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ABSTRACT. We present a couple of examples where the
solutions of asymptotically autonomous differential equations
behave quite differently from the solutions of the correspond-
ing limit equations. Nevertheless a Poincaré Bendixson type
limit set trichotomy can be shown in the plane.

1. Introduction. An ordinary differential equation in R",

(1.1) i = f(t,2),
is called asymptotically autonomous—with limit equation
(1.2) y=9(y),
if
f(t,z) = g(z), t — o0, locally uniformly in € R",

i.e. for z in any compact subset of R". For simplicity we assume that
f(t,x), g(z) are continuous functions and locally Lipschitz in z.

In an often quoted (and sometimes misquoted) paper, L. Markus [23]
presents the following theorems concerning the w-limit sets, w(tg, o),
of forward bounded solutions z to (1.1), subject to z(to) = zo,

w(to, o) = ﬂ {z(t);t > s}.

s>to
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Theorem 1.1 (Markus). The w-limit-set w of a forward bounded
solution z to (1.1) is nonempty, compact, and connected. Moreover w
attracts z, 1.e.,

dist (z(t),w) — 0, t — oo.

Finally w is invariant under (1.2). In particular any point in w lies on
a full orbit of (1.2) that is contained in w.

Theorem 1.1 [23, Theorem 1 and preceding remarks| has sometimes
been misquoted in the form that the w-limit sets of (1.1) are unions
of w-limit sets of (1.2). Planar counter-examples will be presented in
Section 3 (Examples 3.1, 3.2, 3.4, 3.5).

Theorem 1.2 (Markus). Let e be a locally asymptotically stable
equilibrium of (1.2) and w the w-limit set of a forward bounded solution
z of (1.1). If w contains a point yy such that the solution of (1.2)
through (0,y0) converges to e for t — oo, then w = {e}, i.e. z(t) — e,
t — oo.

Actually Markus proves more in his Theorem 2, but most applications
use the formulation in Theorem 1.2 which is a consequence of [23,
Theorems 1 and 2|. [23, Theorem 2], in its original formulation,
has been applied in [8], e.g., in the proof of their Theorem 5.3. A
generalization of [23], Theorem 2 can be found in [14, II1.2, Exercise
2.4].

Markus’s [23, Theorem 7| generalizes the Poincaré & Bendixson
theorem to asymptotically autonomous planar systems.

Theorem 1.3 (Markus). Let n = 2 and w the w-limit set of a forward
bounded solution x of (1.1). Then w either contains equilibria of (1.2)
or is the union of periodic orbits of (1.2).

Theorem 1.1 has heavily stimulated the development of the quali-
tative theory of nonautonomous differential equations and dynamical
systems (see [24, 26, 27, 10], as a small sample of references). It has
been generalized to Volterra integral equations by Miller & Sell [25].

Theorems 1.2 and 1.3 are often applied to show that the solutions of
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population dynamic (notably chemostat) models converge to an equi-
librium (Theorem 1.2: [9, 18, 19, 20]; Theorem 1.3: [4]). Theorem
1.3 has also triggered some research on almost periodic solutions of
asymptotically autonomous ODEs in the plane [34, 12].

Somehow Markus’s paper has generated the feeling that the so-
called Inverse Limit Problem has been fairly completely solved for
asymptotically autonomous systems [27, Section 7], and not much work
on this topic has seemingly been done in the last ten or even twenty
years [1, 2] other than applying the known results. In Sections 2 and 3
we present a couple of one- and two-dimensional examples for which the
solutions to (1.1) display a large-time behavior that differs dramatically
from that of the solutions to the limit system (1.2). So we raise the
Inverse Limit Problem again phrasing it as follows:

Question 1.4. Assume that the equilibria of (1.2) are isolated and
that any solution of (1.2) converges to one of them. Does any solution
of (1.1.) converge to an equilibrium of (1.2) as well?

An answer to this question is helpful in analyzing certain chemo-
stat/gradostat and epidemic models where one can show for a multi-
dimensional system that some components converge to a limit indepen-
dently of what the other components do [21, 29, 30, 35, 3]. It is also
useful for determining the large-time behavior of solutions to nonlinear
reaction-diffusion systems with Neumann boundary conditions [8, 31,
Chapter 14, Section D].

When considering convergence in an epidemic model [3], (Castillo-
Chavez, personal communication, triggering this investigation) noticed
that Theorems 1.1 to 1.3 were not sufficient to answer Question 1.4 for
their special case. The result by Ball [2] who assumes the existence of
a Lyapunov function does not seem to help in this case either.

The examples in Section 3 illustrate that, even in the plane, Question
1.4 cannot be positively answered without further conditions (see also
example (1) in Section 4 of [2]). One of the most powerful tools for
checking that forward bounded solutions of planar autonomous systems
converge towards equilibria is the Dulac criterion (see [13], e.g., and, for
a generalization, [5]). Theorems 1.1 to 1.3 do not allow the application
of Dulac’s criterion except in the special case of a unique equilibrium
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that is locally stable. We remedy this situation by extending Theorem
1.3 to a Poincaré & Bendixson type limit set trichotomy.

Theorem 1.5. Letn = 2 and w the w-limit set of a forward bounded
solution x of (1.1). Assume there are at most finitely many equilibria
of (1.2) in a sufficiently small neighborhood of w. Then the following
trichotomy holds:

(i) w consists of an equilibrium of (1.2).

(ii) w s the union of periodic orbits of (1.2) and possibly of centers
of (1.2) that are surrounded by periodic orbits of (1.2) lying in w.

(ili) w contains equilibria of (1.2) that are cyclically chained to each
other in w by orbits of (1.2).

In the third possibility the w-limit set contains homoclinic orbits
(phase unigons) of (1.2) connecting one equilibrium to itself and/or
phase polygons of (1.2) with finitely many sides (connecting equilibria)
all of which are traversed in the same direction.

Example 3 in Section 3 shows that a continuum of periodic orbits can
coexist with a homoclinic or heteroclinic orbit in the w-limit set of an
asymptotically autonomous planar system. Such a phenomenon does
not occur for autonomous planar systems.

Theorem 1.5 is proved in Section 4, where we also explain how
convergence of solutions of (1.1) to equilibria of (1.2) follows from the
Dulac (divergence) criterion.

The limit-set trichotomy in Theorem 1.5 gives an answer to Question
1.4, namely to rule out cyclic chains of equilibria. In the plane this is
also necessary in general as illustrated in Examples 3.1, 3.2, and 3.5 and
by the following result which states that any homoclinic cycle or any
minimal heteroclinic cycle connecting saddles of a planar autonomous
system is the w-limit set of a nonautonomous exponentially decreasing
smooth perturbation of (1.2).

Theorem 1.6. Let n = 2 and assume that g in (1.2) is continuously
differentiable. Let ey, ... e, be m saddles of (1.2) that are cyclically
chained to each other by orbits of (1.2): e; — ez +— -+ = ey > €1.
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Assume that this chain is minimal insofar as ep — e; for k > j only
if k = m, j = 1. Consider an initial point ¢ on one of the orbit
connections of the saddles. Then there exists a smooth exponentially
decreasing function ¢ : [0,00) — R? —which depends on g—such that
the whole chain is the w-limit set of the orbit through (0,q) of

(13) i = g(a) + B(0).

More precisely, one can choose ¢ € C*(R,R?),
(1.4) p(t)| < ce™™, >0,

with0 <e <—-A;, j=1,...,m, where A; are the negative eigenvalues
of the variational matrix ¢’(e;).

Theorem 1.6 is proved in Section 5. Examples 3.4 and 3.5 present
smooth autonomous planar systems displaying cyclic chains of equilib-
ria that are not w-limit sets. The discussion of these findings and of the
examples in Sections 2 and 3 is continued in Section 6. Applications of
Theorem 1.5 to epidemic models will be presented in a joint publication
with Carlos Castillo-Chavez [7].

2. Examples: Autonomous planar systems that are asymp-
totically autonomous one-dimensional systems. In this sec-
tion we list a couple of examples for asymptotically autonomous one-
dimensional systems which come from autonomous planar systems. We
emphasize how the behavior of the one-dimensional limit-system is
changed by adding a second component that vanishes for large times.

2.1. Repellers can become asymptotically stable.

(2.1) i=alal—lyl),  §=—2"
Integration of the y equation yields

1 _ _
(22) v = 3+ = (o)
or
(2.3) y(t) = ——=
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Thus system (2.1) is equivalent to an asymptotically autonomous
equation for x which has the limit system

(2.4) & = z|z|.

All solutions of (2.4) not starting at o = 0 blow up in finite positive
time.

Observe that the system (2.1) is symmetric about the z and y
axes and that all quadrants are invariant, hence our analysis will be
restricted to positive initial data and positive solutions.

For given y, the x equation is of Bernoulli type, hence we make the

transformation 2 = w™!. w satisfies the differential equation

W =y(t)w — 1, wo = 1/x9 > 0.

Thus
w(t) = exp < /0 ty(s)ds) (wg - /0 exp < - /0 Sy(r)dr) ds>, £>0,
with /Ot D

t+c
w(t) = eVite (woe‘/E - / e‘/gds>
Vite
= eVite (wge‘/E - / 2ue“du>
Nz
= eVite (wge_‘/E +2(Vt+c+ e Vite —2(y/c + 1)6_\/E>.

Hence
e—\/t-l—c
1 e —ViFe
(R —2\/5—2)6 Ve + (2VEF o+ 2)eVET

(2.5) 2(t) =
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Recall that v/c = 1/(2yo). If 1/z9 — 1/yo < 2, the solution = more or
less behaves like the solution of the autonomous problem (2.4), it blows
up in finite time. If

1 1
To Yo
we have
Yo Yo
(2.7) z(t) < <
VI+4aydt+2y — 1+2y

and z(t) — 0, t — oo.

Equation (2.1) is a useful counter-example for several purposes.
Viewed as a one-dimensional nonautonomous equation for x it displays
an equilibrium, « = 0, that is locally asymptotically stable, but not
uniformly stable.

In view of persistence theory, the equilibrium z = 0 is a uniform
strong repeller for the limit system (2.4), though it is locally asymp-
totically stable for the asymptotically autonomous z equation in (2.1).

Seen as a system, (2.1) has two unbounded regions in every quadrant,
both reaching down to the origin, such that solutions starting in the first
(open) region blow up in finite positive time, while solutions starting
in the second (closed, but with nonempty interior) region converge to
the origin as time goes to infinity.

2.2. Locally asymptotically stable equilibria become local
repellers.

(2.8) &= (—x(l )+ y) 2+2), §=-v.

As y(t) = yoe™ !, the x equation is an asymptotically autonomous one-
dimensional equation

(2.9) = (—a:(l —z)+ y067t> (2+z),
with limit system

(2.10) &t=—z(1-2)2+z).
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Equation (2.10) has = 0 as a locally stable equilibrium whose basin of
attraction ends at the equilibria z = 1 and = —2. For (2.9), however,
it is not difficult to see that the basin of attraction of x = 0 becomes
arbitrarily small, if yg is chosen large enough. In particular all solutions
of (2.9) starting at zg < —2,yo > 0 converge to —oo, whereas, for any
e > 0 one can find y. > 0 such that a solution z to (2.9) tends to +oco
whenever it starts at zg > ¢ — 2,y > ye.

2.3. A semi-stable equilibrium becomes a global repeller.
(2.11) =lz[+lyl, §=-oy

with 0 < o < 1. As y(t) = yoe !, the z equation is asymptotically
autonomous with limit equation

& = |z|

for which x = 0 is a semi-stable equilibrium that attracts all solutions
starting from negative values and repels all solutions starting from
strictly positive values. As we will show, if yy # 0, the line x = 0 will be
a repeller for the full system (2.11) in spite of the exponential decrease
of y. Obviously z(t) — oco,t — 00, once = becomes nonnegative. To
show that this happens in finite time we assume that z(t) < 0, ¢t > 0.
Then
& =—z+ |yole”, t>0.

Integrating this equation easily yields a contradiction, as we have
chosen 0 < a < 1.

3. Examples: Asymptotically autonomous planar systems.
In this section we collect some examples of asymptotically autonomous
planar systems in which the solutions behave differently from the so-
lutions of the limiting system. Preferably we consider systems that
come from three or higher dimensional autonomous systems in which
some components converge to 0. The examples are often constructed
along the same ideas as in Section 2, but where in one dimension, by the
transition from the limit system to its asymptotically autonomous coun-
terpart, we have destroyed an w-limit set, we will create new w-limit
sets in the plane. The headings of the subsequent subsections empha-
size which new w-limit sets occur for the asymptotically autonomous
system compared to those of the autonomous limit system.
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3.1. A heteroclinic orbit. Consider the following three-dimensional
autonomous system of ODEs which is an asymptotically autonomous
planar system:

a(l —r)zy — (Blza| + 23) 2
a(l —r)zs + (,6’|a:2| + azg) T1

T3 = —yT3

— )2 2
r=4/x] + x3.

a, B, and v are positive constant parameters. Equation (3.2) is equiv-
alent to the asymptotically autonomous planar system (in polar coor-
dinates r, # such that 1 = 7 cosf, 3 = rsin )

1

(3.1) o

r=ar(l—r)

3.2 .
(32) 0 = Br|sinf| + x3(0)e™ "

with limit system
r=ar(l—r)

(3:3) 0 = Br|sind).

Notice that the nonautonomous perturbation in (3.2) is exponentially
decreasing.

The planar autonomous system (3.3) has three equilibria (in rectan-
gular coordinates): (0,0),(£1,0). Every solution of (3.3) that starts
in the upper half plane is attracted (for ¢ — o0) to the equilibrium
(—1,0), whereas every solution starting in the lower half plane is at-
tracted to (1,0). In particular the upper half plane, the lower half plane
and the disk with radius 1 are invariant under (3.3). Further there are
no nonwandering points of (3.3) except the three equilibria. The circle
with radius 1 is a heteroclinic cycle, but not a heteroclinic limit cycle
of (3.3).

We claim that, for 8 > 2v,z3(0) # 0, the w-limit set of any solution
of (3.2) is the whole circle with radius 1.

This follows if we can show that 8 in (3.2) is unbounded. Otherwise,
as 0 is strictly increasing, 6(¢) converges to some 6., for ¢ — oo,
0o = 2km or 0o, = (2k + 1) for some k € Ny. From (3.2) we derive

d

E(OOO —0) = —Br|sin(d — )| — z2(0)e™2"".
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This implies that for any £ > 0 we have
d
dt

for sufficiently large ¢t.. Hence the convergence of 6 to 6, is exponential,

more precisely, for any € > 0, there exists M > 0 such that

(3.4) oo — 0(t) < Me=P=9t >0,

(foo —0) < —(B—¢)(0 — 0), t >t

As we assume that 8 > 2, we can choose € > 0 such that 3 > 2y + .
From the 6 equation in (3.2), we see that 6 also satisfies the differential
inequality

0(t) > z2(0)e 2.

Integrating this inequality yields
0(u) > 6(¢t) + /“ z3(0)e *7ds, u > t.
t
We take the limit for u — co and obtain
oo — (1) > xg(o)%e—w,

hence, by (3.4),
(B¢ 1 _
Me~ (A=t > x%(O)Ze 2,
This holds for all ¢ > 0. Choosing ¢ large enough, we obtain a
contradiction, because 2y < 8 — €.

In terms of the autonomous three-dimensional system (3.1) this
result, for § > 27, can be rephrased as the heteroclinic orbit r =
1,z3 = 0 to be the w-limit set of all solutions to (3.1) that do not start
in the plane z3 = 0.

3.2. Possibly many heteroclinic orbits. The following example
has less predictable dynamics than the example in 3.1. Consider the
planar system of asymptotically autonomous ODEs

i1 =a(r—1)(5—r)z] — (B|x2| + m%) T
a(r —1)(5 = r)ziz2 + (Blz2| + x%) 1

T3 = —yT3

— )2 2
r=4/x] + x3.

(3.5) >
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Notice that any solution to (3.5) with z3 = 0, z1(0) = 0 satisfies
z1(—t) = —z1(t) and z3(—t) = z2(t) such that the orbits (considered
in the x;, z2 plane) are symmetric about the z, axis. We consider
initial data with

(3.6) 1 <7r(0) < 5.

a, B, and ~y are positive constant parameters. In cylindrical coordinates
r,0,r3, ©1 =rcosf, ro = rsinf, this system takes the form

i =ar’(r —1)(5—r)cosf

6 = Br|sin | + 2

(3.7) b3 = —yos

r= \/aci —|—x§.

This system has four equilibria (£+1,0,0) and (£5,0,0).

Let us consider the flow in the plane z3 = 0: The upper and the
lower halfring in {1 < r < 5} are invariant. Any nonequilibrium
solution starting in the upper half ring, {1 < r < 5,zo > 0},
converges to (1,0,0) for ¢ — —oo and to (—1,0,0) for ¢t — oo,
whereas any nonequilibrium solution starting in the lower half ring,
{1 < r < 5,23 < 0}, converges to (—5,0,0) for t - —oo and to (5,0,0)
for t — co. The upper circles {r = a,z3 > 0}, a = 1,5, are orbits from
(a,0,0) to (—a,0,0), the lower circles {r = a,z2 < 0}, a = 1,5, are
orbits from (—a,0,0) to (a,0,0). The line segment from (—5,0,0) to
(—1,0,0) is an orbit as well as the line segment from (1,0, 0) to (5,0, 0).

Turning to (3.7) for z3(0) # 0, we see from the z3 equation that
r3(t) = z3(0)e™ ", t>0.

In spite of the fact that z3(t) exponentially decreases to 0, we will
find that, for 8 > 2v, the w-limit set of an arbitrary orbit starting
at 1 < 7(0) < 5, 23(0) # 0 does not consist of just one equilibrium.
From the r equation in (3.7), we realize that the equilibria (1,0, 0) and
(—5,0,0) are repellers for the invariant set 1 < r < 5 and so the w-limit
set cannot just consist of one of these. Let us consider a solution that
converges towards (5,0,0) or (—1,0,0). Then 6 converges in a strictly
monotone way to 6., = 0 or 6, = ™ modulo an integer multiple of 27w
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and r(t) = 7o € {1,5}. A contradiction is now derived in the same
way as in Subsection 3.1.

It follows from Markus’s Theorem 1.1 [23] and the consideration of
the system for x3 = 0 that the w-limit set consists of two to four
equilibria and orbits connecting them. The Poincaré & Bendixson
type limit set trichotomy (Theorem 1.5) for asymptotically autonomous
planar systems implies that the w-limit set contains a cyclic chain of
equilibria. So the w-limit set contains either two or four equilibria.
The planar limit system has many cyclic chains in the closed ring
1 < r < 5 with the following three standing out among the others:
the first is the circle » = 1, the second the circle r = 5, and the third
consists of the upper half circle » = 5, the line segment from (-5, 0) to
(—1,0), the lower semi-circle 7 = 1 and the line segment from (1,0) to
(5,0). At this point it is not clear which and how many cyclic chains
can be contained in an w-limit set of the asymptotically autonomous
system and whether there may be even a whole continuum. Numerical
calculations, performed by J.A. Palacios, suggest that the w-limit set
often consists of the third cyclic chain described above.

3.3. Coexistence of periodic orbits and homoclinic cycles.
The following five-dimensional autonomous system is an asymptotically
autonomous planar system:

1 =xxges — (r+x + (1 — r)2)m2

Zo = xawgxs + (r+x1 + (1 — T)z)l'l
i73 = —X4T5

(3.8) iy = a7y
I'5 = 7Ig

— /2 2
r=4/x] + x5

subject to initial conditions

We find
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We obtain the following asymptotically autonomous planar system in
polar coordinates xy = r cos,xo = rsin6:

0 =r(1+cosf) + (1 —r)?
(3.9)

cos(In(1 + ¢)).

r=r
t

+1

The limit-system is

0 =r(1+cosf)+(1—r)?

7 =0.

The orbits of this equation are the center (0,0) and the circles of all
radii. The circle with radius 1 is a homoclinic orbit connecting the
equilibrium (—1,0) (in rectangular coordinates) to itself and the other
circles are periodic orbits.

For the solutions of (3.9) we have
r(t) = 7(0) expsin(ln(¢ + 1)).

Thus the w-limit sets of solutions to (3.9) consist of the circles with radii
between 7(0)e ! and 7(0)e; hence, as we have chosen e ! < r(0) < e,
we have coexistence in the w-limit set of a homoclinic orbit with a
continuum of periodic orbits.

3.4. A homoclinic orbit for the undamped Duffing oscillator
with smooth exponentially decreasing forcing. Markus’s [23]
results have sometimes been misquoted in the form that any w-limit set
of an asymptotically autonomous ODE system is contained in the union
of w-limit sets of the limit system. Example 3.1 is a counter-example for
Lipschitz continuous vector fields and exponentially decreasing forcing.
The example can be modified such that the vector field becomes
smooth, but the forcing is no longer exponentially decreasing, but just
converges to 0 as time tends to infinity (see [2, example (1) in Section
4].

We now construct a counter-example with smooth vector fields and
exponentially decreasing forcing. The example will be drastically
different from 3.1 insofar as almost any point in the plane lies on a
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periodic orbit of the autonomous limit system. As limit system we
consider the unforced Duffing oscillator

(3.10) U1 = Yo, o =1 — U5

The equilibrium (0, 0) is a saddle and the equilibria (+1,0) are centers.
Any other point is contained in a periodic orbit or in one of two
homoclinic orbits connecting the saddle (0, 0) to itself. One homoclinic
orbit lies in the right half-plane, the other in the left half-plane. The
important point is that the homoclinic orbits are no w-limit sets of
(3.10). Actually the orbits of (3.10) are level sets of the functional

4

1

2
vi_ %1
2+4'

y2
(3.11) V(yi,yo) = ?2 -

The equilibrium (0, 0) and the homoclinic orbits correspond to the level
V = 0, the equilibria (£1,0) to level V. = —1/4, the periodic orbits
inside the homoclinic orbits correspond to the levels between —1/4
and 0, whereas the periodic orbits outside the homoclinic orbits are
associated with strictly positive levels. (See [36, Example 1.1.7], e.g.)

By Theorem 1.6 there exists an exponentially decreasing, smooth
forcing function ¢ such that the homoclinic orbit of (3.10) in the right
half-plane becomes an w-limit set of the perturbed system

(3.12) &1 =2+ ¢1(t),
By =1 — 25 + Pat)

subject to

21(0)=v2,  2(0) =0,

Notice that the initial data lie in the level set V' = 0, i.e. on the
homoclinic orbit of (3.10) in the right half-plane. We mention (without
proof) that for this special example one can choose ¢; = 0.

3.5. A homoclinic orbit for a modified Duffing oscillator with
smooth exponentially decreasing forcing. We now modify Ex-
ample 3.4 such that all forward bounded solutions of the limit problem
converge to one of the three equilibria (0, 0), (1, 0), but the homoclinic
orbits are preserved and are w-limit sets of appropriate asymptotically
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autonomous systems which are obtained by exponentially decreasing
smooth nonautonomous perturbations of the limit system. We recall
the functional

v3

yf Z/11
.1 1% — 72 _ ]
(3 8) (y17y2) 9 9 + 4

and consider the autonomous planar system
(3.19) U=y T2=u1—Yi+uV
The orbital derivative V along (3.19) is

(3.20) V = y2v.

It follows that the sets {V = 0},{V < 0}, and {V > 0} are invariant.
On {V = 0}, (3.19) has the same dynamics as (3.10), in particular
{V = 0} consists of two homoclinic orbits of (3.19), one in the right half-
plane, and another in the left half-plane. These two homoclinic orbits
are not w-limit sets of (3.19). V is a Lyapunov-function on {V < 0}
and —V is a Lyapunov-function on {V > 0}. This implies that the w-
limit set of every forward bounded orbit in {V # 0} must be contained
in the maximal invariant (under (3.19)) subset of {y2 = 0}. Hence any
forward bounded solution of (3.19) starting at some point with V' # 0
converges to one of the three equilibria (0,0), (+1,0). Any solution y of
(3.19) starting at some point with V' < 0 is bounded because it remains
in the bounded region surrounded by the homoclinic orbits. Moreover
V(y(t)) is a decreasing function of ¢, hence y(t) cannot converge to
(0,0) because V(0,0) = 0. Hence any solution y of (3.19) starting in
{V < 0} converges to one of the equilibria (£1,0). On the other hand,
a solution y of (3.19) starting in {V > 0} remains there and cannot
converge to one of the three equilibria which all are in {V' < 0} because
V(y(t)) is an increasing function of ¢; thus y is unbounded in forward
time. Hence the homoclinic orbits are separatrices, and any solution
of (3.19) starting at a point with V' < 0 converges to one of the two
nontrivial equilibria, whereas solutions starting at a point with V" > 0
are unbounded and, by (3.20), converge to infinity, as time tends to co.
Solutions starting in {V = 0} converge to (0,0) for ¢ — occ.

By Theorem 1.6 there exists a smooth exponentially decreasing
nonautonomous perturbation ¢ such that the homoclinic orbit in the
right half-plane becomes an w-limit set of

(3.21) T1 = T +¢1(t), To = T —m:{'—i—sz—i—qﬁg(t),
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which is not an w-limit set of the autonomous limit system (3.19).

4. Limit set trichotomy and convergence in the plane. The
key to extending Markus’s theorem 1.3 to a limit-set trichotomy lies in
proving a Butler & McGehee type result for asymptotically autonomous
semiflows [33].

In order to shorten our notation, a set Y in R™ is called forward
f-invariant (forward g-invariant) if all solutions of (1.1) (of (1.2)) that
start in Y stay in Y for all forward times. Similarly the (forward,
backward, full) orbits of solutions to (1.1) will be called f-orbits, and
the orbits of solutions to (1.2) will be called g-orbits. The w-limit set
of a forward f-orbit is called w- f-limit set, etc., an element e satisfying
g(e) = 0, a g-equilibrium. Sometimes the reference to f or g will be
omitted when it is clear from the context.

Let Y be a subset of R™. A g-invariant subset M of Y is called
an isolated compact g-invariant subset of Y, if there is an open set U
such that there is no compact g-invariant set M with M C M CUNY
except M. U is called a g-isolating neighborhood of M inY. If Y = R"™,
an isolated compact g-invariant subset of Y is simply called an isolated
compact g-invariant set.

Lemma 4.1. Assume that the point (s,x), s > to, * € X, has a
pre-compact forward f-orbit and that w = wy (s, ) is its w-f-limit set.
Further let M be a g-invariant set such that M Nw # &, but w € M.
Finally assume that M Nw is an isolated compact g-invariant subset of
w. Then M has a nonempty stable and a nonempty unstable manifold
i w in the following sense:

There exists an element u € w \ M with wy(u) C M and an element
w € w\ M with a full g-orbit in w whose a-g-limit set is contained in
M.

u can be chosen such that its forward g-orbit is arbitrarily close to
M. w can be chosen such that its backward g-orbit is arbitrarily close
to M.
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We recall that the a-g-limit set of a full g-orbit {p(t)} is defined by

ay(p) = [ (=00, —]).

>0

Lemma 4.1 follows from autonomous Butler & McGehee type results
[6; 15, Lemma 4.3; 32, Section 4] by embedding the asymptotically
autonomous semiflow and its limit semiflow (induced by the solutions
to (1.1) and (1.2)) into an autonomous semiflow on a larger state space
[33].

4.1. The Poincaré & Bendixson type limit-set trichotomy.
In order to prove Theorem 1.5 we start with the following lemmata.
We assume n = 2.

Lemma 4.2. a) Let vy be a periodic g-orbit and M the closed region
enclosed by v. If M 1is not an isolated compact g-invariant set, then
any sufficiently small neighborhood of M contains a periodic g-orbit
outside M that surrounds M.

b) Let v1,72 be two periodic g-orbits such that vy, lies in the interior
of v2. Let M be the closed ring enclosed by v and vo. If M is
not an isolated compact g-invariant set, then any sufficiently small
netghborhood of M contains a periodic g-orbit that lies inside 1 or
outside ya.

Proof. a) Let € U\ M with U being an open neighborhood of M
and z being contained in a compact g-invariant subset N of U. Hence
there is a full g-orbit « through x contained in N. If U is chosen
sufficiently small, U \ M does not contain g-equilibria. Otherwise we
would obtain a sequence of g-equilibria approaching ~y. This would
imply that o itself contains a g-equilibrium, a contradiction. Hence
the w-g-limit set w and the a-g-limit set a of x are periodic g-orbits,
contained in N C U, by the Poincaré & Bendixson theorem. If U is
chosen small enough, the continuity of the flow induced by (1.2) forces
these periodic g-orbits to surround M with the same orientation as 7.
w and « cannot both coincide with vy because then v would intersect
itself. This proves statement a). Statement b) is proved similarly. |
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Lemma 4.3. Let w be the w-limit set of a bounded forward f-orbit.
Then w does not contain a g-orbit that approaches a g-limit cycle from
outside.

Proof. Assume that w contains a g-orbit v that is not periodic but
approaches a periodic g-orbit - from outside in forward or backward
time. Let M be the region surrounded by 7y. Lemma 4.2 implies that
M is an isolated compact g-invariant set. Otherwise there would be
arbitrarily close periodic g-orbits surrounding M which are different
from vy that would not allow 7y to be approached from outside by ~.
Lemma 4.1 now implies that there are two g-orbits v; and v, outside
M such that w(y;) C M, a(y2) € M. As the boundary of M is the
periodic g-orbit 7y, we have w(y1) = 70 = a(y2). But this cannot
happen without v; and v, crossing each other. ]

Lemma 4.4. Let w be the w-limit set of a bounded forward f-orbit.
There is no g-orbit in w that connects two different periodic g-orbits.

Proof. Assume that there is such a g-orbit. Then this g-orbit
would have to approach one of the periodic g-orbits from outside in
contradiction to Lemma 4.3. o

Lemma 4.5. There is no chain o +— ey +— ---ex +— B, k > 1
of g-orbits in w connecting periodic g-orbits o, B and g-equiltbria e;,
i=1,... k.

Two not necessarily different sets M, N are chained—symbolically
M +— N—if they are connected by a g-orbit, i.e., if there exists some
element £ ¢ M U N such that ay(z) € M,wy(x) € N. A chain
My — --- My, is called cyclic if My = M;.

Proof of Lemma 4.5. Assume that such a chain exists. By Lemma 4.3,
the periodic g-orbits « and S have to be approached from inside by
the g-orbits connecting them to e; and ey respectively. This can only
happen if the whole chain is contained in the interiors of both a and 3,
in particular o = 8. But o = 8 cannot hold either, because a periodic
g-orbit cannot simultaneously be the a-limit set and the w-limit set of
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two g-orbits approaching from inside. ]

Lemma 4.6. Let Y be a subset of R2. Assume e is an isolated
g-equilibrium (isolated in R?), but not an isolated compact g-invariant
subset of Y. Then the following alternative holds:

(i) Ewvery sufficiently small neighborhood of e contains a homoclinic
g-orbit in'Y connecting e to itself.

(il) Every sufficiently small neighborhood of e contains a periodic
g-orbit in 'Y surrounding e, in particular e is a center.

Proof. First we observe that (i) and (ii) exclude each other. Indeed, if
there is a homoclinic g-orbit connecting e to itself, there is a neighbor-
hood V of e such that V' does not contain periodic g-orbits surrounding
e. Hence it is sufficient to show that any neighborhood of e contains a
homoclinic g-orbit or a periodic g-orbit.

Now let M be an invariant subset of Y different from the singleton
e, M contained in an open disk V containing e. As e is an isolated
equilibrium, V contains no other equilibrium than e, provided V is
close enough to e. By the Poincaré & Bendixson limit set trichotomy, M
contains a periodic g-orbit in Y or a homoclinic g-orbit in Y connecting
e to e. In the first case, the periodic g-orbit surrounds a critical point é
of g. See [17, Theorem 11.5.2]. As the periodic g-orbit lies in the disk
V, € is contained in V as well, hence € = e. So the periodic g-orbit has
to surround e. o

4.7. Proof of Theorem 1.5. Let us assume that (i), (ii), and (iii) do
not hold.

We first remark that then, by Lemma 4.6, any g-equilibrium in w is
an isolated compact g-invariant subset of w.

Secondly we remark that then any w-g-limit set and a-g-limit set of
a g-orbit in w is a periodic g-orbit or consists of a g-equilibrium.

Otherwise, by the classical Poincaré & Bendixson limit set tri-
chotomy, this limit set consists of finitely many g-equilibria and con-
necting g-orbits. By applying Lemma 4.1 several times, for g rather
than f, one finds that it contains a cyclic chain which is also contained
in w, in contradiction to our assumption.
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As we have excluded (ii), w contains a point z that is not contained in
a periodic g-orbit. We can further assume that x is neither a center nor
an equilibrium connected to itself by homoclinic g-orbits in w. Hence
we can assume that the w-g-limit set of x contains an equilibrium
ey that is neither a center nor an equilibrium connected to itself by
homoclinic g-orbits in w. By Lemma 4.6, {e;} is an isolated compact
g-invariant set. By Lemma 4.1 there exist g-orbits 1, 72 in w \ {e1}
with a(y2) = {e1} = w(y1), i.e., we have a chain a(y;) — e; — w(7y2)
in w. By our second remark at the beginning of this proof, w(y2) and
a(1) may be equilibria or periodic g-orbits. Lemma 4.5 rules out that
both w(7y2) and a(vy1) are periodic g-orbits. By reversing the time if
necessary, we can assume that w(v2) consists of an equilibrium e;. Two
cases need to be considered separately:

Case 1: «a(vy) is a periodic g-orbit. This means that we have a chain
a(v1) — e1 — ez. By Lemma 4.3, a(y1) has to be approached by ¢
from inside. As w(y1) consists of ej, this implies that e; lies in the
interior of the periodic g-orbit a(y1). Since a(72) consists of e; as well,
w(y2) = {e2} must lie in the closed interior of a(y;). As ez is not
a center (otherwise the surrounding periodic g-orbits would intersect
v2) and (iii) does not hold, Lemma 4.6 implies that {e2} is an isolated
compact g-invariant set which is different from w. By Lemma 4.1, there
exists an g-orbit 3 in w\ {e2} such that a(~y3) consists of e3. So we have
the chain o — e — ez — w(73). Lemma 4.5 implies that w(ys3) cannot
be a periodic g-orbit. Hence w(v3) has to consist of an equilibrium e3.
Continuing this argument we can construct arbitrarily large chains

a(y1) — e1 — e o0 e

As there are only finitely many equilibria contained in the compact set
w this chain has to become a cyclical chain of equilibria in contradiction
to our exclusion of (iii).

Case 2: a(y1) consists of an equilibrium ey. This means we have a
chain ey — e; — es. As we have excluded (iii) and ey cannot be a
center, ey forms an isolated compact g-invariant set different from w
by Lemma 4.6. By Lemma 4.1 there exists an g-orbit vy such that
w(v0) = {eo}. If a(vo) is a periodic g-orbit, we are in the situation of
case 1 and obtain a contradiction as outlined there. Hence a(7p) must
consist of an equilibrium e_;. Continuing this type of argument we can
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construct chains of equilibria
€_p > "€yt e — e

As there are only finitely many equilibria in w, this chain of equilibria
has to become cyclical, in contradiction to our exclusion of (iii). Hence
at least one of (i), (ii), (iii) has to hold. o

4.2. Convergence in the plane. We say that a subset X of R? has
the Dulac property, if it contains no periodic g-orbits and no g-equilibria
that are cyclically chained in X. First we notice from Lemma 4.6:

Lemma 4.8. If X has the Dulac property, then every isolated
equilibrium in X (isolated in R?) is an isolated compact g-invariant
subset of X.

Theorem 1.5 and the Dulac property immediately imply the following
convergence result.

Theorem 4.9. Assume that the g-equilibria in X C R? are isolated
in R? and X has the Dulac property. Then every bounded forward
g-orbit and every bounded forward f-orbit in X converges towards a
g-equilibrium.

A sufficient condition for the Dulac property to hold is the so-called
Dulac (or divergence) criterion (see [13], e.g.).

Dulac Criterion. Let X,Y, and D be subsets of R%, D open and
simply connected, with the following properties:

e Every bounded forward orbit of (1.1) in X has its w-limit set in Y.

e All possible periodic orbits of (1.2) in Y and the closures of all
possible orbits of (1.2) that chain equilibria of (1.2) cyclically in'Y are
contained in D.

e g is continuously differentiable on D and there is a real-valued
continuously differentiable function p on D such that the divergence

of pyg,

V- (p9)i1,03) = (o) 1,82) + ()1, 2),
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is either strictly positive almost everywhere on D or strictly negative
almost everywhere on D.

Corollary 4.10. Let the g-equilibria in X be isolated in R? and
assume that the Dulac criterion holds. Then every bounded forward g-
orbit in X and every bounded forward f-orbit in X converges towards
a g-equilibrium.

5. Heteroclinic cycles as w-limit sets of asymptotically auto-
nomous systems. This Section is devoted to the proof of Theorem
1.6, namely that any homoclinic cycle or any minimal heteroclinic cycle
connecting saddles of a planar autonomous system is the w-limit set
of a nonautonomous system obtained by an exponentially decreasing
smooth perturbation. This result is of interest if the cycle is not an
w-limit set of the autonomous system itself.

The idea of the proof consists in letting the solution of (1.3) follow
the cycle—i.e., ¢(t) = O—for most of the time, but to make ¢(t) # 0
in shrinking neighborhoods of the saddles in order to by-pass the
saddles and go from their stable to their unstable manifolds. We first
investigate how one can bypass a single saddle this way.

Lemma 5.1. Assume that g is differentiable and e = e; is one of the
saddles of (1.2) in Theorem 1.6. Then there exist numbers 19, K > 0
such that the following holds.

If u® is an element in the stable manifold of e, connecting from
ej_1, and |u® — e| < no, then there exists T > 0 and a C™ function
¥ : R — R? and some number & € (1/2,3/2) (which all depend on u°)
with the following properties:

(i) <K,
(ii) ¢ has support in (0,7), and |P(t)] < 2.
(i) The solution u to
(5.1) i = gw)+ [0 — elep),  u(0) = u°

intersects the unstable manifold of e = e;, connecting to ej;1, at time
T, and

(5.2) lu(t) —e|l < K|u® — e, 0<t<T
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Before we prove Lemma 5.1, we use it to show Theorem 1.6. Assume
that we have managed to construct ¢ in (1.3) on an interval [0, to]
such that ¢(t9) = 0 and z(to) is a point on the orbit from e; ; to
ej (where e, is identified with e;). We will apply Lemma 5.1 for
e = e; to extend ¢ and x. We choose some §, 0 < § < 19, 6 < 1, such
that ¢ is smaller than the distances between any pair of saddles and
smaller than the distances from the initial point ¢ to any saddle. Let
0<e<—=A;,j=1,...,m, asin Theorem 1.6. As long as ¢(¢) = 0 for
t > tg, the solution to (1.3) obeys (1.2) and follows the stable manifold
of e. Hence |z(t) — e| decreases exponentially with a rate A < —e. So
there is some time t; > to such that |z(¢t;) — e| = e “"*. Recall that
0 has been chosen to be smaller than the distance from e; to e;_; and
smaller than the distance from e; to the initial datum ¢q. We apply
Lemma 5.1 with u® = z(¢1) and pick 7,v, & provided by this Lemma.
We modify ¢ to become

(t) = e "Ep(t —t1)  forty <t <t;+T.

On [t1, t1+7], the solution x to (1.3) then satisfies z:(t) = u(t—t1) with u
being the solution of (5.1) in Lemma 5.1. In particular z(¢1+7) = u(7)
is a point on the unstable manifold of e, connecting to the next saddle
ej+1, and ¢ is still C*°, and ¢(t; +7) = 0. Moreover, for t; <t < t;+7,
we have

|p(t)| < de "(3/2)[h(t — t1)| < 30e " < 3e°Tde " < 3eK et
and, from (5.2),
lz(t) —e| < Kl|z(t;) —e| < Kde " < Ke*Kge t,
Hence the number ¢ in Theorem 1.6 can be chosen to be 3def¢.

This construction can be repeated infinitely often in the neighborhood
of any saddle. Notice from the last estimate that, when by-passing
a saddle, the distance from the saddle decreases exponentially. This
completes the proof of Theorem 1.6. O

Proof of Lemma 5.1. In a neighborhood of e = e;, after a linear
invertible transformation, § = g(y) takes the form y = e + w, where w

satisfies
(53) Wy =\ wy + Fl(w) sw
-w

Wy = )\+’U}2 + Fg(w)
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with A\~ < 0 < A" and continuous functions Fy, F» : R? — R2, Fy(0) =
0 = F»(0). Let 0 < < np be a fixed number and consider the problem

w1 = A up + Fi(u) - u— Enx(t)
(54) Uy = )\+U2 + FQ(U) U+ an(t)
w(0) =u’  |uf=n
with X to be constructed and £ being a tuning parameter, £ ~ 1.
The initial datum u° is supposed to be in the stable manifold of
0. It is sufficient to prove Lemma 5.1 for (5.4) instead of (5.1),

¥(t) = x(¢)(—1,1). Reversing the linear transformation then yields
Lemma 5.1.

We want to steer u to the unstable manifold of e by choosing X > 0
and £ appropriately such that the unstable manifold is reached at some
time 7 > 0.

We look for u in the form u = nv and obtain the following system for

v:
01 = ATvp + Fi(no) - v — EX(E)
(5.5) Vg = Ay + Fy(nu) - v+ €X(t)
v(0) = v°, |v°] = L.
As nv°, with small n > 0, is supposed to be in the stable manifold of
0 which is tangential to the vector (1,0), we consider initial data v°
satisfying
v &1, vy ~ 0.

As solutions to (5.5) depend smoothly on 7 and £ and we are interested
in n > 0 being close to 0 and in ¢ being close to 1, we study the system

21 = )\721 — X(t)
z(0) = v°.

Integration yields

(5.7)
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We first try X = 1. From the first equation in (5.7) we see the following:
There exist 0 < 73 < 72 < 0o such that, for any v], 1/2 < v{ < 1, we
find some 7, T, < T < T2, such that

z1(r) =0.

From the second equation in (5.7) we see that there is some §; > 0,
= [T e*)‘+sx(s)ds, e.g., such that

29(7) >0 whenever 1/2 < o] <1, |vg| < dy.

Though 7 depends on v°, we can find some K > 0 such that 7 < K
and |z2(7)| < K whenever 1/2 < v§ <1, |vd| < d;.

We can replace X = 1 by x € C*°(R) with support in (0,7) and
values between 0 and 2 such that the following statement still holds for
the solutions z of (5.7):

There exists dg > 0 and K > 0 such that, for any vy with 1 — §y <
vy <1, |vs| < g, we find some 7,0 < 7 < K, such that z;(7) =0, 0 <
Zz(T) S K.

In the next step we see that the solutions z¢ to

2571 = )\7Z§71 - fX(t)
Zeo2 = AN 2g 0 +EX(1)
2¢(0) = v°

satisfy z¢1(7) > 0 for £ < 1, whereas z¢1(7) < 0 for £ > 1 and
z¢2(7) > 0 if £ is sufficiently close to 1.

We now return to (5.5). The solutions depend continuously on £ and
on 7. Hence there is some 79 > 0 such that there exist some 1/2 < &,

& < 3/2 with the following property: For any 0 < n < 79, the solutions
v = v¢ to (5.5) satisfy

’1)5’1(7') > 0, lff = 51; ’1}571(7') < O, if f = 62;

5.8
(5:8) vea(T) >0, if& <€ <&

&1,&2 can be found independently of v° as long as |v°| = 1,v] > 0,
|va| < 6o with sufficiently small §;. Moreover it follows from our
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construction that there is some K > 0 that is independent of v° such
that

(5.9) le()| <K, 0<t<T,

whenever 0 <n <, 1/2 < € < 3/2.

Finally we return to the solutions u of (5.4), u = nv with v satisfying
(5.5). If 0 < n < no and u° lies on the stable manifold of e, |u®| = n,
then w® = nv° with |[v°| = 1, v > 0, |v3| < &y, provided that nq is
small enough. For the stable manifold is tangential to the vector (1,0).
Hence (5.8) holds for v = (1/n)u. As the unstable manifold of e is
tangential to the vector (0,1) we find that the solution ug = nve of
(5.4) has the following property: wu¢(7) is on one side of the unstable
manifold for some 1/2 < £ < 3/2 and on the other side of the unstable
manifold for some other 1/2 < £ < 3/2. As ug(7) depends continuously
on &, ug(T) = nue(7) has to intersect the unstable manifold for some
€€ (1/2,3/2). (5.9) implies (5.2). This proves Lemma 5.1. u]

6. Discussion. The examples in Sections 2 and 3 have illustrated
that solutions to one- or two-dimensional asymptotically autonomous
ordinary differential equations can behave quite differently in the long
run from the solutions of the corresponding limit systems. By adding
an asymptotically vanishing term repelling equilibria become stabilized,
stable equilibria become locally repellent, and attracting equilibria are
replaced by homoclinic or heteroclinic orbits. In particular the w-limit
set of a solution to the asymptotically autonomous system may be
much larger than the union of the w-limit sets of all solutions to the
limit system. This can even happen if the vector fields are smooth and
the nonautonomous parts are exponentially decreasing. The Examples
3.1, 3.2, 3.4 and 3.5 falsify what has seemingly become some kind
of folklore theorem, namely that the large-time behavior of solution
to asymptotically autonomous differential equations can a priori be
reduced to the large-time behavior of solutions to the limit system.
Though such a reduction is often possible, it has to be justified by a
careful analysis of the limit system.

In the plane the limit set trichotomy in Theorem 1.5 limits the pos-
sible asymptotic behavior of solutions to asymptotically autonomous
systems. It is not completely satisfactory, however, because there re-
mains the following
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Problem 6.1. Let n = 2 and w the w-limit set of a forward bounded
solution z of (1.1). Assume that the equilibria of (1.2) in w are
isolated in R2. Is w the union of periodic orbits, equilibria, and orbits
connecting equilibria associated with (1.2)?

Notice that, though the examples in Section 3 have w-limit sets that
are quite different from those of the limit systems, they still are of the
form conjectured in Problem 6.1.

The limit-set trichotomy in Theorem 1.5 gives an answer to Question
1.4, namely to rule out cyclic chains of equilibria. Example 3.1, 3.2,
and 3.5 together with Theorem 1.6 illustrate that this is also necessary
in general.

This answer to Question 1.4 is not restricted to planar systems:
Question 1.4 has a positive answer whenever the equilibria of (1.2)
are isolated compact invariant (under (1.2)) sets and are not cyclically
chained to each other.

This answer actually holds for general asymptotically autonomous
semiflows and so applies to asymptotically autonomous (parabolic
and hyperbolic) partial differential equations, functional differential
equations, and to Volterra integral and integro-differential equations
[33, Theorem 4.2]. Another positive answer was given by Ball [2] who,
instead of ruling out cyclic chains of equilibria, assumed the existence
of a Lyapunov function.

The assumptions in answer to question 1.4 are satisfied, e.g., in
Corollary 2 by Smith [28] who positively answers Question 1.4 for
asymptotically autonomous tri-diagonal competitive and cooperative
ODE systems modeling neural nets.

We wonder whether other Poincaré & Bendixson type results for
autonomous semiflows (e.g. for competitive or cooperative three-
dimensional ODE systems, [16]; monotone cyclic feed-back systems,
[22]; or reaction-diffusion equations on the circle, [11]) have asymptot-
ically autonomous extensions similar to Theorem 1.5.
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