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MIXED CUSP FORMS AND POINCARE SERIES
MIN HO LEE

Introduction. Let G C PSL(2,R) be a torsion-free Fuchsian group
of the first kind acting on the Poincaré upper half plane H by linear
fractional transformations, and let X = G\H. Let E be an elliptic
surface over X in the sense of Kodaira [5]. In [2], Hunt and Meyer
introduced mixed cusp forms of type (2,1) and showed that the space
S2.1(G,w,X) of mixed cusp forms of type (2,1) associated to w and
X is isomorphic to the space of holomorphic 2-forms on FE, where the
holomorphic map w : H — H is the period map of the elliptic fibration
E — X and the homomorphism X : G — SL(2,R) is the monodromy
representation of G satisfying w(gz) = X(g)w(z) for all ¢ € G and
z€H.

Let E be an elliptic surface over X = G\H. If m is a positive integer,
an elliptic variety E™ is obtained by resolving the singularities of the
compactification of the m-fold fiber product of E over X (see, e.g.,
[9] for details). In [6] some of the results of Hunt and Meyer were
extended to higher weight cases. In particular, cusp forms of type
(2,m) for m > 1 were introduced in that paper, and it was shown that
the space S2 (G, w,X) of cusp forms of type (2,m) associated to w
and X is isomorphic to the space of holomorphic (m + 1)-forms on E™.

It is well known that the space of modular forms for SL(2,Z) has a
basis consisting of Poincaré series (see, e.g., [8, Section 8.3]). In [3],
S. Katok considered relative Poincaré series associated to hyperbolic
elements vy of a Fuchsian group I' of the first kind and showed that
the space of cusp forms for I' is generated by these Poincaré series.
In [4], Katok and Millson reformulated the main results of [3] in
terms of the homology H;(I',(5*™V)*) of the group I, where S?™V
is the mth symmetric power of the standard two-dimensional complex
representation of SL(2,R).

In this paper we give a more precise definition of mixed automorphic
forms of type (k,l), where k and [ are nonnegative integers with k
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even, and obtain results that extend some of the ones in [3] and [4]
to mixed cusp forms. More precisely, we define the Poincaré series
62,21 (go,w, X) for each hyperbolic element go of G and show that under
certain conditions the space S3 2 (G, w, X) of mixed cusp forms of type
(2,2k) is generated by a certain set of Poincaré series 62 2k (g0, w, X).

1. Mixed automorphic forms. In this section we give a more
precise definition of mixed cusp forms considered in [6] and [7]. Let
G C PSL(2,R) be a torsion-free Fuchsian group of the first kind acting
on the Poincaré upper half plane H. Let x : G — SL(2,R) be a
homomorphism, and let w : # — H be a holomorphic map such that

w(gz) = X(g)w(2)

for all g € G and z € H. We assume that the inverse image of a
parabolic subgroup under X is also a parabolic subgroup. Let k£ and
l be nonnegative integers with k even. Suppose that f: H — Cis a
holomorphic function such that

fg2) = £(2)i(g,2)"i(x(g), w(2))’
for all g € G and z € H, where j(h,w) = cw + d if

h = (‘Z Z) € PSL(2,R) or SL(2,R)

and w € H. Let s € RU{o0} be a G-cusp such that ps = oo and
as = s, where « is a parabolic element of G and p is an element of
SL(2,R). If G, is the subgroup of elements of G that fix s, then we

have n
pGep™ ! {£1} = { + ((1] }ll> [n € Z}

for some h € R. Since X(«) is a parabolic element of I' = X(G), there
is a T-cusp s’ such that x(a)s’ = s'. Let p’ be an element of SL(2,R)
such that p's’ = oo, and assume that

w(pz) = p'w(z)
for all z € H. We set

@,(2) = flpt2)i(p b 2) Kot w(z)
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Using the relations

ilpgp™Y2) =1, G(p'x(g)p' ™ w(2)) =1
and
j(aB,w) = j(a, fw)j(B,w)
for a, 8 € SL(2,R) and w € H, we obtain

1 -1

i(p™ pgp"2) = j(gp™ ", 2)i(pgp™ ", 2)

Hence, we have
B (2 +h) = @,(pgp '2) = B,y(2).

Therefore, there exists a function ¢ on the punctured unit disk
{z € C |0 < |z| <1} such that

,(2) = P>/

for all z € H. If the Laurent series expansion of ¢ at 0 is

¢(w) = Z a,w",
n=N

then we obtain the expansion of ®, of the form

oo

Qp(z) — Z ane%riz/h

n=N

for z € H with Im 2z > M > 0 for sufficiently large M. This series will
be called the Fourier expansion of f(z) at the cusp s. The function f
is said to be holomorphic at s if N > 0, and it is said to vanish at s if
N > 0. Now we are ready to define mixed automorphic forms.
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Definition. A holomorhic function f : H — C is said to be a mixed
automorphic form of type (k,[) if f satisfies the following conditions:

(i) f(g2) = f(2)i(g9,2)"i(X(g), w(2))' for all g € G and 2z € H.
(ii) f is holomorphic at each G-cusp.

The function f is said to be a mixed cusp form of type (k,!) if (ii) is
replaced by

(ii)" f vanishes at each G-cusp.

2. The inner product. Let GG, w, and X be as in Section 1, and
let £ and I be nonnegative integers with k£ even. In this section we
define the inner product ( , ) on the space S ;(G,w,X) of mixed
cusp forms of type (k,) associated to G, w, and X, which generalizes
the Petersson inner product on the usual cusp forms.

Proposition 2.1. If f,h € S (G,w,X), then the integral
f(2)h(2)(Im 2)* 2 (Imw(2))" dz dy
G\H

1s well defined.

Proof. It can be easily shown that both
F(2)h(z)(Im 2)* (Imw(2))!

and
(Im 2) "2 dz dy

are G-invariant. Therefore, it suffices to show that the integral
converges. To prove the convergence, it is sufficient to show that
f(z)h(z)(Im 2)*(Imw(z))" is continuous as a function on the quotient
space G\'H* at the points corresponding to the cusps of G. Thus, let s
be a cusp of G, and let p be an element of SL(2, R) such that p(s) = oo
as in Section 1. If G5 = {g € G|gs = s}, then

pGsp™t - {£1} = { + ((1] }ll>n|n€ z}
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for some h € R. If ¢ = €*>™*/" there are functions ¢(¢q) and (q)
holomorphic at ¢ = 0 such that

Flo ')~ 2) 7R i((p) 7 w(2) ' = la)

and

h(p™2)i(p™"2) 7 () w(2) ™ = ¥(q),

where p’ is an element of SL(2,R) associated to p as in Section 1.
Hence, we have

F(QR(¢)(Im ()* (Imw(())’
= f(p™'2)h(p~12)(Im p~'2)*(Imw(p~*2))"
(YT (Im ) (Im (<))

Since ¢(0) = 1(0) = 0, we see that this function is continuous at the
point in G\H* corresponding to the cusp s. o

Now we define the inner product (f,h) of f,h € Sk (G,w,X) by the
integral in Proposition 2.1, which is a generalization of the Petersson
inner product for classical cusp forms.

3. Poincaré series. Let G, w, and X be as in Section 1. We denote
by Sk,i(G,w, X) the space of mixed cusp forms of type (k,[) associated
to G,w,X. If X is a monodromy representation of an elliptic surface
E, then it is known [6, Theorem 3.2] that the space S22k (G,w, X) is
canonically isomorphic to the space of holomorphic (2k+1)-forms on an
elliptic variety E2*. In this section we discuss Poincaré series associated
to a mixed cusp form in Sy ;(G,w,X). If f : H — C is a holomorphic
function and g € G, we set

(flaeng)(2) = (g,2) i (x(g),w(2)) ' f(g2)

Proposition 3.1. Let Gy be a subgroup of G, and let f : H — C be
a holomorphic function such that

flee,2ryg = f
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for all g € Gy and

[ 1) m ) tma(2) v < oo,
Go\H

Then
(i) The series

F(z) = Z (fle2,20)9)(2)
geGO\G

converges absolutely on H and uniformly on compact sets.

(ii) F(z) is a mized cusp form of type (2,2k) in S22 (G, w, X).

Proof. (i) This follows from a more general statement in [1, Theorem
9.1].

(i) If h € G, then we have

F(hz)j(h,2) 2§ (X(h),w(2)) >
= > f9(h2))i(g,h2) 25 (X(g), w(h2)) (R, 2) 25 (X(h), w(z)) "

geGo\G

= Y flgh2)i(gh,2) 2j(X(gh),w(2)) **

gEGo\G

= Y (flawgh)(z) = F(2).

gEGo\G

The cusp condition follows from the finiteness of the integral. Hence,
it follows that F(z) € S22k (G, w, X). O

The series in Proposition 3.1(i) will be called a relative Poincaré series
determined by the holomorphic function f.

Proposition 3.2. Let ¢ € S22x(G,w, X), and let

F(z)= Z (fl(2,20)9)(2)

geGo\G
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for some holomorphic function f : H — C that satisfies f|(221)9 = f
for all g € Go. If ( , ) is the inner product defined in Section 2,
then we have

(6, F) = / 8(2)F(2)(Im 2)?(Im w(2))?* aV
Go\H
where dV = dz dy/(Im 2)?.

Proof. Using the definition of the inner product { , ), we have

(6, F) = <z>( >y (f|<2,2k)g><z>)<Imz>2<1mw<z>>2kdv

G\H 9EGO\G

> $(2)f(2)i(9,2) %i(X(9),w(2)) *(Imz)?

g€Go\G G\H

- (Imw(z))?* dV

= > $(92)i (G, 2)7%j(x(9),w(2))"** F(2)i(g,2) "

geGo\g Y G\ H

- (x(g), w(2) ™"
- (Im g2)°[(g, 2)[*(Im w(g2))** |3 (X (9), w(2))[** AV

#(92)f(92) (Im gz)* (Im w(gz))** dV

4. Hyperbolic elements. Let gy be a hyperbolic element of GG, and
let X : G — SL2(R) be as in Section 1. We assume that the fixed points
of go and the fixed points of X(go) correspond in the sense described in
the next paragraph.

Let 21,29 € R U {ico} be the two fixed points of gy, and let
h € PSL(2,R) be an element that transforms the geodesic between
z1 and 29 to the ray [0, ioo] with hz; = 0 and hzy = ico. Similarly, let
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wy,wz € RU {ico} be the fixed points of X(go), and let A’ € SL(2,R)
be an element that transforms the geodesic between w; and wsy to the
ray [0,4300] with A'w; = 0 and h'wy = ic0. Then we assume that h and
h' satisfy the relation

w(hz) = hWw(z)
for all z € H.

If the hyperbolic element gy of G C PSL(2,R) can be represented
by the matrix

(Z Z) € SL(2,R)
with tr gg > 0, then we set
Qgo(2) = cz? + (d —a)z — b.
Similarly, we set

Qx(g0)(W(2)) = exw(2)” + (dx — ax)w(2) — bx

X(g0) = <‘CL;‘ Z’;) € SL(2,R).

Lemma 4.1. If a € PSL(2,R) and 8 € SL(2,R), then we have
ng (az)j(aa Z)2 = Qa*l-go-a('z)

and
Qx(g0) (Bw(2))5(B,w(2))* = Qp-1.x(g0)-8(w(2))
forall z € H.

Proof. Let gy and a be represented by the matrices

a b g (@ &
c d an C1 d1 ’

respectively, in SL(2,R) with a +b > 0 and ay + b; > 0. Then the
matrix a ! - gg - « is represented by

aa1d1 — alblc + bCldl — blcld ab1d1 — b%c + bd% — blddl
—aaicy + a%c — bc% +ajcid  —abicy + arbic — beydy + arddy
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and
Qqo(az) = (c1 + d1)"?[c(arz + b1)* + (d — a)(a12 + by ) (c12 + d)
— b(clz + d1)2]
= j(aaz)izQa*Lgo-a(z)'

Thus, the first relation of the lemma follows. The second relation
follows easily from the first. i

5. Periods of mixed cusp forms. In this section we define
Poincaré series associated to a hyperbolic element of G and express the
inner product of this Poincaré series and a mixed cusp form in terms of
the period of the mixed cusp form. Let gg be a hyperbolic element of G,
and, as in Section 4, let h € PSL(2,R) (respectively, ' € SL(2,R))
be an element that transforms the geodesic between the fixed points of
go (respectively, X(go)) to the ray [0,ioc0] with w(hz) = h'(2), z € H.

Then we have
N A
where § = trgo + 1/ (tr go)? — 4. We also have

-1 Y 0
v xa 1 = (2

where

L {tr (X(g0)) + V/(trX(90))® =4 if trX(go) > 0
tr (X(go)) — v/ (trX(go))? — 4 if trX(go) <O.

For g € G, by Lemma 4.1 we have
QW)@ ()20
= (9:2) 5 (X(9), (=) *QEE, (@(92))Qp (92)
- Q;(kg‘lgog)(w(z))Q;‘llgog(z)'
Thus, if g € Gy, then we have

Qo @R () 22k) = Qo) @ (2)) Q5 (2).
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Now we denote by 62 2x(go,w,X) the Poincaré series determined by

Q;@O)(W(z))QgJ(Z),
02,2k (g0, w, X) = (o @(2)Q5 (2) (2,28 -

9gEGO\G

Theorem 5.1. Let ( , ) be the generalized Petersson inner
product defined in Section 2, and let ¢(z) be a mized cusp form in
S22k(G,w,X). Let z = e’ and w(z) = Re' be the polar representa-
tions of z and w(z). If we assume that  is a function of 6 only, then
we have

YZo0

(¢(2), 02,20(90,w, X)) = C [ $(2)Qx(y,)(w(2)) d2,

Z0

where L

2m
C_D(l)/z(Dg)’“</ (sin 2¢) 2 d0> ,
0

zg s an arbitrary point in H, and the integral is taken along a piecewise
continuous path joining zy and gzg.
Proof. By Proposition 3.2, we have
), 02,2k(g0, w, X))

// o(z X(go) (w(2))Qas (2)(Im 2)?(Im w(2))?* (Im 2) 2 dx dy

:/ i qﬁ(hz)Q;(kgo)(h’w(z))ngl(hz)(Imhz)Q(Imh'w(z))zk
-(Tm 2) ™2 dz dy
— [ [ ot (0B T * (3 Boz) k2T

13 (R, 2)| 7 (Im 2)? (R, w(2)) |~ (Im w(2))** (Im 2) =2 da dy,

where F is a fundamental domain of G in H, F; = h™1F, Do = (tr go)?
and D} = (trX(go))? — 4. Thus, if

Ol _ (_l)ktr)((go)(D(l))—k:/Z(l)O)—l/27
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then the last integral becomes
a [ [ oheyae) 2 w(2) (=) () dry
=0r [ [ othre®yo ke ey Ko ) ()
-5 (h, 2) " 2p?* (sin ) ?*r dr dO
=0 [ [ othre ke 0 ()5, ) i e
—a [ [ o)) 50120, 2) imep ) d
=10y [ pMhe) () o)) i 2) P

where o
Cy = / (sin 2¢)%* do.
0

On the other hand, if zy is a point in H, we have

YZo

(Z)Qi(go)(w(z)) dz
- /Om 9(12) Q¥ g0y (w(h2))j (h, 2) 7% dz
- /01oo ¢(h2)((—1)"X9)/Diw(2)*(§ (W, w(2)) %) *j(h, 2) 7> d2

— ¢, / 7 b)) () 2) P d,

where
Cs = (_1)ktrx(go) (Dé)k/Q

Now the theorem follows from the above computations. a

6. The Kronecker pairing. Let V be the space of the standard
two-dimensional complex representation of SL(2,R), and let V* be its
dual; let S2*V be the 2k*® symmetric power of V, and let (S?*V)* be
its dual. If {u1,us} is the standard basis for V*, then (S?*V)* can be
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identified with the space of all homogeneous polynomials Py (ug,us) of
degree 2k in u; and ug. Let X : G — SL(2,R) and w : H — H be as in
Section 2. Then X induces an action of G C PSL(2,R) on V and on
S?kV. G also acts on (S2FV)* by

g - Pop(u1,u2) = Pop(dyur — byuz, —cxui + axusz)

_ [ax bx
o= (2 7).
Thus, we can consider the cohomology H'(G, S?*V) and the homol-
ogy Hy(G, (S*V)*) with respect to the actions of G on S**V and on

(S%V)* described above. Then there is a canonical injective homo-
morphism

where

U : Sp.08(Gyw, X) = H'Y(G, S**V).
We shall denote by (( , )) the canonical pairing
HY(G,S8%*V)® H (G, (S*V)*) — C,
called the Kronecker pairing (see [4, p. 738 and p. 745]). We set
Q’g“ = (exud + (dy — ax)ugug — byu3)* € (S2*V)*.

Then g ® QX is a cycle in H;(G, (S**V)*) (see [7, Lemma 3.3]), and
we have the following theorem:

Theorem 6.1. If g € G and f € S22 (G, w, X), then we have

(¥ (f),g® Qky)
= [ £ exw()? + (dx — ax)w(z) — by)* dz,

20

where zg is an arbitrary point in the Poincaré upper half plane H and
the integral is taken along any piecewise continuous path joining zg and

gzo-

Proof. See [7, Theorem 3.4]. O
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Corollary 6.2. If p is a parabolic element of G and f € Sz 21, (G, w, X),
then

(B (f),p® O8)) = 0.

Proof. This follows easily by considering the limit of the integral in
Theorem 6.1 as zy approaches the fixed point of p. a

Theorem 6.3. Let I be a subset of G, and let S be the set of cycles
m
Hy(G, (8**V)")

of the form v ® Qf’y for v € I'. Suppose that w satisfies the condition
described in Theorem 5.1 and that S spans Hi(G,(S**V)*). Then
the set of Poincaré series © = {022x(g0,w,X) | go € S} spans
SQ,Qk(G,w,X).

Proof. Let W be the subspace of Ss (G, w,X) spanned by the set
©, and suppose that f € Sa,,(G,w,X) is orthogonal to W relative to
the generalized Petersson inner product ( , ) defined in Section 2.
It suffices to show that f = 0. Using Theorems 5.1 and 6.1, if g¢ is a
hyperbolic element of G, then we have

YZo

0 = (4(2),02,2k(90, w, X)) = C (2)Q (o) (w(2)) d2

20

= ((T(f), 90 ® Qy))-

Thus, ¥(f) is orthogonal to all hyperbolic cycles in §. By Corollary 6.2,
U(f) is also orthogonal to parabolic cycles in S. Since the Kronecker
pairing (( , ))is nondegenerate, we have ¥(f) = 0 (note that G and
X(G) do not contain elliptic elements by our assumption). Since ¥ is
injective, it follows that f = 0. ]
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