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ABSTRACT. The development and maintenance of the T
lymphocyte repertoire, which determines which antigens will
elicit an immune response, involve a complicated learning pro-
cess involving internal interactions and external (environmen-
tal) factors. The dynamics are not unlike that of thousands of
nearly identical competing species. This paper examines the
distribution of clone (species) populations, how it is created
and how it is maintained.

1. Introduction. Diversity of the immune system repertoire
is necessary to insure both that antigens are recognized and that
specific challenges are met with precise (and proportional) responses.
It is also necessary to insure that autoantigens do not elicit a strong
response and that the system maintaining this diversity be adaptable
to environmental conditions while holding a memory of the antigens
encountered. And, this must be accomplished in both the B and T
lymphocyte populations.

The establishment and maintenance of the T cell repertoire is studied
here through the mechanisms which must be present in order that the
system satisfy the demands of its required role. This study results in a
novel picture of the dynamics of clonal selection [1].

T cells are produced in the bone marrow and mature and expand their
population in the thymus before entering the circulation. While in the
thymus, there is a “negative selection” which removes potentially au-
toreactive T cells and a “positive selection” for the ability of the T cell
receptor (TCR) to bind one of the classes of the major histocompati-
bility complex (MHC). This positive selection provides the maturation
signals for both the CD4T and CD8T populations depending on the
class of MHC binding. The first selection process involves cellular pro-
liferation and the second does not [10]. As a result, the output from
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the thymus can be seen as a diverse collection of allowable specificities.
Further shaping of the population must come from interactions with
antigen within the peripheral tissue. This is also seen in the need, in
humans and in many other mammals, for the periphery to renew the T
cell population as the thymus regresses beginning at puberty [16]. In
adults, removal of the thymus leads to a slight decrease in the number
of peripheral T cells, but no noticeable loss in the ability to mount an
immune response [4]. In mice, induction of significant T cell deficiency
requires removal of the thymus before the second day after birth [9].
Thus, after initial seeding from the thymus, the periphery must both
shape the adult repertoire and maintain that shape.

The periphery provides several forces which may be used in this effort.
One is, of course, reaction with exogenous antigen. But this is not the
only source of stimulation as a workable repertoire with the appropriate
population sizes is found in mice not subject to intentional antigen
stimulation [12]. Other aspects which could be supplying stimulatory
signals to the T cells could be self reactivity and network interactions.
As the mechanism necessary for this stimulation is not elucidated, we
will emphasize the dynamic requirements of the regulatory process.

The mechanisms for self-renewal poses a problem that was first recog-
nized in the context of ecological models, competitive exclusion. Pop-
ulations competing for sufficiently similar resources have been shown
to be unable to coexist, and exclusion of the “least efficient” is ac-
complished over time (cf. [8]). If T cells are dividing, they have to
compete for space, nutrients, growth factors and other cytokines in the
lymphoid tissues with other T cells. Since T cells of the same class are
seen as different from one another primarily through differences in the
TCR, and that receptor is a primary source for the stimulation signals
that each responds to, their competition for space, growth factors, etc.,
suggests that certain clones will be excluded while others will be able
to grow based on differences in stimulatory signals received through
the TCR [11]. The problem with competitive exclusion in this setting
is that clones corresponding to the highest levels of stimulation (e.g.,
ubiquitous antigens) would eventually eliminate all others. Recently
a class of “superantigens” has been discovered that react with a third
or so of all T cells, and which can in fact cause fatal disease [7]. Our
approach to the problem of competitive exclusion of specificities will
be to study the properties of models in which different T cell clones are



DEVELOPMENT OF THE T-CELL REPERTOIRE 215

randomly activated by different (unspecified) stimuli.

It is unclear what to expect for coexistence in a model of the T
cell repertoire where the individual clone’s self-renewal is based on
a “lottery system” delivering stimulatory signals. The equilibrium
theory developed by May predicts that the greater the (environmental)
variability the less likely it is that species coexist in the long run.
Conversely, variability has been shown to promote coexistence in lottery
based competitive systems [2]. To explore the issue in this context,
we develop a model, based on having dynamic equations to describe
each clone’s population, in which only the distribution of clone sizes
is described. By examining different versions of the model, necessary
features of the regulatory process which give rise to coexistence are
described. The more general question of the role of environmental
variability, as opposed to the random (but stationary) environment
presented here, will not be explored, as the features which characterize
the regulation are of primary interest. These features, termed “local”
and “global” control, are shown to shape the repertoire in different but
complementary ways.

2. Motivation. The basic equation governing the growth of a
particular clone numbered i is

1) O = %R (Tror)g(T)T; ~ (1~ ) dT,

where
Tror = Z 1;.

In this expression, R is the maximum growth rate and -; is the fraction
of the cells in the clone receiving antigenic stimulation sufficient for
growth (a parameter varying in time). Those cells in the clone not
receiving sufficient stimulation slowly die (“starve”). f(Tror) is a
function representing “global control,” the realization of the limit to
growth of all clones based on the size of the entire population of T
lymphocytes. ¢(T;) is a function termed “local control” that depends
on the size of the clone and embodies the usual density dependent limits
to population growth in a given niche. Note that the model contains
no source of new T cells. Thus, the model applies to the growth of
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established clones of T cells in the periphery. The effect of adding a
source is examined in Section 5.

Coutinho (personal communication) has suggested that the immune
system can count, since the total number of lymphocytes in an animal
is finely controlled [13]. To achieve this control, individual clones
must stop growing when the total population size gets too large.
The function f(Tror) is the realization of the Coutinho counting
hypothesis. Exactly how such global control is maintained is not at all
clear, and it may in fact be an emergent property of system of clones
growing without a pre-specified global control function. A recent model
for the development of an idiotypic network in which the growth of B
cell clones was determined by their interaction with serum antibody
maintained global population control without an explicit maximum
population level being preset [3]. In fact, in this model the attained
maximum population level was an emergent property of the system and
its local interaction rules. Here we will study the consequences of both
having and not having global control.

To maintain a general model, we only assume the following for the
function f:

(2) 0<f(x)<1l, f(0)=1, f(z)<0 and lim f(z)=0.

Tr—r0o0

Even when the total population of lymphocytes is not near the
carrying capacity of the organism, there are limits to the growth of
a single clone. The precise maximal size of a clone is unknown, but
one can imagine that physical space within the microenvironment of a
lymph node or spleen as well limits to the number of divisions of a cell
(the Hayflick limit) will prevent a clone from growing too large. The
“local control” function g, which also stays between 0 and 1, depends
only on the size of the i*" clone. Specifically, we assume

(3) 0<g(@)<1, g(0)<1, ¢'(x)<0 and lim g(x)=0.

The use of both local and global control functions in immune system
models is not novel and has been introduced previously by Segel and
Perelson [14]. A particular choice of functions f and g was made in
the models explored by Segel and Perelson [14, 15]. Here we explore
the entire class of functions compatible with Equations (2) and (3).
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Because the growth rate of any clone is assumed to depend on both
the size of the clone and Tror, the evolution of a population of
clones is coupled. To directly study the overall clone size distribution,
this simple model can be further abstracted. The direction of this
abstraction is best illustrated by noting that

(4) (InT;(t)) = vi(Rf(Tror)g(Ti) + d) — d
which implies

(6) InT;(t+ At) — InT;(¢) = (vi(Rf (Tror)g(L:) + d) — d)At + o( At).

3. Derivation of the bin model. The form of equation (5)
suggests that a type of birth-and-death structure would be appropriate,
especially if only order of magnitude changes (significant changes in
the logarithm) are recorded. To accomplish that, we will “bin-up” or
collect those clones with population sizes that are of the same order
of magnitude, that is, have the same characteristic of the logarithm of
clone size. Here we use log,, for convenience, but any base is equally
fine and all results are stated for the general case. If the base of the
logarithm is b, we assume clones in bin j contain on the order of b/ cells,
and thus local control will be a function of /. With that in mind, and
letting C; be the characteristic of the logarithm of the population of
the it clone, define the probability of registering the growth to the
next largest order of magnitude over a time At as

(6) Pr [Ci(t + At) - Ci(t) = l\Cz(t) :j and Tror = T]
= pf(T)g(V)At + o(At),

where p is a constant. We assume that a clone registers a loss of an
order of magnitude in its population in time At with probability

(7) Pr [Ci(t + At) — Ci(t) =-1 | Cz(t) =j and Tror = T]
= JAt + o(At),

0 is a constant death rate. It will also be assumed that

Pr[C;(t + At) — Ci(t) = 0| Ci(t) = j and Tror = T
— 1= (pf(T)g(¥)) + )AL + o(A1)
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so that the probability of changes of two or more orders of magnitude
in unit time At is o(At).

With these definitions, the expected change in C; over time At has the
same form as the right hand side of (5), preserving the link between
(1) and the abstract model. Note that the choice of the base of the
logarithm affects the constants p and 6.

The death part of the process seen in (7) is modeled by assuming that
cell death occurs at a constant rate, and hence is not antigen driven nor
density dependent. It is assumed in (7) that the rate at which a clone
loses an order of magnitude in its populations is linear. To understand
this, assume that many clones are spread uniformly (in the log) over
population sizes of the same order of magnitude. If we would now
have one of those populations decline exponentially (the log declining
linearly), the probability that it would cross an order of magnitude
boundary, increases linearly in At.

The model that results can be put in the form of Kolmogorov forward
equations for a birth-and-death process. The process is not birth-and-
death as defined, however, due to the “global control” term. Let B;(t)
be the contents of bin j (the fraction of the clones with size having
order of magnitude j) at time ¢. Then for j > 1, using (6)—(8)

(9)  Bi(t) = pf(Tror)gj—1Bj-1 + 6Bj1 — pf(Tror)g;Bj — 6 B;.

For j =0,

(10) By(t) = 6B1 — pf(Tror)goBo,
and

(11) Tror = Zbﬂ'Bj.

J

In this expression, g; = g(b/), and the initial condition is specified at
time 0, B;(0) = Bjo, with }_; Bj o = 1. Note that there is no source or
loss of clones. Clones only get larger or smaller and hence move from
bin to bin.

The actual stochastic structure of the model is the following. Suppose
the process starts with ¢ identical particles (corresponding to single
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cell clones) at time 0. Each one grows as a continuous-time branching
process, except that the offspring probabilities depend on some function
of the current total population (here Tror). As such, it is most like a
multi-type density-dependent continuous-time branching process. The
structure gains its density-dependence from the “local control” term.
It, in addition, has the coupling due to the “global control.” Also, we
are interested in a somewhat unusual quantity,

(12) P; = Pr (a particle from an initial population of i particles
at time 0 has j descendents by time t).

Here the “number of descendents” is the bin number. This is a hard
quantity to deal with directly through branching process methods as
at time t, Tror is also a random variable, and thus knowledge of all
the other bins is required. Here we use a version of the Chapman-
Kolmogorov equation for counting the number of descendents. We also
use (6)—(8) and an averaged value for Tror.

Pi(t+ At) = Pi_,(t)PF, ;(At) + Pl (t) Pl ;(At)

+ P}(t)P};(At) + o(At)

(13)

where

P,Zj(At) = /Pr (a transition from k to j descendents in time At

when Tror =T at time 0) dP(T).

The integration here is over all potential Tror sizes. If we assume,
however, that the entire state of the process is known at time t, Tror
can actually be computed, and as a result,

(14) Pijl,j(At) = pf(Tror)g(b’ ')At + o(At)

Pl j(At) = 0AL + o(At)

and
Pl(At) = [1 = pf(Tror)g(t) + 8] At + o( At).

Using these in (13), we again have the bin model, (9)-(11). The
recognition of the variable ways in which the same model can be seen
also suggests ways in which the model can be analyzed.
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4. Analysis.

4.1. Existence of a unique equilibrium. Any distribution
where the net flows between the states is zero is clearly a stationary
distribution. The converse is also true and is well known for birth-and-
death processes.

Proposition 1.  Every equilibrium (stationary distribution) of
(9)—(11) satisfies

(5Bj+1 = pf(TTOT)ngj fOT‘ all] = 0, ]., e

Proof. An equilibrium distribution has zero net flow between the
states, that is, B;- =0 for all j. Let 0 < k, and suppose that B° is an
equilibrium vector. At this equilibrium,

k
ZB;' (t) = 6By+1 — pf(Tror)gkBr = 0.
This holds for all . ]
From Proposition 1, the bin contents at equilibrium must satisfy
B, = <§f(TTOT)>goBO
o 2
By = <Ef(TTOT)> 9091 Bo

(15)

k k-1
By, = < (Tror ) ngBo

Because Bj is defined to be the fraction of clones with size in bin j,
Zj Bj = 1. This implies

(16) <1+2 [( (Tror) )kng])
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Further, Tror satisfies

(17) Tror = ijBj = By <1 + Z <b§f(TTOT)>k kl_[lgz)
k

j i=0

Note that, given a Tror, the distribution (15) is specified. To establish
that a unique equilibrium exists, we will show that for a given set of
parameters there is a unique Tror satisfying (17). The dynamics of
Tror itself will also be explored below.

Let
k—1
(18) B =[] 9
=0

and let F(z) be defined by

1+ 352,V (p/8) By (f(x))?
(19) PO = = W B (@)

The Tror value at the equilibrium is a fixed point of F, that is, it
satisfies

(20) F(z) = z.
First note that F(0) > 1. The main idea is to show that F'(z) < 0 and

hence that there is a unique intersection of the line y = F(z) with the
line y = z. To show F'(z) < 0 we need two lemmas.

Lemma 1. Let b > 1 and k and j be positive integers with k > j;
then

(21) (kb + 5b7) — (jbF + kb7) > 0.

Proof. As

(22) Vk—35)>k—j, b[(k—4)"7 +5—k >0.
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The result follows. O

Lemma 2. Let h(y) = 1+ > o~ a,y™, where the series converges
in some interval about 0. Then, if b > 1,

(23) <%> >0 fory > 0.

<h(by)>'  h(y)bl (by) — h(by)h' ()
hy) ) (h(y))?
y[h(y)bh'(by) — h(by)h'(y)]
y(h(y))?

The sign of the derivative is the sign of the numerator of (24),

(25)

<1+]§;ajyj>by<:o 1) <1+§:aj (by) J);;(ijajyj—l)

j=1

jag(by)’
_ <1+§:a,-yj> (i]a](by > (Hi‘“ (by) ><§Jajyj>
(i jaj(by)’ ijajyj>

=1 j=1

oo

+ (Z ]yJZja] by)’ Zaj by)? Zjajyj>.

The first term is clearly positive as y > 0 while in the second, by iden-
tifying terms with the same powers of y, one finds that corresponding
to y™ is a sum of terms involving ara; where k+j = n. The coeflicient
of all terms involving aray, for any k is zero. For any other choice, say
ara; with k > j the coefficient is

(26) (kb* + jb7) — (kb + jb*).
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From Lemma 1, the coefficients are all positive. As a result, the
numerator of (24) is positive. o

Theorem 1. With F(x) defined as in (19), and f(z) strictly
monotone decreasing, (20) has a unique solution.

Proof. Let a, = E, and y = bf(z). Then, using the notation
of Lemma 2, F(y(z)) = h(by))/h(y). By the chain rule, dF'/dx =
(dF/dy)f'(z). By Lemma 2, dF/dy > 0. Thus, dF(z)/dz < 0,
since f'(x) < 0. As F(0) is finite, there must be a unique crossing
of F(z) = . O

4.1.1. Dynamics of Tror. As Tror = Z]oil b B; + By, differen-
tiating and using (9)—(10) we find that
(27)

Tror = Z Y (pf(Tror)gj—1Bj—1 + 6Bj11 — pf (Tror)gjB; — 6B;]
=1

+ [—pf(Tror)goBo + 6Bi).

Collecting the terms having the same Bg.s,
(28)

Tror = Z B,[—V (pf (Tror)g; + 6) + 6" ~16 + b/ (pf (Tror)g;)]
j=1
+ Bo[—pf(Tror)go + b pf (Tror)go]

= B[t pf(Tror)gi(b— 1)+ Y _ B[t 16(1 - b)]

j=0 j=1
=(-1) ij(Pfngj —0Bj41).
j=0

This can also be written as a “dot product” in the following way

b0 pf(TrorgoBo — 6B
(29) Thop = b-1) | 0" | | Pf(Trorgi By — 6B,
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The second vector in (29) is looking at the net flows between each of
the states in turn. This structure causes Tror to increase (or decrease)
rapidly when the current state is far from the equilibrium.

4.2. No global control case. The model (9)-(11), being an
infinite set of nonlinear differential equations has potential difficulties
with existence, uniqueness, and continuability of solutions (especially
in preserving »:. B;(t) = 1 for all ¢ > 0). To address this, we first
examine a submodel consisting of only “local control.” In this model,
f will be set to be identically one. The system is

(30) Li(t) = pgj—1Lj—1 +0Ljr1 — pg;Lj — 6L;,  forj >1
Lg(t) = 5L1 - pgoLo.

These are the Kolmogorov forward equations of a birth-and-death
process, and, as such, the theorems of Karlin and McGregor [5] apply.
First define

(31) bo =1 and bj = <

SIS

ji-1
) [[o: forji=12,....
=0

Theorem 2. There is a unique solution of system (31). Moreover,
this solution satisfies

(32) S Lit)=1  foralt>0.
J

Proof. The conditions of Karlin and McGregor require that
(33) ij < oo and Z[pgjbj]_l = o0.
J J

To check these conditions, note that since lim;_,, g; = 0, there is an
index iy such that

(34) Lgi =B <1.
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Each b; = b;_1(p/d)g;—1); thus, for j > iy + 1, and using (3),
(35) by <bj_1S

and as a result the tail of the series ) ; bj is dominated by a convergent
geometric series. Thus, the first condition in (34) is satisfied. The
verification of the second condition depends on noting that as

(36) ggj <1 for j large,

its reciprocal is greater than one, and thus the sum must diverge as the
n'™ term of the sum does not go to zero. ]

This establishes that the reduced model is well defined. As the
purpose of these models was to describe the clonal size distribution,
the following results describing both the existence and the shape of
the limiting distribution are important. Recall that the existence
of a unique stationary (equilibrium) distribution was established in
Theorem 1, for the general case, and depended on f/(z) < 0 which
does not hold here.

4.2.1. Existence and characterization of the limiting distri-
bution. In this special case, because of the structure of the equations
in (31), other theorems of Karlin and McGregor [6] guarantee that the
limiting distribution exists and is proper. By again recalling that the
net flux between states must be zero at the equilibrium, the relationship
between the contents of the states at equilibrium is

P
L= ZanL
1 590 0

2
(Y s - (®
2= (§) mon = 11(301)

p k k—1
Lp=(% oL
. (5) e

(37)
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and Y ;oo L; = 1 is the defining relationship for Ly. The information
concerning the limiting distribution, a globally stable equilibrium point,
is collected in the following

Theorem 3. System (31) has a proper limiting distribution satisfying
(37). Moreover, the mode of this distribution is at i — 1 for i > 1 if
i is the smallest index with (p/d)g; < 1, and the mode is at Ly if

(p/0)go < 1.

Proof. The conditions in Karlin and McGregor [6] are the same as
those in Theorem 2 (33), which have been shown to be satisfied for all
choices of the parameters. For the second part, note from (37), that

Liy1 p
38 = (£ )
(38) L. 59k
As a result, the L’s increase to the first index that the ratio is less
than one, then they decrease monotonically to zero. a

4.3. Existence in the general case. The result presented above
in Theorem 2 indicates the way in which existence of solutions for
the differential equations (9)—(11) on [0,00) can be established. As in
Theorem 2, the primary concern is that the process may “explode,”
that is, have infinitely many transitions in finite time. As the states
are bounded below by 0, if there are infinitely many transitions, there
must be infinitely many transitions up. The approach will be to use
(2) so that we can write

pf(Tror)g; < pgj, for all j and Tror.
Thus,

o i1 o, j-1
1+ (gf(TTOT)Hgi) <1+4) <§ Hgi>
i=1 i=1 =1 V7 =1
= ibﬂ < o0.

i=0

As pf(Tror)g; is bounded, then it is also the case that

> lpf(Tror)g;bs] ™ =Y lpg;bi] ' = oo
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In this set of inequalities, we have discovered a birth-and-death process,
whose forward Kolmogorov equation is (31), that has mean time to
upward transition always smaller at each state (rate is larger) than that
corresponding to system (9)—(11). As solutions of (31) satisfy Theorem
2, the probability that a sample path of that process explodes is zero.
As the upward transition rates of the birth-and-death are larger than
those of (9)—(11), it also has probability of exploding zero. As a result,
we have

Theorem 4. Solutions of (9)—(11) exist for all t > 0 and satisfy

ZBj(t) =1 for all time t > 0.
7=0

4.4. No local control. We now examine the case when local control
is absent (g; = 1). In this model, a form of competitive exclusion is
seen, in that a few large clones dominate the population. It is this
result, stated in Theorem 4, that best presents the case for a “local
control” in the dynamics which govern clone growth, as in (1).

The bin model (9)—(11) with g; =1 is

(39)
G(t) = pf(Gror)Gj-1+0Gjt1—-pf(Gror)G;j—0G;  for j >1
Gi)(t) =6G1 — pf(GTOT)GO

where
oo

Gror = » b G;.
=0
In this case the equation for G/ as seen from (28) can be put in the
form

(40) ror = (b—1)G(pf(Gror)vi — 6v2)
where
0 0
bt 1
V) = and vy = :

b b 1
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If f(Gror) > 6/(bp), then, using the above,
Gror >0

as each component of G is nonnegative. As Gror(t) is increasing in
that region, f(Gror) is decreasing. As a result, f(Gror) eventually
reaches values less than 6/(bp) and stays less than §/(bp).

4.4.1. Equilibrium vector and its characterization. In this
section the equilibrium vector for the no local control case will be
explored.

First note that the proof of Theorem 1 still holds for this case, so
we know that a unique equilibrium vector exists for each choice of
parameter values. Moreover, in this case, the components satisfy

(1) 6, = (L1@ron) G

Theorem 5. With b = 10, for the unique equilibrium vector in
(41), the contents of bin 0, Gy, have the property that Gy > .9 and the
distribution is always monotone decreasing.

Proof. As Gy must satisfy

1 n
1=Gp+ <§f(GTOT)> Go+---+ (gf(GTOT)> Go+---,

Go =1 —(p/8)f(Gror) (by summing the geometric series). As we
have established for b = 10 that

0
f(Gror) < Wp’

at any equilibrium, it must be the case that

1
1 —_ - = . .
Go < 10 9
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The monotonicity comes from the geometric form with common ratio
less than .1. o

In this case, then, although Gror is large, most clones are of size
order of magnitude 0 and, as a result, very few clones are large. This
is a form of “competitive exclusion.”

5. Extensions of the theory.

5.1. Loss of clones and source of new clones. In the previous
discussion, especially as seen in (10), we have assumed that there is no
source of new clones of loss of existing clones. An equivalent assumption
is that the two, loss and source, always balance. In this section we
examine that assumption by allowing a loss of clones from Bj and a
constant source of new clones.

Assuming that the death rates are independent of local control (clone
size) and global control (total T cell count), the rate of loss of clones
from bin 0 should be proportional to the number of clones in bin 0.
Unfortunately, By is the fraction of clones that are in bin 0, and thus to
examine the loss of clones, we need to define a new quantity, N.(t), the
number of clones at time ¢. As presently defined, the system (9)—(11)
is closed, and hence the number of clones remains a constant. If we
allow a source and sink, the equation governing N, is

(42) N.(t) = —6ByN, + s.
In the above, the number of clones in bin 0 at time ¢ is ByN. and § is
the rate at which they become extinct. Note that

N! if N, s
>0 i <(5B0(t)

and
s

N, <0 ifN.>——.
e ST 5By (t)
Thus, N.(t) tries to “track” the value s/(6By(t)). If By approaches a
limit, so must N,.

In the By equation, the loss/source term is somewhat different. As
the source term s is in the units of clones per time, and By is a relative
frequency, we first examine the quantity D;(t), defined by

DJ(t) = Bj(t)Nc(t) or B](t) = Dj/Nc,
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which counts the number of clones in bin j. To discover how the bin j
equation changes, we first compute the differential equation governing
DOa

D()(t) = (5D1 + 85— (SDO — pf(TTOT)QODO-

Then, using the quotient rule, one finds that

N.D}, — DyN!
By(t) = =

c

= 6By — pf(Tror)goBo + (Ni - 5Bo> (1 — By).

c

The equations for all the other bins also have an additional term:

Ne(t)
—B,(t = .
0(55)
From this, it can be seen that the assumption of no source is equivalent
to (3) being at quasi-steady state (IN(t) ~ 0) or that Ne(t) > N.(t).
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