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GLOBAL STABILITY IN MODELS OF
POPULATION DYNAMICS WITH DIFFUSION.
II. CONTINUOUSLY VARYING ENVIRONMENTS
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. A class of models of single-species dynamics
is considered where the diffusion coefficient and reaction term
continuously depend on spatial position. It is shown that,
under our prescribed conditions, there is a unique, positive,
globally asymptotically stable steady state.

1. Introduction. Over the past several decades there have been
thousands of papers written which deal with mathematical models
and/or analyses of ecological dynamics. The majority of these papers
consider dynamics in a closed environment with no diffusion and
constant carrying capacities [4]. In nature, however, spatial effects
quite often need to be considered. If one thinks of growth in a forest,
the various species diffuse among the forest area. Further, changing
soil conditions, elevations, foliage cover, etc., create a continuously
changing carrying capacity.

A technique often employed by ecological field workers in aid of their
analysis is to draw a transect through the environment and analyze
the ecological dynamics along the transect, thus reducing the spatial
considerations to one dimension. It is the main purpose of this paper to
carry out the analysis of a diffusing single species along such a transect.

Such models have been considered in [2, 3] where the growth law
of the species is logistic without a stability analysis and in [5, 6,
7] where the environment is divided into a finite number of patches,
each with constant diffusion and constant carrying capacities. Here
we continuously vary the diffusion and the carrying capacity spatially.
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We do assume, however, that the population can be maintained at its
carrying capacities at the ends of the transect.

We model the above ecological dynamics by a semilinear parabolic
initial boundary value problem
(1.1)
u(@,t) = (D(@)ua(2,8))a + u(e, gz, u(z, 1)),  0<z<1, 0<t<oo
u(0,t) = K(0), u(1,t) = K(1), 0<t<oo
u(z,0) = n(x), 0<z<1

where we normalize the spatial transect as going from 0 to 1. Here D
and K are positive C! functions on [0,1], g is also C! from [0,1] x R4
to R, g(z,K(z)) = 0 for all z € [0,1], g(z,-) is nonincreasing and
n € C([0,1], R4) satisfying 7(0) = K(0), n(1) = K(1).

A result of Sattinger [17, 18] (cf. also Fujita [8]) on monotone
methods in elliptic and parabolic boundary value problems can be
applied to problem (1.1). From their results it follows that if the
boundary value problem

gy D@V U@ UE) 0, 0<s<)
| U©) = K(0),  U(1)=K()

has a unique nonnegative solution U(z), then this solution is a globally

asymptotically stable steady state solution of (1.1), that is, for any

initial value n(z), the unique solution of (1.1) converges toward U(z)

as t — oo.

The only nontrivial task in the application of the above mentioned
result is to prove uniqueness for problem (1.2) and this is the primary
purpose of the present paper. The existence of at least one solution of
(1.2) easily comes from [17] (see also [1]) and the fact that there are
upper and lower solutions. In the uniqueness proof the monotonicity
assumption on the second variable of g is crucial. Without this
monotonicity, uniqueness for (1.2) and global asymptotic stability in
(1.1) are not necessarily true.

The paper is organized as follows. In Section 2 we give the definitions
and some preliminary results. The uniqueness and stability of the
steady state solution are proved in Section 3. Finally, Section 4
contains a brief discussion of our results and some relevant biological
implications.
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2. Preliminaries. In the following we always assume that the
functions D, K, g and 7 satisfy

(21) D,KECl([U, 1];(())00))’ gECl([O, l] XR+;R)
(2.2)

g(z,K(z)) =0 and g(z,-) is nonincreasing for all 0 < z <1
(23)  neC(0,1Ry),  n(0) = K(0),  n(1)=K().

By a solution of (1.1) we mean a nonnegative classical solution,
that is, v € C([0,1] x R4;Ry) such that u; and uy, exist and are
continuous, and that (1.1) holds. A solution of (1.2) is a function
U € C%([0,1]; R,) satisfying (1.2).

A function Uy € C2([0,1]; R) is said to be an upper solution of (1.2)
if

(D(2)Up)" + Uog(w,Uo) <0,  Up(0) = K(0), Up(1) > K(1).

A lower solution of (1.2) is defined by reversing the above inequalities.

A solution U of the boundary value problem (1.2) is stable if given
any ¢ > 0 there exists a § > 0 such that if maxo<,<1 [n(z) —U(z)| < 6,
then maxg<g<1 |u(z,t) — U(z)| < € for all ¢ > 0, where u satisfies the
initial value problem (1.1). U is asymptotically stable if, in addition,
maxo<z<i|u(z,t) — U(z)| = 0 as t = oo. U is globally asymptotically
stable if, in addition, maxg<q<1 |u(z,t) — U(x)| — 0 as t — oo for all
initial values n satisfying (2.3).

The results stated in the following theorem can be obtained from [17].

Theorem 2.1 (Sattinger [17]). Let Uy and Vy be upper and lower
solutions of (1.2) with 0 < Vp(z) < Up(z), 0 < & < 1. Then the
following statements are true:

(i) The boundary value problem (1.2) has at least one solution U
such that Vo(z) < U(z) < Up(z), 0 <z < 1.

(i) If Vo(z) < n(z) < Up(x), 0 < x < 1, then the initial value
problem (1.1) has a unique globally defined solution u which satisfies
Vo(z) <wu(z,t) <Up(z),0<z<1,0<t< 0.

(iii) If the boundary value problem (1.2) has exactly one solution U
with Vo(z) < U(z) < Up(z), 0 <z < 1, then U is asymptotically stable.
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From conditions (2.2) on g, it easily follows that the constant func-
tions Up and Vj, satisfying Uy > maxo<e<1 K(z) and 0 < Vp <
ming<,<1 K(z), are upper and lower solutions of (1.2), respectively.
Therefore, Theorem 2.1 implies the following corollaries.

Corollary 2.2. Problem (1.2) has at least one solution.

Corollary 2.3. If problem (1.2) has ezactly one solution U(z) > 0,
then U is globally asymptotically stable.

By using condition (2.2) on g and the maximum principle for elliptic
boundary value problems, we obtain the following lemma.

Lemma 2.4. Any solution U of problem (1.2) satisfies

min K(z) < U(z) < max K(z), 0<z <1
0<z<1 0<z<1

3. Uniqueness and stability of the steady state solution. In
this section we state and prove the main results of this paper.

Theorem 3.1. Problem (2.1) has a unique solution.

Theorem 3.2. The unique solution of (2.1) is a globally asymptoti-
cally stable steady state solution of problem (1.1).

By Corollary 2.3, only Theorem 3.1 requires a proof. Before proving
Theorem 3.1, we need the following lemma.

Lemma 3.3. Let (V;(t), W;(t)), i = 1,2, be two solutions of the first
order system

V(t) = W(t)/D(t)
W'(t) = =V (t)g(t, V(2))
on the interval [to,t1] such that

(3.2) Va(t) > Va(t) >0,  to<t<t,

(3.1)
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and

Wilto) _ Walto)
Vi(to) Va(to)’

where 0 <ty < t; <1 and D and g satisfy (2.1) and (2.2). Then

(3.3)

Wi (t)
Vi(t)’

(3.4) > to <t <t.

Proof. Let ¢ > 0 and consider
V'(t) = W(t)/D(t)
W'(t) = =V (t)lg(t, V(t)) — eV (t)].

Let (V:(t), We4(t)), i = 1,2, be two solutions of system (3.5) with
initial conditions

(3.5)

Ve,i(to) = Vi(to), We i(to) = Wi(to), 1=1,2.
Let us define

_ W6,2(t) Ws,l(t)
PO=5 0~ Veat)”

_Wa(t)  WA()
PO=%0 ~ i

From the continuous dependence on parameters of solutions of (3.5),
it follows that (V. ;(t), W i(t)), ¢ = 1,2, exist on [to, ¢1] for sufficiently
small ¢ > 0 and (V. ;(¢), Wei(t)) — (Vi(t), Wi(t)) uniformly in ¢ €
[to, t1] as € = 0. Therefore, (3.2) implies that

(3.6) Vea(t) > Ver(t) >0,  to<t<t,

for small enough € > 0, say € < g, and

(3.7) Be(t) = B(t) wuniformly in ¢t € [tg, 1] as € — 0.

If ¢ € (0,e0), t € [to,t1] and B(t) = 0, then, by using (3.5), we have
Be(t) = [g(t, Ve, (1) — g(t, Ve2(t))]

(3-8) 1 [W2,(t)  W2,(t)

+e[Ve(t) = Vea ()] + D(t) Vgl(t) B szg(t) -0
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because of 5.(t) = 0, (3.6) and the nonincreasing property of g(t, -).

From (3.3), we have Bc(to) = 0, and thus S.(¢9) > 0. Consequently,
B:(t) > 0, t € (to,to + 9), for some sufficiently small § > 0. Then
Be(t) > 0, tg < t < ty, follows. Indeed, if B, has a zero on (tg,t1], then
it has a smallest zero ¢ in (¢o,t1], where BL(t2) > 0 by (3.8). This is a
contradiction, since B (t) > 0, tg < t < to.

Now, from (3.7), we also conclude that 3(t) > 0, to <t < t1, and the
proof is complete. a

Proof of Theorem 3.1. Let U; and U, be two different solutions of
(1.2). Then U;(0) # U4(0). Assume Uj(0) > U;j(0). Since, by Lemma
24, Ui(z) > ming<,<1 K(x), ¢ = 1,2, the function « : [0,1] = R,
defined by

_ D@U4(z) _ D@Uj()
ale) = =g

- ’ OSCUSI,
U2 ) Ul(I)

is continuous. From U;(0) = U;(0) and Uj(0) > U;(0) it follows that
Us(z) > Ui(z), 0 < z < 4, for some 6 > 0. By Uz(1) = Uy(1), we may
define
Z = min{z € (0,1] : Uz(z) = Uy (x)}

and 0 < & < 1. Since Ux(Z) = Uy(#) and Uy # Us, we cannot have
Uj(&) = Uj(&). If Uj(&) > Ui (&), then Uy — Uy is strictly increasing
in a neighborhood of & contradicting the definition of &. Therefore,
Us (&) < U{(&) and

U3(0)—~U1(0) Us(#) —Ui (&)

a(0)=DO)Z S >0, al@)=D(@)

Hence
& = max{z € [0,%] : a(z) = 0}

is well defined, z € (0, %) and
(3.10) a(Z) =0, alz) <0, <z <&
Now Lemma 3.3 can be applied with

(Vi(1), Wi(t)) = (Ui(1), DO)U; (1),  i=1,2, to=2, th=(2—7)/2.
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From (3.4) it follows that a(z) > 0 for z € [z, (& — £)/2], which
contradicts (3.10). Therefore, we cannot have two different solutions,
and the proof is complete. ]

Remark 3.3. If the monotonicity condition of g(z, ) is dropped, then
the statements of Theorems 3.1 and 3.2 may not be true. The example
given in [5] for a discontinuous situation can be easily modified to show
this.

4. Discussion. In this paper we have considered a model of a single
species with continuous diffusion along a transect in an environment
with continuous carrying capacity. We have shown that there exists
a unique globally stable positive steady state solution in the case
of environments maintained at the carrying capacity levels at the
endpoints of the transect.

Such boundary conditions are valid in some circumstances, for in-
stance, if the carrying capacity is relatively constant near the environ-
mental boundaries but changes in the interior. (Think of a forest with
a stream running through it. The carrying capacity may be relatively
constant away from the stream but vary drastically near and across the
stream.)

A problem of interest would be where no-flux boundary conditions
hold. This would represent a situation where environmental conditions
where diffusion in or out is impossible (drastic change in soil condi-
tions or elevation for a forest). Other problems of interest would be
to consider two spatial dimensions (in which case the shape of the
boundary plays an essential role) and/or to consider several interact-
ing populations such as predator-prey or competitors. We leave such
considerations to the future.
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