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1. Introduction and main results. We consider autonomous
differential equations

(1) X = F(X)

in R" where F : R® — R" is smooth and X = (dX/dt). An
automorphism of F' is an invertible linear transformation ¢ : R® — R"
satisfying

(2) F(pX) = pF(X)

for all X € R™. The set Aut F' of all automorphisms of F' is a closed
(Lie) subgroup of GL(n,R). Equivalently, one can define Aut F' to be
the largest closed subgroup of GL(n, R) relative to which F' is (Aut F))-
equivariant.

If ¢+(X) denotes the flow associated with equation (1), then for each
¢ € Aut F we have

(3) Ptop = oy

Conversely, any invertible linear transformation satisfying (3) is an
automorphism of F' (see [5, Lemma 5.2]).

A derivation of F' is a linear transformation D : R™ — R" satisfying
(4) DF(X)=F'(X)-DX

for all X € R"™; here F'(X) Y = (dF (X +sY)/ds)|s=o. The set Der F
of all derivations of F is a Lie subalgebra of gl(n,R). If D € Der F,
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then expD = I + D + (1/2!)D? + --- € Aut F; thus Der F is the Lie
algebra of Aut F [6].

In terms of the flow ¢;(X), the condition equivalent to (4) is
5) D§y(X) = $4(X) - DX.

(Here ¢;(X) Y = (d¢u(X + sY)/ds))

The importance of the existence of automorphisms for the study of
the dynamics of (1) is indicated in the following result. Let £ denote the
set of equilibria of F, i.e., the set of all points P for which F(P) = 0.
Let P, denote the set of periodic trajectories of (1) with period 7,
i.e., the set of all solution curves {¢;(P)} such that ¢,(P) = P and
¢t(P)£Pfor0<t<r.

s:O-)

Proposition 1.1.
(i) (AwtF)E =¢;
(ii) (Aut F)P, = P,.

Proof. See [5, Proposition 5.7]. mi

Automorphisms also preserve domains of attraction; see [5, Theorem
5.13].

In [5], the authors focused their attention on automorphisms and
derivations of quadratic differential equations

(6) X =TX + B(X, X),

where T : R™ — R" is linear, and B : R” x R™ — R" is bilinear.
In particular, we usually restricted ourselves to the homogeneous case
T = 0. (See [5, Section 2] or [7] for a discussion of how equations
like (6) can always be “homogenized.”) In this paper we continue to
draw on quadratic equations for examples, but the main results and
discussions will hold in general.

The terms “automorphism” and “derivation” come from our algebraic
perspective. In [5], our view of (6) was driven by the fact that
the bilinear map B defines a multiplication on R”, thus making
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A = (R™, B) into a commutative, nonassociative algebra. The theme
of [5] was that the study of the structure of A can help determine the
behavior of solutions of (6) (at least in the homogeneous case). Now an
automorphism ¢ of an algebra A is an invertible linear transformation
satisfying ¢ B(X,Y) = B(pX,¢Y) for all X,Y € A, and a derivation
D of A is a linear transformation satisfying DB(X,Y) = B(DX,Y) +
B(X,DY) for all X,Y € A. The Lie group of all automorphisms of A is
denoted by Aut A, and the Lie algebra of all derivations of A is denoted
by Der A. The connection between our two notions of automorphism
and derivation is made in the following result [5, Theorem 5.1].

Proposition 1.2. Let X = F(X) = TX + B(X,X) occur in
A= (R", B). Then
(i) AwtF ={p € Aut A: T =Ty}, and
(i) Der F = {D € Der A: DT = TD}.

More generally, for F(X) = > ,.,Fr(X) with F},, : R* — R"
a homogeneous polynomial map of degree k, we have AutF =
Nk>0Aut (R™, Fy) and Der F' = Ny >oDer (R™, F), where (R”, F) de-
notes the k-ary algebra structure defined on R™ by Fj, [7].

If a given map F : R™ — R™ has a nontrivial automorphism group,
it is natural to ask when the action of a one-parameter subgroup on
an initial point coincides with the solution through that point; that
is, given a derivation D, for which initial points P does one have
¢+(P) = (exptD)P? A characterization of such initial points is given
as follows [5, Proposition 5.3].

Proposition 1.3. Let D € Der F. Then (exptD) is a solution to
X = F(X) if and only if DP = F(P).

Proof. We have

DP = F(P) if and only if
(exptD)DP = (exptD)F(P) if and only if

d
E(exp tD)P = F((exptD)P), since exptD € Aut F. o
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Remark. The equation F(P) = DP that must be solved should be
compared with the reduced equation obtained from Lyapunov-Schmidt
reduction when F' is in Birkhoff normal form [3, Theorem XVI.10.1].
In the latter setting, F'(0), assumed to be nonzero, is used instead of
D. Later we will list some advantages to our approach; here we note
that Proposition 1.3 applies to all types of solutions, not just periodic.

Proposition 1(ii) and Proposition 3 suggest that when a given F has
a nontrivial derivation algebra, it may be the case that (exptD)P gives
a periodic solution. The next proposition shows that this is usually the
case [5, Theorem 5.8(1)].

Theorem 1.4. Suppose P, consists of isolated orbits; i.e., for each
v € P;, there exists a neighborhood of v containing no other trajectory
in Pr. If there is a v € Pr, P € 7, and D € Der F' such that DP # 0,
then there is a nonzero a € R such that ¢+(P) = (exptaD)P.

Proof. Let v € P, P € v, and D € Der F be as in the hypothesis.
Define the map

E:R—R":s— (expsD)P.

By Proposition 1.1(ii), k(s) is a periodic point of period 7 for each
s € R. Since k is continuous, the image of k is connected. But since
the orbits in P, are isolated, there is 4 € P, such that k(s) € 4 for
all s € R. Since k(0) = P € ~, we have 4 = . Thus there exists
u:R = R: s+ u(s) so that

(7) (exp sD)P = u(s)(P)-

The function u(s) is differentiable and we may assume without loss
that »(0) = 0. (Write u(s) = a(s) + u(0) where @(0) = 0,for then
(exp8D)P = Gi(s)+u(0)(P) = ba(s)(Pu(0)(P))- Setting s = 0, we obtain
P = ¢y0)(P) and thus (expsD)P = ¢5 s)(P) )
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Differentiating (7) we obtain

(expsD)DP = dis ((expsD)P)

d
d du
= — e
= F(¢u(P))u'(s)
and setting s = 0, we have DP = F(¢y(0)(P))u'(0) = u'(0)F(P).

Since DP # 0, we have u/(0) # 0. Setting a = 1/4/(0), we obtain
aDP = F(P). By Proposition 1.2, ¢;(P) = (exptaD)P. mi

chain rule

Next we extend this result to invariant tori. Let v be a trajectory for
(1). Then + is said to be quasiperiodic if there exists a subspace V' C R"
with basis {X7,..., Xy}, a rationally independent set {7,...,7%} of
nonzero real numbers, and a function G : V x 7 — R" such that

(i) GY +nrX;,P) =GY,P),i=1,... ,k forall Y € V and
P c~,and

(ii) G(tE,P) = ¢4(P) forallt € R and P € v, where E =), X,.
This is an adaptation of [9, p. 30].

The numbers 14, ... , 7 are called the quasiperiods of v. Let Q ., . -

denote the set of all quasiperiodic trajectories of (1) with quasiperiods
T1y--- 5y Tk-

Proposition 1.5.

(Aut F)QTI,...,Tk = QTlv--- Tk

)

Proof. Let v € Q. . . and ¢ € AwtF. Let V C R7,
{X1,..., Xk} CV,and G : V xy — R" be as in the definition.
Define G : V x oy — R™ by G(Y,9P) = ¢G(Y, P) for all Y € V and
P cy. Thenfor all Y € V and P € v, we have

G(Y + 1 X;,9P) = pG(Y +7:X;, P) = pG(Y, P) = G(Y, ¢P),
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i =1,...,k. Further, we have
$1(9P) = p6:(P) = ¢G(tE, P) = G(tE, pP),

forallt € Rand P € y. Thus oy € Q.. +,andso Q. . - C
Qr...me- Since v = p(p~'y) and o~y € Q. . ;. , we also have
Qromn C Q.. 1. This completes the proof. u]

Theorem 1.6. Suppose Q ;.. consists of isolated orbits. If there
isay € Qrn.. n2 Py, and D € Der F such that DP # 0, then
there is a nonzero a € R such that ¢,(P) = (exptaD)P.

Proof. Let v € Q..+, P € v, and D € DerF be as in the
hypothesis. Define the map

E:R—R":s+— (expSD)P.

As in the proof of Theorem 1.4, k(s) € v for all s € R, and thus there
exists u: R — R : s — u(s) such that

(8) (exp sD)P = gus)(P)-

Repeating the argument of Theorem 1.4, we conclude that P =
bu0)(P), and thus DP = u'(0)F(¢y0)(P)) = u'(0)F(P). Since
DP 0, we have v/ (0) # 0. Thus (exptaD)P = ¢¢(P) for a = 1/u/(0),
using Proposition 1.2. This completes the proof. ]

Remark. (1) The key idea behind Theorems 1.4 and 1.6 is that for
both periodic and quasiperiodic trajectories, there exist invariants pre-
served by the automorphism group; in the case of periodic trajectories,
the relevant invariant is the period, while for the quasiperiodic trajec-
tories, the set of quasiperiods is preserved. In Section 3, we give an
example of a system with a solution given by an automorphism where
the trajectory is hyperbola. If there were some invariant associated
with such trajectories, then we could prove a theorem like Theorems
1.4 and 1.6 that would guarantee that such solutions must be given
by automorphisms provided that trajectories with the same invariant
were isolated and that the derivation algebra acted nontrivially on some
point in some trajectory. However, we know of no such invariant.
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(2) When actually trying to find explicit solutions of a given system
that are given by automorphisms, the workhorse result is Proposition
1.3; that is, given F' : R™ — R™ and D € Der F', we try to solve the
equation DP = F(P) for P. The sections that follow are devoted to
examples of this.

(3) The main results of this section should be compared with results
obtained for vector fields in Birkhoff normal form with O(2) symmetry
[3, Chapter XVII]. Rotating wave solutions for such vector fields are
actually given by the action of SO(2). Our approach has the following
advantages: (i) we do not assume that the vector field is in Birkhoff
normal form, (ii) we make no assumptions about the eigenvalues of the
linearization of the vector field, (iii) we make no assumptions about the
structure of the group (we do not even assume compactness!).

Next we consider linearizations about solutions of the form ¢;(P) =
(exptD)P. First we need a lemma about how automorphisms in Aut F
interact with higher derivatives of F'. We shall not actually use the full
strength of the lemma, but it has independent interest.

Lemma 1.7. Let ¢ € Aut F' and let kK > 1 be an integer. For all
PeR"™ and all Yy,...,Y, € R",

F® (oP)(Y1,..., Vi) = oF®)(P)(p71Yy,... 07 V)

where FF)(P) denotes the k-th derivative of F evaluated at P.

Proof. The proof is by induction on k, and in fact we may start the
induction at k& = 0 because the definition of Aut F' is just the assertion
in this case. Thus assume the assertion holds for £ — 1 derivatives of
F (k > 1). Then using the induction hypothesis and the linearity of ¢,
we have

F("’)(@P)(Yl, 7Yk)
d _
— E\SZOF(’“ Y(pP + sYi)(Yi,... , Yeo1)

d _ _ _ _
:£\5=0¢F(k V(P +sp7'V3) (0™ Wiy e 07 W)
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d — - - -
= ¢ ls=oFE (P 4597 Vi) (070,07 W)

= oF®(P) (™Y1, ..., o7 V).

Now suppose ¢+(P) = (exptD)P is a solution to (1). We linearize
the differential system around ¢:(P) and consider the nonautonomous
problem '

Y = Fl(gu(P)Y.
Then F'(¢:(P))Y = F'((exptD)P)Y = (exptD)F'(P)(exp—tD)Y,
using Lemma 1.7. Thus we make a change of variables and set
Z(t) = (exp —tD)Y (t). Then
Z = (exp—tD)Y — D(exp—tD)Y
= (exp —tD)(exptD)F'(P)(exp —tD)Y — D(exp —tD)Y
= (F'(P)-D)Z,

and Z(0) = Y(0). Thus Z(t) = (expt(F'(P) — D))Y(0), and the
solution of the linearized system is

Y (t) = (exp tD)(exp t(F'(P) — D))Y (0).

Note that in the case where ¢;(P) = (exptD)P is a periodic solution
of period, say 7, we have found the Floquet decomposition of the prin-
cipal matrix solution to Y = F'(¢¢(P))Y : (exptD)Y (0) is nonsingular
and periodic of period 7, and F'(P) — D is a constant matrix; see [1].
In particular, the orbital stability of ¢;(P) can be determined by the
eigenvalues of F'(P) — D; these are the characteristic exponents of the
linearized system.

2. A periodic example. In this section we construct an example
of a three-dimensional quadratic vector field F(X) having a periodic
solution given by the action of a one-parameter subgroup of the auto-
morphism group on an initial point. Thus, we look for a vector field
supporting a solution of the form ¢;(P) = exptbDP where b € R, D
is a derivation, and P is a solution to DP = F(P). Since we desire a
linear group action to yield a periodic solution, we may suppose that
relative to some basis { Xy, X1, X2}, D has the form

0 0 O
D=0 0 1
0 -1 0
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We determine all three-dimensional quadratic vector fields F(X) =
TX + B(X,X) having D as a derivation. This generalizes an example
in [5, Section 5.

In the case of a homogeneous quadratic vector field, F(X) = B(X, X)
was found in [5] by first decomposing (the complexification of) the
associated algebra into the root spaces of the derivation, and then using
the basic rules of root space multiplication to determine a multiplication
table for the algebra. We will use the same method on all of our later
examples in this paper. In this example, for the sake of comparison,
we give a different argument that is closer to the spirit of invariant
theory. The techniques in this example are the same as those used in
the calculation of normal forms (see [8] and the references therein), and
in the symmetry group approach to bifurcation theory [3].

In abstract Lie theoretic terms, the idea is to consider the space
poly (3,R) of polynomial mappings on R® to be a (Z-graded) Lie
algebra under the Poisson bracket [F,G](X) = F/'(X)G(X) — G'(X) -
F(X), and to compute the centralizer C (D) = {F € poly (3,R) :
[D, F] = 0} of the element D. More concretely, if I' = {exptD : t € R}
(22 SO(2,R)) denotes the one-parameter group associated with D, then
C (D) is simply the space of ['-equivariant mappings F : R® — R?3.

Let Z (D) denote the commutative, associative algebra of all T'-
invariant polynomial maps p : R® — R, meaning p(yX) = p(X) for all
v €T and all X € R3. The following are well known [3, 8].

Lemma 2.1. (a) Z (D) is finitely generated as an R-algebra.
(b) C(D) is finitely generated as an T (D)-module.

We now determine a set of homogeneous generators for Z (D) as an
R-algebra, and a set of homogeneous generators for C (D) as an Z (D)-
module. Let X = > z;X; denote an element of R3.

Lemma 2.2. (a) The polynomials fi1(X) = zo and f2(X) = x? + 3
generate (D) as an R-algebra.

(b) The mappings Fy(X) = Xo, Fi(X) = 21X1 + 22X5, and
Fy(X) = 29 X1 — 21 X2 generate C (D) as an Z (D)-module.
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We now specialize this to the case of quadratic vector fields. For a
linear T-equivariant map 7 : R® — R?, we take

TX =afi1(X)Fo(X) + aF1(X) + BF2(X)
a 0 O o
=10 o 2 T
0 8 « To

For a bilinear (i.e., homogeneous quadratic) I'-equivariant map B :
R? x R? — R3, we take

B(X,X) = (M1(X)? + nfa(X)) Fo(X)
+ 201f1(X)F1(X) + 202f1(X)F2(X)
Azf + p(a? + 23)
= 2I0(01I1 — Co2

) |
2%0(02%1 + Cll‘z)

where A, pu,a,c,3,c1,co € R, and the factor of 2 is chosen for later
convenience. Thus, the general quadratic I'-equivariant quadratic
mapping F: R> = R3 is

F(X)=TX + B(X, X).
In order to find solutions of the form (exptbD)P, we must solve the

equation F(P) = bDP. In terms of coordinates P = Y p; X;, we have
the following system of equations:

(9) apo + A\pg + u(p? +p3) =0
(10) apy + Bp2 + 2po(cip1 — cap2) = bp2
(11) —Bp1 + aps + 2po(capr + c1p2) = —bps.

In this section we give an exhaustive analysis of this system. This is
a very tedious task, because of all the unspecified parameters (akin
to doing bifurcation theory with eight bifurcation parameters!). In the
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sections that follow, we will just indicate what the system F'(P) = bDP
looks like in coordinates.

Note that we can rewrite equations (10) and (11) as a homogeneous
matrix-vector equation

(12) a+2pcr B —b—2poca) (pr) _ (0
2ppce —B+b  a+2pocy D2 0/
Now assume that P # 0. If p; = ps = 0, then by (9), apo + Ap3 = 0.
Thus either py = 0 (a contradiction) or Apg = —a. If A\ = 0, then

a = 0, and it follows that P = pyXy is an equilibrium. If A # 0, then
P =(—a/\) Xy is an equilibrium.

Thus we may assume that at least one of p; and ps is not zero.
This means that (12) has a nontrivial solution, so computing the
determinant, we find

(a+ 2p001)2 +(B-b- 2p002)2 =0.

Thus 2ppc; = —a and 2pgce = [ — b; hence, we have a consistency
condition acy = (b—B)cy. Set ¢ = cas and ca = ¢(b— ) for c € R. If
¢ = 0, then using the determinant condition, we have « = 0 and 8 = b.
This gives us the differential system

o = axo + Az + (et + x3),

a'vl = b.Z'Q, .i'z = —bxl.
In this case any P = > p; X; satisfying
apo + Apg + p(pi +p3) =0

is a periodic point, and ¢;(P) = (exptbD)P is the solution through P,
with period 27/|b|. We obtain the same differential system if ¢ # 0,
a=0,and b=p. If c #0, @ =0, and 8 # b, then the differential
system has the form

& = axo + Az + p(z] + 3)
I'l = bxz - 20(b - ,B)I()Ig
To = —bxy + 2C(b — ,B)I()xl.
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On the other hand, if ¢ # 0, b = 8 and « # 0, then we have

&0 = axg + Mxd + p(x] + x3)
T1 = bz + 2caxpry

Ty = —bx1 + 2caxors.

In either case, any point P satisfying apg + ApZ + u(p? + p3) = 0 yields
a periodic solution ¢;(P) = (exptbD)P (when this quadric surface has
nontrivial solutions).

Ifc 20, « # 0, and b # S, then pg = —1/2¢. Thus, using (9),
pw(p? + p%) = (2ac — N\)/4c?. If u = 0, then \ = 2ac, and we have the
system

Ty = axy + 2caw3
&1 = (2¢zo + 1)(azy + Bre) — 2¢bzoo
&2 = (2cxo + 1)(—Bx1 + axs) — 2cbzozy.

In this case, any P = (—1/2¢)Xy + p1 X1 + p2X> is a periodic point
with solution ¢;(P) = (exptbD)P.

If u # 0, then p? + pZ = (2ac — \) /4puc?, and thus we assume 2ac > \
and g > 0, or 2ac < XA and p < 0. In this case the system can be
written

to = azo + Az + p(f + 23)
&1 = (2¢cz9 + 1)(azy + Bra) — 2¢bzozy
&o = (2¢zp + 1)(—Pz1 + axzs) — 2¢bzozy.

We can describe the periodic points P using cylindrical coordinates
x1 = rcosf and x5 = rsinf. In this case we have

-1 2ac — A\ /2 .
P=P) = 2—ch + <W> [(cos0) X + (sin 0) Xs).

These points lie on the surface azg + Azg + p(z? + z3) = 0.

Next we turn our attention to the Floquet theory for this three-
dimensional example. We will only consider the last case, leaving the
others to the reader. Recall from Section 1 that the characteristic
exponents of the periodic solution passing through P are exactly the
eigenvalues of the matrix
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F'(P) —bD
a + 4capo 0 0
= <2c(ap1 + Bp2) — 2cbps a(2cpo + 1) 6(2cp0+1)20bp0b> .
2¢c(—Bp1+ap2)+2cbpr  —B(2cpo+1)+2cbpo+b a(2cpo + 1)
Using pyp = —1/2¢, the characteristic polynomial is

char (k) = (a + 4capy — k) ((a(2cpo + 1) — k?)
+ (B(2¢po + 1) — 2¢bpy — b)?)
= —(a+ k)k>.

Thus the eigenvalues are 0, 0, and —a.

From general theory, we always expect at least one of the character-
istic exponents to be zero [2, p. 322]. Actually, we can see this directly
because F'(P) = bDP is an eigenvector:

(F'(P) — bD)F(P) = F'(P)F(P) — bDF(P)
= F'(P)F(P) — bF'(P)DP
= 0.

Normally, the extra 0 would not allow us to conclude orbital stabil-
ity /instability. However, because the automorphism group is nontriv-
ial, we may use equivariant Floquet theory instead of traditional Flo-
quet theory [3, Theorem XVI.6.2]. In particular, we check to see if
I'-equivariance forces F'(P) — bD to have an extra 0 eigenvalue. We
simply sketch the idea and leave it to the reader to check the details
using [3]. From [3, Theorem XVI.6.1], the number of eigenvalues of
F'(P) — bDP that are 0 is the 1 plus dimension of the group minus
the dimension of the isotropy subgroup of T' x S where S' denotes the
circle group acting on ¢:(P) (and all periodic solutions of the same
period as ¢;(P)) by phase shift. It is straightforward to check that the
dimension of this subgroup is 1, and thus symmetry only forces one of
the eigenvalues to be 0. Thus, the standard equivariant Floquet theo-
rem does not apply, and we expect a center manifold to pass through

¢:(P).

3. A quasiperiodic example. Next we consider an example of
a five-dimensional quadratic vector field F(X) = TX + 8(X, X) with
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a quasiperiodic solution given by an automorphism. For this example
(as well as those in the next section), we construct the vector field
by the methods of [5]. In order to have a quasiperiodic solution of
the form ¢;(P) = (exptD)P, we require that relative to some basis
{Xo,..., X4}, D has the form

0 0 0 0 0
0 0 b 0 0
D=|0 -5 0 o0 o[,
0 0 0 0 b
0 0 0 —by 0

for b; € R, i = 1,2. (Notice that unlike the previous example, we have
absorbed the frequencies into our definition of D.) As before, we set
I'={exptD:t € R}.

Unlike the “invariant theory” method of the previous example, the
approach of [5] finds homogeneous I'-equivariant polynomial mappings,
i.e., '-equivariant polynomial mappings are determined one homoge-
neous term at a time. The idea is to work directly with the derivation
D without dropping down to the automorphism group I'. By Propo-
sition 1.2, we first determine all linear mappings 7 : R®> — R® that
commute with D. This is just an easy exercise in linear algebra; the
general such T has the form (relative to {Xo,...,X4})

a 0 0 0 0
0 (5] ,81 0 0

T = 0 —,81 aq 0 0 y
0 0 0 Qo ﬂg
0 0 0 —,82 (6%}

for a,a;,B: € R, i =1,2.

Next we wish to determine the general bilinear mapping B : R® x
R’ — RP relative to which D is a derivation. As remarked in Section
1, this would imply that D would be a derivation of the associated
algebra A = (R® B). We can determine a multiplication table for
A by determining how the eigenspaces of D multiply together. First
we introduce the abbreviation XY = B(X,Y). Since D has complex
eigenvalues, we decompose the complexification Ac of the algebra A
relative to D rather than A itself:

Ac = AC(O) + Ac(bli) + Ac(—bli) + Ac (bzi) + Ac(—bgi),
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a direct sum. Here Ac(u) = {Z € Ac : DZ = uZ}. A well-known
result (e.g., [4, p. 54]) shows that the eigenspaces satisfy Ac(u)Ac(v) C
Ac(u+v) if u+ v is an eigenvalue; otherwise Ac(u)Ac(v) = 0. This
gives us the following inclusions for products of eigenspaces:

(13) Ac(0)Ac(0) € Ac(0),

Ac(0)Ac(+bri) = Ac(£bri)Ac(0) C Ac(+bki),  k=1,2,
(15)
Ac(bki)Ac(—bki) = Ac(—bki)Ac(bki) C Ac (0), k=1,2.

The only products yet to be determined are Ac(zbpi)Ac(Lbki),
Ac(Eb1i) Ac(Ebei), and Ac(£b17) Ac(Fbai). These depend on whether
or not the sums +by by, b1 £b, and +b1iFby¢ are themselves eigenval-
ues. We observe that if any of these sums are indeed eigenvalues, then
b1 and by are rationally dependent. This implies that exp tD would give
a pertodic orbit. Since we desire our solution to be truly quasiperiodic,
we assume that none of these sums is an eigenvalue. Thus, in addition
to the above eigenspace products, we also have

(16) Ac(ﬂ:bki)Ac (:Ebki) = {0},
(17) Ac(Fbii)Ac(+bai) = {0},
(18) Ac(£bai) Ac(Fb17) = {0}

Next we use this information to construct a multiplication table for
the real algebra A. Relative to the basis { Xy, ... , X4}, we have

Ac(0) = C - X,
Ac(bri) = C- (X1 +iX>)
Ac(=bii) = C - (z; — iX>)
Ac(bi) = C - (X3 + iXy)
Ac(—byi) = C - (X5 — iXy)

Using (13), X2 = AX¢ for A € C, but since X2 € A, X is real. Next,
using (14), Xo(X1+j + iX2+j) = Zj(X1+j + iX2+j) and Xo(X1+j —
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iX2+j) = Zj(XH_j — iX2+j) for some zj € C, 7 =0or 2. Addlng and
subtracting these equations, we have XoX11; = c14;X14; + co4; Xoyj
and XoXoy; = —coyjX14j+c14;Xo4;, where 145 = (1/2)(2;+2;) and
cayj = (1/2)(zj — Z;), j = 0 or 2. Using (15) and (16), X7, ; + X3, ; =
(X1+j+l'X2+j)(X1+j —iX2+j) = [L1+j/2X0 for H1+j/2 € R and X12+j -
X3y = (1/2)(X14j +iXo1) (X4 +iXo45) + (X4 — i X045) (X1 —
iX21j) = (X14j — 1 Xo15)(X1qy — iXay;) = 050 Xi4; X545 = 0.
Similarly, (17) and (18) show X;X3 = X3 X, = XuoX3 = XXy = 0.
Summarizing this information, we obtain the following multiplication
table for A = (R", B):

B Xo X1 X2 X3 X4

Xo AXo c1X1+c2 X2 | —c2X1+c1 X2 | c3X3+caXa | —caX3 +c3Xy
X1 | aa X1+ c2Xo 11 Xo 0 0 0

Xo | c2X1 +c1 X9 0 p1Xo 0 0

X3 | 3 X3+ caXy 0 0 p2Xo 0

X4 | —caX3+c3Xa 0 0 0 p2Xo

Thus, the general I'-equivariant quadratic vector field F/(X) for which
there might be a quasiperiodic solution given by the action of I' has
the form

F(X)=TX + B(X, X)

a 0 0 0 0 o
0 a1 ,81 0 0 X1
0 761 (e5] 0 0 o
0 0 0 (D] ﬂz I3
0 0 0 —,82 (69) T4

Az + pa (21 + 23) + pa (2 + 25)
2$0(61I1 — 62372)
+ 2$0(62I1 =+ 61372)
2$0 (ngg — C4£E4)
2I0(C4I3 + 03I4)

Finally, we indicate in coordinates what the system F'(P) = DP turns
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out to be:

Apg + pa (py + p3) + pa2(p3 + pi
2po(c1p1 — c2p2) = bip2

)=0
)
2po(c2p1 + c1p2) = —bip1
)
)

2po(c3ps — capa) = baps
2po(cap3 + capa) = —baps.

A tedious analysis like that of the previous section yields cases when
this system of equations has nontrivial solutions; we omit this. As
desired, the points lie on invariant tori, i.e., the solution trajectories
¢+(P) = (exptD)P are quasiperiodic.

4. A “hyperbolic” example. In this section we construct a
three-dimensional example of a quadratic vector field F'(X) having a
solution ¢;(P) = (exptbD)P where, relative to a basis {Xo, X1, X2},
the derivation D has the form

0 0 O
D=0 1 0
0 0 -1
This trajectory is a hyperbola. As indicated in Section 1, we know
of no invariant associated with this type of solution that is preserved
by the automorphism group. Nevertheless, we can use Proposition 1.3
to find such solutions once we have determined the general quadratic
mapping F(X) which is I'-equivariant; here I' = {exptD : ¢t € R}.

We follow the procedure outlined in the last section. First we
determine the linear mappings 7' : R?> — R? commuting with D.
Again, this is just linear algebra; such mappings have the form

Qo 0 0
T=(0 a 0|,
0 0 as

fora; € R,1=0,1,2.

Next, we determine the bilinear mappings B : R® x R® — R? such
that D is a derivation of the associated algebra A = (R*,B). We
decompose A relative to D as follows:

A= A(0) + AQ1) + A(-1),
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a direct sum. Note that A(0) = R - Xy, A(1) = R - X1, and
A(-1) = R - X,. Using the multiplication rules A(u)A(v) C A(u + v)
if u + v is an eigenvalue, and A(u)A(v) = 0 otherwise, we can find the
multiplication table for A. The arguments are similar to those in the
previous section (in fact, easier, because we are only working over the
reals). We obtain the following table:

B | X, X, X5
Xo | MXo | e1 X1 | caXo
X1 | Xy 0 uXo
Xo | coXo | pXp 0

Thus the general quadratic vector field having D as a derivation has
the form

aopZo )\37(2) + 2pxi 2
F(X) = | a1z | + 2c1Tox1
agsx2 202$0x2

Finally, we of course must solve the system of equations F(P) = bDP.
In coordinates, this is the following;:

(19) aopo + Apjy + 2up1pz = 0
(20) a1p1 + 2c1pop1 = bp:
(21) asp2 + 2c2pop2 = —bps.

As in the previous section, we omit the tedious analysis of these
equations. Let us simply state that the expected hyperbolic solutions
do indeed occur.

Remark. (1) In this paper, we have been using quadratic examples
to maintain continuity with [5]. However, our technique for finding
homogeneous equivariant polynomial mappings extends to higher or-
der terms as well. The idea is to compute multiplication tables for the
associated k-ary algebra. This is straightforward because the multipli-
cation rules for the eigenspaces of the derivation extend to the k-ary
case (i.e., the eigenvalues must add correctly) [7].

(2) As we have seen, the hard work in using our method to construct
solutions of the form ¢;(P) = (exptD)P is in solving the equation
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F(P) = DP. We think that two tools may prove to be quite useful in
the analysis of such equations: (i) the use of k-linear forms that are
preserved by the automorphism group (see [5] and [7] for how such
forms can be used), and (ii) techniques from algebraic geometry.

(3) In closing, we make comparisons between our technique for
computing equivariant vector fields and the “invariant theory method”
sketched in Section 2. The invariant theory technique yields the
general polynomial (in fact analytic) vector field all at once, while our
method only yields one homogeneous term at a time. However, there
are no general methods for finding generating sets of homogeneous
polynomials for the algebra of polynomial invariants, or for finding
generators for the module of equivariant polynomial mappings (unless
the group is well-behaved, like SO(2)). By working directly with
the derivations (i.e., staying at the Lie algebra level), we are able to
automate the procedure of finding homogeneous equivariant polynomial
mappings; we simply construct multiplication tables for the associated
k-ary algebras. We think that this procedure could be programmed
using a symbolic manipulation package.
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