u_1,u_2\}$ is the standard basis for V^* , then $(S^{2k}V)^*$ can be

identified with the space of all homogeneous polynomials $P_{2k}(u_1, u_2)$ of degree 2k in u_1 and u_2 . Let $\chi: G \to SL(2, \mathbf{R})$ and $\omega: \mathcal{H} \to \mathcal{H}$ be as in Section 2. Then χ induces an action of $G \subset PSL(2, \mathbf{R})$ on V and on $S^{2k}V$. G also acts on $(S^{2k}V)^*$ by

$$g \cdot P_{2k}(u_1, u_2) = P_{2k}(d_{\chi}u_1 - b_{\chi}u_2, -c_{\chi}u_1 + a_{\chi}u_2)$$

where

$$\chi(g) = \begin{pmatrix} a_{\chi} & b_{\chi} \\ c_{\chi} & d_{\chi} \end{pmatrix}.$$

Thus, we can consider the cohomology $H^1(G, S^{2k}V)$ and the homology $H_1(G, (S^{2k}V)^*)$ with respect to the actions of G on $S^{2k}V$ and on $(S^{2k}V)^*$ described above. Then there is a canonical injective homomorphism

$$\Psi: S_{2,2k}(G,\omega,\chi) \to H^1(G,S^{2k}V).$$

We shall denote by $\langle \langle , \rangle \rangle$ the canonical pairing

$$H^1(G, S^{2k}V) \otimes H_1(G, (S^{2k}V)^*) \to \mathbf{C},$$

called the Kronecker pairing (see [4, p. 738 and p. 745]). We set

$$Q_g^k = (c_{\chi}u_1^2 + (d_{\chi} - a_{\chi})u_1u_2 - b_{\chi}u_2^2)^k \in (S^{2k}V)^*.$$

Then $g \otimes \mathcal{Q}_G^k$ is a cycle in $H_1(G, (S^{2k}V)^*)$ (see [7, Lemma 3.3]), and we have the following theorem:

Theorem 6.1. If $g \in G$ and $f \in S_{2,2k}(G,\omega,\chi)$, then we have

$$\begin{split} \langle \langle \Psi(f), g \otimes \mathcal{Q}_g^k \rangle \rangle \ &= \int_{z_0}^{gz_0} f(z) (c_\chi \omega(z)^2 + (d_\chi - a_\chi) \omega(z) - b_\chi)^k \, dz, \end{split}$$

where z_0 is an arbitrary point in the Poincaré upper half plane \mathcal{H} and the integral is taken along any piecewise continuous path joining z_0 and gz_0 .

Proof. See [7, Theorem 3.4].

Corollary 6.2. If ρ is a parabolic element of G and $f \in S_{2,2k}(G,\omega,\chi)$, then

$$\langle \langle \Psi(f), \rho \otimes \mathcal{Q}_{\rho}^k \rangle \rangle = 0.$$

Proof. This follows easily by considering the limit of the integral in Theorem 6.1 as z_0 approaches the fixed point of ρ .

Theorem 6.3. Let Γ be a subset of G, and let S be the set of cycles in

$$H_1(G, (S^{2k}V)^*)$$

of the form $\gamma \otimes \mathcal{Q}_{\gamma}^k$ for $\gamma \in \Gamma$. Suppose that ω satisfies the condition described in Theorem 5.1 and that \mathcal{S} spans $H_1(G,(S^{2k}V)^*)$. Then the set of Poincaré series $\Theta = \{\theta_{2,2k}(g_0,\omega,\chi) \mid g_0 \in \mathcal{S}\}$ spans $S_{2,2k}(G,\omega,\chi)$.

Proof. Let W be the subspace of $S_{2,m}(G,\omega,\chi)$ spanned by the set Θ , and suppose that $f \in S_{2,m}(G,\omega,\chi)$ is orthogonal to W relative to the generalized Petersson inner product $\langle \ , \ \rangle$ defined in Section 2. It suffices to show that f=0. Using Theorems 5.1 and 6.1, if g_0 is a hyperbolic element of G, then we have

$$0 = \langle \phi(z), \theta_{2,2k}(g_0, \omega, \chi) \rangle = C \int_{z_0}^{\gamma z_0} \phi(z) Q_{\chi(g_0)}^k(\omega(z)) dz$$
$$= \langle \langle \Psi(f), g_0 \otimes Q_{g_0}^k \rangle \rangle.$$

Thus, $\Psi(f)$ is orthogonal to all hyperbolic cycles in \mathcal{S} . By Corollary 6.2, $\Psi(f)$ is also orthogonal to parabolic cycles in \mathcal{S} . Since the Kronecker pairing $\langle\langle \ , \ \rangle\rangle$ is nondegenerate, we have $\Psi(f)=0$ (note that G and $\chi(G)$ do not contain elliptic elements by our assumption). Since Ψ is injective, it follows that f=0.

REFERENCES

- 1. A. Borel, An introduction to automorphic forms, Proc. Sympos. Pure Math. 9 (1966).
- 2. B. Hunt and W. Meyer, Mixed automorphic forms and invariants of elliptic surfaces, Math. Ann. 271 (1985), 53-80.

- $\bf 3.~S.~Katok,~\it Closed~geodesics,~\it periods~and~arithmetic~of~modular~forms,~Inv.~Math.~\bf 80~(1985),~469–480.$
- 4. S. Katok and J. Millson, Eichler-Shimura homology, intersection numbers and rational structures on spaces of modular forms, Trans. Amer. Math. Soc. 300 (1987), 737-757.
- K. Kodaira, On compact analytic surfaces II-III, Ann. Math. 77 (1963), 563-626; 78 (1963), 1-40.
- 6. M.H. Lee, Mixed cusp forms and holomorphic forms on elliptic varieties, Pacific J. Math. 132 (1988), 363–370.
- 7. ——, On the Kronecker pairing for mixed cusp forms, Manuscripta Math. 71 (1991), 35–44.
- $\bf 8.~J.~Lehner,~\it Discontinuous~groups~and~automorphic~functions,~Math.~Surveys~Monographs~\bf 8~(1964).$
- 9. V.V. Šokurov, Holomorphic differential forms of higher degree on Kuga's modular varieties, Math. USSR Sb. 30 (1976), 119-142.

Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa $50614\,$