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WELL-POSED OPTIMIZATION PROBLEMS
AND A NEW TOPOLOGY FOR THE CLOSED
SUBSETS OF A METRIC SPACE

GERALD BEER AND ROBERTO LUCCHETTI

ABSTRACT. We provide a further analysis of the bounded
proximal topology, recently defined in the setting of minimiza-
tion problems and then studied by the present authors in a
unifying article on hyperspace topologies. We exhibit its main
topological properties, and we compare it with other hyper-
space topologies. We further consider this topology in the
context of minimization problems, specifically with respect to
problems that are well-posed in the generalized sense (g.w.p.).
It is shown that the solution set of such a minimum problem
can be recovered from a sequence of level sets of approxi-
mating functions and that nearby problems to a given g.w.p.
convex function will necessarily have a solution if and only if
the underlying space is reflexive. On the other hand, nearby
problems need not be g.w.p., even if they have unique mini-
mizers.

1. Introduction. When dealing with minimization problems we
have to consider sets that represent not only constraint sets but also
functions, as identified with their epigraphs. Thus, topologies on the
closed sets of a metric space (called hyperspace topologies [30]), are
a fundamental tool in some aspects of optimization, as for instance
in stability analysis. But the best known one—the Hausdorff metric
topology [18, 26]—is not usually well-suited for this analysis because
it fails to work well when sets under analysis are unbounded. The
first attempt at overcoming this difficulty was made by using the
notions of topological Lim sup and Lim inf of a sequence (or net)
of sets [27, Section 29]. A sequence (A,) of closed sets is declared
Painlevé-Kuratowski convergent to the set A if, at the same time,
A = Limsup A, and A = Liminf A,,. When the metric space X
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is locally compact, the corresponding hyperspace topology is the so-
called Fell topology. This is, for most purposes, the right hyperspace
topology, when X is a finite dimensional linear space. But it turns
out that Painlevé-Kuratowski convergence is often too weak in infinite
dimensional spaces and, in this setting, convergence of nets of sets is
not topological.

An important step in defining a good convergence notion in spaces of
infinite dimensions was developed by U. Mosco [31] for closed convex
sets, who considered Kuratowski limits with respect to both the natural
topologies with which we can endow a Banach space: the strong and
weak topologies. In other words, a sequence (A,,) converges in this sense
to a set A provided A is at the same time the Lim sup and the Lim inf
of the sequence (4,), when X is given the norm topology and when
X is given the weak topology. In the reflexive setting, this convergence
notion, called Mosco convergence [1, 17], and the corresponding Mosco
topology T [7] have for a long time been considered optimal, especially
for their beautiful properties in best approximation problems, convex
duality, and in the study of the solutions to variational inequalities.
Nevertheless, Mosco convergence has some (unavoidable) weakness; for
instance, (i) it behaves badly without reflexivity [11]; (ii) it is not
stable with respect to certain standard operations on convex sets and
functions; and (iii) it fails to reduce to the Hausdorff metric topology
on the closed and bounded convex sets.

Partially in response to these shortcomings, a new topology, called
usually the Attouch-Wets topology, the bounded Hausdorff topology,
or, in the case of functions identified with their epigraphs, the epi-
distance topology, has attracted considerable attention. Convergence
of a sequence of sets in this (metrizable) topology means uniform
convergence of the associated sequence of distance functionals for the
sequence on bounded subsets of the underlying space. The initial
motivation for investigating it was to obtain Holder continuity results
in stability analysis [4]. It has been shown that the bounded Hausdorff
topology behaves well in any normed linear space, particularly with
respect to constrained problems [5, 9, 14, 15, 33, 37, 36].

Since this topology, which we denote by 74w in the sequel, is much
stronger (in infinite dimensions) than the Mosco topology 7as, it is of
interest to search for intermediate convergence notions or topologies
that have possibly a broader range of application than 74w, and that
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behave better than 7j4 in some circumstances. In his recent Ph.D.
dissertation, P. Shunmugaraj [36] investigated a particular convergence
notion introduced in [2] which maintains some of the strong stability
properties previously proved for 74y [15]. This convergence notion was
subsequently shown to be compatible with a fundamental topology on
closed sets from the perspective of an overall theory of hyperspaces
of a metric space [16] and was called the bounded prozimal topology
o4 therein. The bounded proximal topology is significantly weaker
than 74w; for instance, an increasing sequence of finite dimensional
subspaces X,, in a separable Hilbert space H with H = cl(UX,)
converges to H in the o4 sense, but not in the bounded Hausdorff
sense. Thus, all Riesz type methods for minimizing a function over
an infinite dimensional constraint set can be applied with the former
topology, but not with the latter topology.

The goals of this paper are a careful study of the topological character
of o4 in the context of a general metric space and a deeper investigation
of its properties in optimization. We determine (i) when equivalent
metrics on the space X give rise to the same hyperspace; (ii) which
conditions on the space are necessary and sufficient to guarantee that
the hyperspace is first countable, second countable and metrizable; and
(iii) the relationship of o4 to nearby hyperspace topologies. The second
part of the paper is devoted to applications in optimization, specifically
to problems that are well-posed in the generalized sense: the set of
minimizers is nonempty and compact and minimizing sequences contain
subsequences convergent to a minimizer of the objective function. We
show that, if a function which is well-posed in the generalized sense
is the o4-limit of a sequence of lower semicontinuous functions f,,
then the set of its minimizers can be recovered as the ogz-limit of
certain sublevel sets of the f,. Then we analyze the properties of
unconstrained and constrained minimization problems that are close, in
various senses, to a given problem that is well-posed in the generalized
sense. In the convex case, it is shown that even existence of a solution
for nearby problems cannot be guaranteed, the only exception being
when considering problems in reflexive spaces where nearness in the
sense of the bounded proximal topology will guarantee existence. On
the other hand, existence and uniqueness of nearby problems in the
much stronger bounded Hausdorff topology does not guarantee their
well-posedness.
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2. Preliminaries and presentations of c4. Let (X,d) be a
metric space and zy a given point of X that will be (arbitrarily)
fixed throughout the paper. CL (X) will indicate the nonempty closed
subsets of X, CLB (X) the nonempty closed and bounded subsets, and
if X is a linear space, CLC (X) will be the closed nonempty convex
sets. In case the specification of the distance d is essential, we shall use
the notations CL 4(X), etc. Similarly, we shall subscript hyperspace
topologies when appropriate, e.g., we might write 74, for T4 . Often,
X will be a normed linear space, and in this case, we will denote the
origin by 6 and the closed solid unit ball by U.

Given a set F' € CL(X), S.[F] denotes the (open) e-enlargement of
F,{z € X : d(z,F) < €}. The gap between two elements A and B
of CL(X) is defined by Dg(A,B) = inf{d(a,b) : a € A,b € B} =
inf{d(b,A) : b € B}.

One basic class of hyperspace topologies are the “hit-and-miss”
topologies that we shall now describe. For £ C X, we specify the
following subsets of CL (X):

E-={FeCL(X): FNE#@}, E*={FecCL(X):FCE},
ETt ={F € CL(X) : 3¢ > 0 such that S.[F] C E}.

Observe that another description of E*1 is ET = {F € CL(X) :
Dy(F, E€) > 0} where E¢ denotes the complement of the set E.

The classical Vietoris topology [26, 30], for instance, can be described
as the topology having as a subbase all sets of the form G, where
G is open, and all sets of the form V~, where V is open; whereas
the Mosco topology Tar [31, 7, 11] on the nonempty closed convex
subsets CLC (X) of a normed linear space X, compatible with Mosco
convergence of sequences of closed convex sets [7, Theorem 3.1], has as
a subbase all sets of the form V ~, where V is norm open, and all sets
of the form (K°¢)*, where K is a weakly compact set. Observe that
(K¢)*t = (K©)** for weakly compact sets.

Hyperspace topologies on a given subfamily of CL (X) can also be
presented as weak topologies, i.e., as topologies that are the weakest
ones making continuous a given family of functionals. Probably the
most important and natural example in this sense is the Wijsman
topology Tw, [40, 24, 28, 19, 17, 10] on CL (X), which is the weakest
one such that for each z € X the function A — d(x, A) is continuous
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on CL (X). Also, the Hausdorff metric topology, the Vietoris topology,
the Attouch-Wets topology, and the topology of Mosco convergence can
be described in this way, and, more generally, it has been shown that
this approach leads to a unified theory for hyperspace topologies [16].

Finally, a lattice theoretic approach can sometimes be useful in
describing these topologies [24]. All the usual hyperspace topologies
can be defined as the supremum of a lower topology and an upper
topology. The lower (respectively, upper) topologies share the property
that a neighborhood of a closed set F' is automatically a neighborhood
of each superset (respectively, subset) of F. Thus, for instance, a
subbase for the lower Vietoris topology is given by the sets V'~ where
V ranges over the open sets of X, and a base for the upper Vietoris
topology is given by all sets of the form GT where G ranges over the
open sets of X.

Most of the attention of this paper is devoted to the bounded proximal
topology o4, and the rest of this section is dedicated to its formal
definition and to a summary of its descriptions as presented in Section
3 of [9]. There are many ways to describe this topology; we choose as a
definition the presentation which seems to us the simplest and which,
at the same time, is consistent with the point of view of [9] (see also
38)).

Definition. Let (X, d) be a metric space. The bounded prozimal
topology o4 is the weakest topology 7 on CL (X) such that, for each
closed and bounded subset B of X, the gap functional A — Dy(B, A)
is 7-continuous on CL (X).

Thus, o4 is completely regular, being a weak topology [23]. Since
singleton subsets are bounded sets, o4 is finer than the Wijsman
topology 7w, so that o4 is also Hausdorff. Evidently, the weak topology
determined by {D4(F,-): F € CL(X)} is finer than o4 and, following
[13, 16], we call this stronger topology the prozimal topology, retaining
the notation 75, for this hyperspace. As a hit-and-miss topology, the
bounded proximal topology is described as follows ([16, Theorem 3.6]
or [38, Proposition 6]):

Theorem 2.1. Let (X,d) be a metric space. A subbase for oy
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consists of all sets of the form V—, where V is open in X, and all
sets of the form (B€)*, where B is a closed and bounded subset of X .

From Theorem 2.1 we immediately see that oy is finer than the Mosco
topology 7 on CLC (X)) for any normed linear space X because weakly
compact sets are norm bounded. As for local presentations of this
topology, we have [16, Lemma 3.1]:

Theorem 2.2. Let (X,d) be a metric space, and let A € CL(X).
Then each of the following families constitutes a local base for the
bounded proximal topology at A:

(1) All sets of the form
®aln;a1,az,... ,ax] = {F € CL(X): F'0Sy[xo] C S1/nlA],
and Vi < k,d(a;, F) < 1/n}
where {ay,az,... ,ar} is a finite subset of A andn € ZT;
(2) All sets of the form
©4[B;e;ar,az,...,ax] ={F € CL(X): FNB C S:[4],
and Vi< k,d(a;, F) < €}
where {ay,as,...,ax} C A, £ >0, and B is a bounded subset of X;
(3) All sets of the form
A4[B;e;xy,2,... 25| ={F € CL(X):Vz € B,d(z,A) — ¢
<d(z,F), andVi < k,d(z;, F) < d(z;, A) + €},

where {x1,Z2,... , x5} C X, € >0, and B is a bounded subset of X.

The definition of the Attouch-Wets topology presented in Section 1
says that a local base for T4y = Taw, at A € CL (X) consists of all
sets of the form

{FeCL(X): sgg |d(z, F) — d(z, A)| < €},

where B is a bounded subset of X and € > 0. In view of the local
presentation (3) for o4 above, we have o4 C 74w on CL (X). Also, (3)
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shows again that Ty, C 04. Another local base for T4 at A € CL (X)
consists of all sets of the form

Yn[A] ={F € CL(X) : FNSy[xo] C S1/n[A],
and AN S,[zo] C S1/n[Fl},

where n € Z%* (see, e.g., [5, 8, 3, 12]). Comparison with the
local presentation (1) for o4 confirms the aforementioned inclusion
0d C TAaw -

3. Topological properties of o4. In this section we nail down
the basic properties of o4: (i) what properties of the underlying metric
determine the topology; (ii) when it is metrizable; and (iii) when it
coincides with nearby topologies. As shown in [12], compatible metrics
d and p define the same Attouch-Wets topologies if and only if they
define the same bounded sets and admit the same class of functions
that are uniformly continuous on bounded sets. Similar arguments, in
which the Efremovic lemma [32, p. 77] plays a key role, yield the same
result for the weaker topology oy.

Theorem 3.1. Let d and p be metrics for a set X. The following
are equivalent:

(i) oq=0, on CL(X);

(ii) CLB4(X) = CLB ,(X), and for each metric space (Y,d') and,
foreach f: X =Y, f:(X,d) — (Y,d') is uniformly continuous on
bounded subsets of X if and only if f : (X,p) — (Y,d') is uniformly
continuous on bounded subsets of X.

We note that there is no need to assume in the hypotheses of Theorem
3.1 that p and d define the same topologies. Equivalence of the
metrics is guaranteed by condition (i), for z — {z} is easily verified
to be an embedding of X into CL(X) equipped with the bounded
proximal topology (Michael [30] calls this property admissibility for
the hyperspace). Equivalence is also guaranteed by condition (ii), for
(ii) ensures continuity of the identity functions id : (X,d) — (X, p) and
id: (X, py = (X, d).

First countability, second countability, and metrizability, results for
o4 largely parallel similar results for the proximal topology 75,. Often,
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results here can be derived from results of Section 4 of [13] using the
following relativization lemma.

Lemma 3.2. Let (X,d) be a metric space, and let Ay € CL(X).
Then (CL (Ap),0q4) coincides with CL (Ag) equipped with the relative
topology it inherits from (CL(X),04).

Proof. Fix A € CL(Ap). Then, for each n € Z* and {a1,as,... ,ax}
C A, CL(Ag) N ®4[n;a1,az,...,a;] = {F € CL(Ag) : F N SA[xg] C
Sin.[Al, and, for all i < k, d(a;, F) <1/n}. O

Similar relativization results are valid for the Hausdorff metric topol-
ogy, the Attouch-Wets topology, the Vietoris topology, the Fell topol-
ogy, the proximal topology, and the Mosco topology (where Ay is now
closed and convex). Instead, the Wijsman topology is pathological
in this regard. For example, if p is the metric on Z1 defined by
p(1,2) = 2 and p(i,j) = 1 for j > 3 and j > 4, then relativiza-
tion does not behave properly on Ay = {2,3,4,...}. For example, if
An ={2,n+2,n+3,...}, then (4,) converges to {2} in (CL (4y), 7w,),
but not in CL (Ap) as a subspace of (CL(Z7"), rw,).

Theorem 3.3. Let (X,d) be a metric space. Then (CL(X),04) is
first countable if and only if X is second countable.

Proof. Suppose X is second countable, with {z; : i € ZT} dense in
X. Then a countable local base for o4 at A € CL (X) consists of all
sets of the form

AA[Sn[wl]a 1/”73717'1’.27 s 73771]

where n € ZT. Conversely, if (CL (X),04)is first countable, then by
Lemma 3.2, for each closed ball B, (CL (B),o4) = (CL (B), 75,) is first
countable. By Theorem 4.2 of [13], B is second countable with the
relative topology and is thus separable. Hence, X is separable and is
thus second countable. O

Theorem 3.4. Let (X,d) be a metric space. The following are
equivalent:
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Each bounded subset of X is totally bounded;
Taw, = ™w, on CL (X);

Taw, = o4 on CL(X);

(CL (X), 04) is metrizable;

(CL(X), 04) is second countable.

~ Y~~~
w N
o — Y ~—

Proof. (1) = (2). Fix A € CL(X), B closed and bounded, and € > 0.
Choosing points {b1,b2,...,b,} in B with S¢/4[{b1,b2,... ,b,}] D B,
we have

ﬁ{F € CL(X) : |d(bs, F) — d(bs, A)| < e/4}

C{F € CL(X) : sup |d(z, F) — d(z, A)| < €}.
zEB

This shows that 74w, C Tw,, and the reverse inclusion is always valid.

(2) = (3). This is obvious.

(3) = (4). The topology Taw, is always metrizable [5, 8, 3].

(4) = (5). Since (CL(X),04) is metrizable, it is first countable.
Thus, X is separable by Theorem 3.3. Now if E is a countable dense
subset of X, it easily follows from presentation (2) of g4 in Theorem 2.2

that the finite subsets of E are o4-dense in CL (X). Thus, (CL (X), 04)
is separable and metrizable and is thus second countable.

(5) = (1). If (5) holds, then for each closed and bounded set B,
(CL(B),04) = (CL(B),7s,) is second countable. By Theorem 4.3 of
[13], B must be totally bounded. Condition (1) now follows, since total
boundedness is a hereditary property. i

We now look at some other coincidences.

Theorem 3.5. Let (X,d) be a metric space. Then
(1) o4 =15, on CL(X) if and only if the metric d is bounded;

(2) o4 = Tw, on CL(X) if and only if each bounded subset of X is
totally bounded.
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Proof. In (1), boundedness of X is obviously sufficient. For necessity,
if X is unbounded, let (z,) be a sequence in X with d(x1,z,) > n for
n > 1. Then if A,, = {z1, Zp41} we have {z1} = 04- lim,, o, A,. But
Dy(Ap,{z, : n > 2}) does not converge to Dg({z1},{z, : n > 2}), so
that {z1} # 75, lim, 00 Ap.

Sufficiency in (2) follows from Theorem 3.4, since o4 is trapped
between the Wijsman and Attouch-Wets topologies. Proof of necessity,
following the proofs of Lemmas 5.3 and 5.4 of [13] is complex, and will
not be presented here. O

Theorem 3.6. Let X be a normed linear space, and let d be the
metric determined by the norm. Then on CL (X), the Mosco topology
equals o4 if and only if X is finite dimensional.

Proof. If X is finite dimensional, then the Wijsman topology Tw,
equals the Attouch-Wets topology Taw, on the closed sets, because
pointwise convergence of distance functions implies their uniform con-
vergence on compact sets (by equicontinuity), and thus their uniform
convergence on bounded sets. Since the Mosco topology 7y and oy are
trapped between them, 73y = o4 on the closed convex sets.

We next show that if X is infinite dimensional, then oy # 7).
If X is infinite dimensional and not reflexive, either Theorem 2.2 of
[17] or Theorem 4.2 of [11] shows that the Mosco topology does not
contain the Wijsman topology even restricted to compact convex sets,
so that o4 ¢ a7 for closed convex sets. Now suppose that X is infinite
dimensional and reflexive. Let W be a closed separable subspace. By
reflexivity of W, its continuous dual W* is separable when equipped
with the norm topology. Let {y, : n € Z*} be norm dense in W*, and,
foreachn € ZT, let A, ={z € W:Vi <n (z,y;) = 0}. Let x,, be a
norm one element of A,. Since (A4,) is a decreasing sequence, (A,) is
Mosco convergent to N2 A, = {0}, where 6 is the origin of X. Notice
that, for each n € Z%, x, € S3[0] N An ¢ Sy/2[0]. Thus, (A,) is not
og-convergent to {#}. O

We are not aware that the necessity of finite dimensionality for the
equality of 74w, and 7pr on CLC (X) has been noted in the literature.
This of course follows from Theorem 3.6.
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One of the nice properties enjoyed by the Attouch-Wets topology on
convex sets but not by the Mosco topology (as the last proof plainly
shows) is continuity of the diameter functional [14, Lemma 3.2]. This
is also true for the weaker topology o4. Actually, one can establish a
quite general purely metric result in this direction.

Definition. Let A be a nonempty set in a metric space (X, d), and
let « > 0. We call A a-connected provided for each a and b in A,
there exists a finite set of points a = ag,a1,...,a, = b such that
d(a;—1,a;) < afori=1,2,3,...,n.

Connected sets are a-connected for each @ > 0, and compact sets
that are o > 0 connected for each a > 0 are connected [23, p. 442].

Lemma 3.7. Let (X,d) be a metric space, let A € CLB (X), and let
a € A. If F is a-connected and F' € © 4[S2q[Al; o5 a], then F C Sy, [A].

Proof. We have d(a,F) < « so that F' N Sy[A] # @. Suppose
F ¢ S3,[A]. By a-connectedness, F' must intersect {x € X : o <
d(z,A) < 2a}. Choosing z( in the intersection, since zp € Saq[A],
there exists ag € A with d(zg, ap) < a. Since d(zy, A) > «, this implies
that ag ¢ A, a contradiction. O

Lemma 3.8. Let (X, d) be a metric space. Then
(i) F — diam F is lower semicontinuous on (CL (X), 04);

(ii) If A is bounded and (A,) is a net of closed a-connected sets
ogq-convergent to A, then diam A = lim diam Aj.

Proof. (i). Fix A € CL(X). If A is singleton, then the diameter
functional is clearly lower semicontinuous at A. Otherwise, let € > 0,
and pick a; and az in A with d(aj,a2) > diam A — ¢/2. With
B € CLB(X) arbitrary, we have diamF > diam A — ¢ for each
F € O4[B;e/4,a1,a2].

(ii) We now assume that A is bounded. Fix a € A and € < a. For
all A sufficiently large, we have Ay € ©4[S24[A];€/4;a]. By Lemma
3.7, we have Ay C So4[A], so that diam Ay < diam A + ¢. |
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Theorem 3.9. Let (X,d) be a metric space, and let « > 0. Then
F — diam F' is continuous on the a-connected subsets of X equipped
with o4, and thus on the space of convex sets (CLC(X),04), when X
is a normed linear space.

Proof. If A € CL(X) is unbounded, then the diameter functional is
obviously upper semicontinuous at A. Apply Lemma 3.8. a

It is easy to see that the diameter functional need not be oy4-
continuous on CL (X), e.g., on the line with the usual metric, {0} =
04- limy, {0, n}.

4. Applications to one-sided optimization. The present section
deals with the use of the topology o4 in minimization problems. We
shall work with the space of the lower semicontinuous functions defined
on a metric space (X, d) with values in (—o0, 00]. Lower semicontinuity
of f is equivalent to saying that the epigraph of f, epi f = {(z,a) : z €
X, a € R,and a > f(z)}, is a closed subset of X x R, while epi f is
a convex set if and only if f is a convex function in the usual sense.
The function f is called proper provided epi f is nonempty. We denote
the proper lower semicontinuous functions on X by LSC (X), and we
write I'(X) for the proper lower semicontinuous convex functions on a
normed space X.

For f € LSC (X), each level set of f € LSC (X) at height «,
lev(f,o)={zx € X : f(z) < a},

is closed (but possibly empty), and if f is convex, so is lev (f, a) for
each a € R. The basic parameters for the problem of minimizing
f € LSC(X) (over X) are its solution value v(f) =inf{f(z):z € X},
and its possibly empty solution set Argmin f = {z € X : f(z) = v(f)}.
As is now standard in one sided optimization [1], giving X X R the box
metric p,

pl(z1, 1), (2, a2)] = max{d(z1, 72), |1 — azl},

we may equip LSC (X) with various hyperspace topologies, under the
identification f <> epi f.
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We shall consider problems that are well-posed problems in the
generalized sense, which play an important role in minimum problems,
for at least two reasons. First, they are not difficult to solve(at least in
principle!), because every minimizing sequence has cluster points that
are solutions. Thus, any method giving points with function values
close to v(f) offers at the same time points close to some solution.
Furthermore, such problems behave well with respect to perturbations
of the data (see [14, 29, 36], for instance).

Definition. A function f € LSC(X) is declared well-posed in the
generalized sense (abbreviated by g.w.p.) [22, 29], provided both of
the following conditions hold:

(a) Argmin f is nonempty and compact;

(b) whenever (x,) is a minimizing sequence for f, ie., v(f) =
lim,, o f(zn), then (z,) must have a subsequence convergent to some
point of Argmin f.

If, in addition, Argmin f is a singleton, then f is called Tyhonov
well-posed (T.w.p.) [39].

There are several characterizations of well-posedness (see [20] for a
systematic treatise on the subject). Here we mention only that in a
complete metric space, T.w.p. amounts to saying that inf {diam (lev (f,
B)) : B > v(f)} = 0, while g.w.p. is equivalent to the condition
inf{a(lev(f,B8)) : B > v(f)} = 0 where, for a given set A, a(A) is
its Kuratowski measure of noncompactness (see, e.g., [6]).

Observe that compactness alone of Argmin f is not sufficient to
guarantee T.w.p., even for continuous convex functions, as is shown

by the following well-known example: Let X be a separable Hilbert
space, with {e; : 4 € Z*} an orthonormal base. Consider

oo

f@) = 3 (@ e)?/i%

i=1
Here the origin is the unique minimizer of f, but there are minimizing
sequences that are not even bounded.

The previous notion of well-posedness applies well to unconstrained
problems. Suppose now that we are given a closed subset A of X,
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representing a constraint set, and that we have to minimize f over
A. Such a problem will be represented by the variational pair (f, A).
Formally, the above concept of Tyhonov well-posedness can be used in
this setting, too, simply by considering A as the underlying metric space
(with the metric inherited from X) or, equivalently, by minimizing
the function f | A = f + I over X, where I4 is the indicator
function of the set A, taking the value 0 on the points of A and oo
outside. Nevertheless, it is clear that this approach does not take into
account the fact that some minimization procedures search for points
that are allowed to violate the constraints, to some extent. For this
reason, other, more stringent notions of well-posedness are also used
for constrained problems [20, 34, 35, 15]. Here, to get the sharpest
results, we shall make use of the notion of strongly well-posed problems.

Definition. A pair (f, A) such that f | A is not identically oo, is
called strongly well-posed in the generalized sense provided:

(i) theset {a e A: f(a) =v(f| A)} is nonempty and compact;

(ii) whenever (z,) is a sequence satisfying (d(z,,A)) — 0 and
limsup,,_, ., f(z,) <v(f | A), then (z,) has a subsequence convergent
to a point of A.

In [15], a pair (f, A) is called strongly well-posed provided it satisfies
the above definition, and Argmin f | A is a singleton. The only fact we
mention here about strongly well-posed problems is that a Furi-Vignoli
type condition holds for these problems, too [15, 34, 35]. For more
about connections between well-posedness notions, see [20].

To conclude this short introduction to the second part of the paper,
let us observe that f — v(f) is upper semicontinuous on (LSC (X), 0,)
and that {(f,z) : f € LSC(X) and = € Argmin f} is closed in
(LSC(X),0,) x X, i.e., the Argmin multifunction has closed graph.
These facts are not difficult to show, and they hold for weaker topologies
on LSC (X), too.

Our first theorem intends to show that if f is g.w.p. and f =
o, limy 4o fn, where again p is the box metric on X X R, then
Argmin f can be recovered as a o4-limit of certain level sets of the
fn. This is rather surprising, in that v(f) = lim,,_,+ f,, may not hold;
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e.g., on the line, let f(x) = x? and, for each n, define f, by

2

fn(m):{m if |z| <n

—1 otherwise.

Theorem 4.1. Let (X,d) be a metric space, and let p denote the box
metric on X X R. Suppose f € LSC (X) is well-posed in the generalized
sense. Let (f,) be a sequence in LSC (X) that is o,-convergent to f.
Then there is a positive sequence (g,,) convergent to zero such that
Argmin f = lim,,_, o lev (fn, v(f) + €n), in the o4-sense.

Proof. For each m € ZT, choose a finite subset K,, of Argmin f with
Argmin f C Sy /;,[Kp]. Since f = 0,- lim, o0 fn, there exists an index
N,, and a finite subset F,,,, of epi f, such that for each n > N,,, we have
{(z,v(f)) : x € K} C Si/m[Emn]- Let Dy, be the projection of Ey,,
on X. By the definition of the box metric, we have f,(z) < v(f)+1/m
for each x € Dy, so that for n > N,,,

(%) Argmin f C S5/ [Dimn] C Sa/mllev (fn,v(f) +1/m)].

There is no loss of generality in assuming that (N,,) is a strictly
increasing sequence. We can now define our sequence (g,,): take e, =1
for n < Ny, and for Ny, < n < Np,y1, let &, = 1/m. Let us now verify
that this choice works.

Write A = Argmin f, and let (B)™* NV,  N--- NV, be a basic
neighborhood of A in the bounded proximal topology. There exist
mo € Z* and points {a1,as,...,ar} C A such that, for each i < k,
we have S5/, [a;] C Vi. Choose § > 0 such that S;[A] N Sxs[B] = 2.
As f is well-posed in the generalized sense, there exists m; > mg with
inf{f(z) : & € Sa5[B]} > v(f) + 1/my. This means that

epi f € ((c1Ss[B] x {v(f) +1/m )T,

so that there exists ma > my such that, for each n > N,,,, we have
epi fn € ((c1Ss[B] x {v(f) +1/m1})¢)** since epigraphs recede in the
vertical direction f,,(z) > v(f) + 1/my for each z € S5[B] and each
n > Np,,. Put differently, we have

(%) lev(fn,v(f)+1/my)NSs[B] =2 whenever n > N,,,.
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We claim that for each n > N,,,, we have lev (f,,v(f)+en) € (B)TTN
Vi N---NV, . Fix such an index n. By construction, &, = 1/m for some
m > my. Also, (x) gives A C Sy [lev (fn,v(f)+€n)]. By the choice of
myp, which is less than mg, this means that lev (f,,v(f) +e,)NV; # @
for i = 1,2,...,k. On the other hand, since n > N,,, and &, <
1/mg < 1/my, (xx) yields lev (fp,v(f) + €,) N Ss[B] = @. This means
that lev (fn,v(f) +en) € (B)*tT, completing the proof. O

Let us make some comments on the previous theorem. First, observe
that compactness of Argmin f implies a stronger convergence of sub-
level sets, namely, convergence in the sense of the 74y topology [16,
Corollary 3.3]. In the case that we are dealing with approximating
functions having connected level sets, even more can be said: we get
convergence in the Hausdorff metric sense. This follows immediately
from Lemma 3.7. One of the most compelling consequences in the con-
nected case is boundedness of the level sets below certain heights of the
approximating functions.

The following examples show that the assumption of generalized well-
posedness is crucial in Theorem 4.1 and that, in the convex case, o,
cannot be replaced by the weaker mys topology.

Example. Let X be a separable Hilbert space, with {e, : n € ZT}
an orthonormal base. As we have already mentioned,

oo

f@) =) (2e)?/i"

i=1

has a unique minimizer but is not T.w.p. If we consider f, = f, then
for no choice of positive ¢, can we have in the o4-sense Argmin f =
lim,, o0 lev (fn, v(f) + €n), because for each n, there is some e; with
large 7 belonging to lev (f,,, v(f) 4+ €,). As a result, the condition

lev (fn,v(f) +en) NU C Sy/2(Argmin f) = {z : ||z|| < 1/2},

as required by Theorem 2.2 to get og4-convergence, must fail. Observe
that all the functions of this example are continuous and convex,
and that (f,) converges to f in every reasonable way, so that the
assumption of g.w.p. for f cannot be dispensed with, without affecting
the conclusion of the theorem.
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Example. Here we show that, in the convex case, the Mosco
topology cannot guarantee the same result offered by the stronger
bounded proximal topology. Again, in a separable Hilbert space,
consider f(z) = ||z||* and f,.(z) = ||z||*> — (z,e,)?, for n = 1,2,....
It is not difficult to show that f = 7p,- lim,_,, f,,, but Argmin f,
is again “too big” to permit o4-convergence of (lev (fy,v(f) +€n)) to
Argmin f, for any choice of the ¢,.

Finally, it is easy to show with functions of a real variable that we may
not have convergence of (lev (f,,v(f) + &,)) to Argmin f in the lower
half of the hyperspace topology o4, which is just the lower Vietoris
topology by virtue of Lemma 2.1, unless the sequence (g,,) converges
to 0 slowly enough. That is, it is important to make a judicious choice

of (e,).

Evidently, well-posedness of a particular problem cannot guarantee
well-posedness of all nearby problems, even with respect to strong
topologies. For example, in any normed linear space, if f(z) = ||z|| and
fn(z) = max{1/n, f(z)}, then f is the limit of (f,) in any reasonable
sense. We now intend to see whether well-posedness of a particular
constrained problem guarantees solvability of nearby problems. In
other words, given a pair (f, A) which is well-posed, we would like
to know if, for some topology, close problems have minimizers. The
first examples we provide show that continuity of f is not enough
to get positive results, even in finite dimensions, where, of course,
the bounded proximal topology, the Attouch-Wets topology and the
Wijsman topology all coincide.

Example. Let X = R. The Tyhonov well-posed function f(z) = |z|
is the limit of (f,,) where, for each n, f,(z) = min{|z|,n—|z|}. Clearly,
each f,, is unbounded below.

We now keep the objective function fixed and vary constant sets.
Example. Let X = R? and let (f, A) be the following pair:

a? +y? if [yl <1

d A= R x {0}.
2 4+2—y* iffyl >1 an {0}

f(w,y)Z{
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Then f | A is strongly well-posed, but (f,A,) is not even lower-
bounded, if 4,, = {(z, (1/n)z) : z € R}.

Thus, we shall restrict our attention to convex problems (see [21,
25| as general references for convex problems), where positive results
are more likely to be true. Indeed, from genericity theorems in the
convex setting, we know that in any reasonable topology the well-
posed problems are usually dense, and, frequently, they form (or
contain) a G set of problems [14, 15, 34]. For constrained problems,
following [15] and [36], we focus on problems (f, A) where f € I'(X)
and A € CLC(X) satisfy the following condition: either there is a
point in the interior of A where f is finite, or there is a point of A
where f is (real-valued and) continuous. In symmetric terms, either
epi fNintepily # @ or intepi f Nepily # F. This is really a modest
requirement, for without such a constraint qualification, properness of
nearby problems may fail even for strong topologies.

We start by providing two simple examples where it is shown that
the Mosco topology is not strong enough to get results.

Example. Let X again be any separable Hilbert space, and let
f(z) = ||z||?. Consider the following sequence of convex functions {f,)
Mosco convergent to f : fn(z) = ||z]|? — (z,en)? + (1/n)(z,e,). Then
the functions f,, are not even lower bounded on X.

In the next example, we again keep the objective function fixed, and
we move the constraint set.

Example. Once more with X any separable Hilbert space, let
f(z) = (z,y) where y = >>° ,(1/n)e,. Consider the sequence of
lines (A,), where A, = {Xe, : A € R}, Mosco convergent to A = {6}.
Then (f, A) is trivially strongly well-posed, but for each n, the problem
(f,Ay) is unbounded below.

As a result of the two previous examples, we see that close (with
respect to the Mosco topology) to a given well-posed problem, we can
find problems without a solution. Actually this fact, at least in the
unconstrained case, can be established in full generality, as shown
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by Theorem 6.9 of [14]. The situation changes if we use stronger
topologies.

Theorem 4.2. Let X be a Banach space, and let p be the box metric
on X X R. The following are equivalent:

(i) X is reflezive;

(ii) for each pair (f,A) € T'(X) x CLC(X) which is well-posed
in the generalized sense, for each sequence (f,) in I'(X) converging
to f in the o, (respectively, Taw) sense, and for each sequence (A,)
in CLC(X) converging to A in the Taw (respectively, c4) sense, if
int AN domf # & (respectively, f is continuous at some point of A),
then eventually (fy, An) has a minimum point;

(i) for each f € T'(X) which is well-posed in the generalized sense
and for each sequence (f,) in I'(X) converging to f in the o, sense,
then eventually f, has a minimum point;

(iv) for each f € T'(X) which is well-posed in the generalized sense
and for each sequence (f,) in T'(X) converging to f in the Tpw sense,
then eventually f, has a minimum point;

(v) for some f € I'(X) which is well-posed in the generalized sense
and for each sequence (f,) in T'(X) converging to f in the Taw sense,
then eventually f, has a minimum point.

Proof. (i) = (ii). The constraint qualification condition guarantees,
in both cases, that the sequence (f, + I, ) converges in the o, sense
to f + I4 [36, Theorem 5.2.5]. Now, use convexity, Lemma 3.7, and
Theorem 4.1 to conclude that sublevel sets of f,, + 14, are bounded
for all large n, from which (ii) follows by reflexivity. The implications
(ii) = (iii), (iii) = (iv), and (iv) = (v) are obvious. It remains to
show that (v) = (i). We will show that (v) and nonreflexivity of X are
incompatible.

Suppose X is nonreflexive and y is a norm one element of X* which
is not norm achieving on the unit ball of X. For each n € ZT, let g,
be this convex function on X:

gn(z) = {n |(z,y) — 1/n?| if ||z|] < 1/n?

00 otherwise.
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Let us take (wy) a sequence in the unit ball U of X such that
(wg,y) > 1—1/k for each k. Finally, let f € T'(X) be a g.w.p. function
for which (v) holds. Without loss of generality, let us suppose that
f(0) =0 =inf f. For each n € Z*, we define f,, by

fn(m) = fv.gn(x)a

where V indicates the inf-convolution operator (see, e.g., [18, p. 18]).
We claim that:

(a) for each n, f, € I'(X);
(b) for each n, f, does not have a minimum point;
(¢) {fn) converges in the T4y sense to f.

From the commutativity of V, we have

(1) fulz) = nf{f(z —w) +nl(w,y) - 1/n?| : [Jw]| < 1/n%},
(2) = inf {f(w) +nl(z — w,y) - 1/n’|: |jw]| < 1/n’}.

From (1), it follows that for each z € X and n € Z* we have

(3) fo(z) < f(z) +1/n,
(4) fa(z) > inf {f(z —w) : [Jwl| < 1/n}.

Moreover, from (2) we get

(5) fa(wi/n®) < 1/(nk).

Convexity of the inf-convolution operator holds in general. From the
inequalities (2) and (4) we easily get that f, is proper and continuous
(being upper bounded on bounded sets), and (4) and (5) yield inf f, =
0, for each n. Now fix n € Z* and suppose that f,(z) = 0 for some z.
Then, by (1), there must exist a sequence (v) of norm one elements
in X such that limg_, o (vg,y) = 1 and limy_, o, f(z — vi/n?) = 0. By
the generalized well-posedness of f, we conclude that, necessarily, for a
subsequence, limy_, o  — v /n? = xo, where zg is a minimizer of f. It
follows that (n?[z — xy],%) = 1, a contradiction, because n?[z — x| is a
norm one element. The proof is completed by observing that condition
(c) is an easy consequence of (3) and (4) above. O
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Theorem 4.2 shows that reflexivity, which is not usually needed for
obtaining results concerning the Attouch-Wets and bounded proximal
topologies, here plays a fundamental role. This is due to the special
feature of the existence issue. The two aforementioned topologies
guarantee a regular behavior of the level sets (essentially boundedness)
for functions close to a well-posed function, without appealing to
reflexivity, which is on the other hand necessary (only) to guarantee
the weak compactness of the bounded level sets.

In our initial example showing that functions nearby = — ||z|| need
not be well-posed in the generalized sense, uniqueness of the solution
sets for the approximating problems failed. Suppose we do have
uniqueness, as might be guaranteed by strict convexity, for example. In
this case, can we make a further step? Unfortunately, our final example
shows that, even here, we have little hope to get a general result.

Example. Let X be an infinite dimensional separable Hilbert space,
and let H be any hyperplane not passing through the origin. Then
there is a sequence (f,,) of strictly convex functions such that:

() -1 = Taw —limp 00 fo;

(ii) for each n, (f,, H) is not Tyhonov well-posed.

Proof. Let {y; : i € Z7} be a countable dense subset of U, and let
H={x e X : (x,y1) = c} for some ¢ > 0. Choose z; € cU such
that (z1,y1) = c¢. Observe that H = Hy + z1 where Hy = kery;. Let
Sp={xz €cU: (z,y1) < c—1/n}. Let g, be the following function:
gn(z) = Ae, if z = Az for some A > 0, where z belongs to the boundary
of S,,. Then g, is a function which is positively homogeneous of degree
1 and such that lev (g,,,c) = S,. Let h be the convex function defined
by

h(iL’) = Z(w — 21, yi)Z/iza
i=1
and finally let f, = g, + (1/n)h. We claim that (f,) has the required
properties. That f, is strictly convex follows from the strict convexity
of h, which in turn follows from the fact that {y; : i € ZT} is dense in
the unit ball.

(i) First, f = 7aw- lim, 00 gn- This can be easily seen by
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observing that lev (|| - ||,¢) = Taw- lim,— 00 lev (gn,c), by using the
homogeneous character of the functions under consideration and finally
by appealing to Theorem 3.8 of [14], stating that convergence of the
values and 74y -convergence of the level sets imply 74y -convergence
of the functions.

(ii) Choose 2 € Hy NU, and choose z3 € Hy N U N (kerys). This
is possible because H; is an infinite dimensional space, and hence,
ker (y2|Hp) is either a hyperplane in Hy or is all of Hy. Continuing,
for each j, choose z; € U N Hy such that (zj,y;) = 0 for each
i < j. Now observe that, for each n, Argmin f,, = {z1}, because
r1 minimizes g, on H and is the unique minimizer of h on all of the
space. Moreover, g, (z1) = ¢(1+1/n). For a sufficiently small constant
a, gn(z1 + az;) = ¢(1+1/n) for all j. As a result, (z; + ax;) will be
a minimizing sequence for f,, because lim;_, h(z1 + ax;) = 0. This
implies that (f,, H) is not well-posed and concludes the proof. ]
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