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ABSTRACT. When studying the existence of solutions of
the nonlinear population problem with age dependence and

diffusion,
oo
u(z,t) = / p(z,t,a)da
0

Pt+Pa—kPuz x (a u)p

p(z,t,0) /,B(au (z,t,a) da

some simplifying assumptions are necessary. Here we discuss
the effects of a birth function of the form

Bla,u) = B(u)ae”**

and a death function p(a,u) = po(u), in terms of existence of
solutions and localization of the population.

1. Introduction. We consider here a nonlinear one-dimensional
population problem with age dependence and diffusion as proposed by
Gurtin and MacCamy through several papers [9, 12, 8].

Let p(z,t,a) denote the number of individuals per unit age and unit
length who are of age a at time ¢t and position z. The total population
at z and t is

(1.1) u(z,t) = /000 p(z,t,a)da.
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Assuming that the population disperses to avoid crowding Gurtin and
MacCamy [9] arrived at the following equations

(1.2) Pt + pa = k(puz)e — p(a,u)p
(1.3) p(z,t,0) :/0 B(a,u)p(z,t,a)da
(1.4) p(z,0,a) = po(z,a) >0

k is a constant that can be normalized to be 1.

The balance law (1.2) is of Malthusian type. If age and diffusion are
ignored the population would tend to decay exponentially depending on
the death modulus p. On the other hand, if only diffusion is neglected
and p is assumed to depend on a the balance equation reduces to

(1.5) Pt + pa = —p(a)p

which can be readily integrated along characteristics.

Letting t = a —tg for a < ¢t and ¢t = a + ag for t < a, we obtain a
formal solution

t

fo pla—t+s) ds, t<a
¢ .

e fo p(s)ds t>a

)

e

16 pltia)=q %Y
p(t —-a, 0) -
Although p(0,a—t) = pg(a—t) is the prescribed initial age distribution,
the term p(t,0) needs to be determined. Assuming that the population
sex ratio remains constant the birth rate $(a,u) is defined such that
B(a,u) da represents the average number of offsprings produced per
unit time by an individual aged between a and a + da. In this form
equation (1.3) is the birth law, S(a,u) is called the birth module.

The diffusion mechanism in (1.2) is such that the flux of individuals
is proportional to the gradient of the total population. The first
model considering diffusion was given by Skellam [20] in 1951. With p
independent of age he assumed random diffusion of individuals, which
gives a balance law of the form

(1.7) pe = kpoe + o(t)
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where k is constant. It has been observed, however, that several species
actually disperse to avoid crowding rather than dispersing randomly
(see, for instance, [4]). This fact is modeled by considering

(1.8) pt = @(p)ee + (p)

where ¢'(0) = 0, ¢'(p) > 0 for p > 0. This was done by Gurtin
and MacCamy in [10]. In [7] Gurney and Nisbet arrived at a similar
equation with ¢(p) = p? after considering a probabilistic walk in which
individuals either stay at their present location or move in a direction
of decreasing population.

The system (1.1)—(1.4) is just too general to be treated in that form,
and some simplifying assumptions are necessary. In [12] Gurtin and
MacCamy assumed that u(a,u) = po and B(a,u) = Boe™**, where
to,Bo and « are constants, which reduces the system to a pair of
partial differential equations. The first supposition models the case
of a harsh environment in which age is not a significant cause of death
(for instance, a population in the presence of predators that do not
discriminate with age), the latter corresponds to a population with
higher fertility at age 0. Of course, such an assumption is not to be
taken literally but rather as an approximation to higher fertility at
younger ages. In [15] and [14] the author studied the existence of
solution and the spatial localization of the population when

(1.9) B(a,u) = Bo(u)e™**
and
(1.10) (e, ) = po(w)

Bo, po smooth positive functions. This problem was proposed in [8] by
M. Gurtin.

A more realistic birth modulus was suggested in [10]

(1.11) B(a,u) = B(u)ae™*"

with an expected number of zero births at age a = 0 an increasing
fertility up to a maximum age a = 1/a and then a monotonical decrease
to zero. For human-like populations the birth modulus looks like

0, 0<a<ag

(1.12) Bla,u) = {,B(u)(a —ap)e"*, a>ap
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In [8] M. Gurtin proposed a still more general birth function
(1.13) Bla,u) = Bo(u) Zﬁk(u)ak-
k=1

This would reduce (1.1)—(1.4) to a mixed system of n + 1 nonlinear
partial differential equations.

Here we shall compromise to a birth modulus of the form (1.11)
and the death modulus as in (1.10). We shall assume for definiteness
that B(a,u) = B(u)bpae™**, where by = ae is introduced only as
a normalizing factor. We believe this function carries most of the
important aspects of the model and the one obtained with (1.13)
will present similar characteristics. We shall study the existence of
solutions, the localization of the population and its asymptotic behavior
as t — oo.

Results for the existence of solutions and the localization of the
populations in higher dimensions have been obtained in [13] when the
birth modulus is given by (1.9) and the initial distribution is radially
symmetric.

From another point, Busenberg and Ianelli [3] have proved the exis-
tence of solutions when both the birth and death modules are indepen-
dent of the total population and depend only on age, p(a,u) = po(a),
B(a,u) = Bo(a). The latter supposition renders the birth law (1.3)
linear in w. Gurtin and MacCamy [11] have looked into product so-
lutions of the form p(x,t,a) = g(a)u(z,t), under the assumption that
the death process is the form

(1.14) p(a,u) = pin(a) + pre(u)

with g, (a) the probability of dying of natural causes during (a,a + da)
and p.(u) the probability of death due to environmental factors during
the same interval.

For the random dispersal model we refer the reader to Garroni-
Langlais [6], Langlais [18], DiBlassio [5] and the references contained
therein.
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2. Weak solutions. Introducing the auxiliary functions

C(z,t) = h e *p(z,t,a)da,
(2.1) /0

G(z,t) :/ boae ““p(z,t,a) da
0

the birth law (1.3) can then be written

p(z,t,0) = B(u)G(z,t).

Integrating (1.2) with respect to a from 0 to oo, assuming p = 0 at
a = oo we obtain

(2.2) up = (ug)z — p(u)u + B(uw)G(z,t)

(a4

and multiplying (1.2) by e~ ®® and ae~** and integrating

(2.3) Ci = (Cug)y — (u(u) + a)C + B(uw)G
and
(2.4) Gt = (Gug)s — (p(u) + @)G + b C.

The initial conditions for (2.1)—(1.3) are obtained in the same manner.
Note that if p(z, t,a) > 0 in a set of positive measure then C(z,t) > 0,
G(z,t) > 0 and u(z,t) > 0. On the other hand, if p(z,t,a) = 0 a.e. in
a, then C(z,t) = G(z,t) = u(z,t) = 0.
Introduce the rates p(z,t) =C(z,t)/G(z,t) and ¢(z, t) =G (z, t) /u(z, t)
for u, G # 0.

Substituting p and ¢ into equations (2.2)—(2.4) and including the
corresponding initial conditions, we arrive at

(2.5) ue = (uttz)e + (B(u)g — p(u))u
(2:6) @ — Use = (bop — a)q — B(u)q’

(2.7) Pe — tzps = B(u) — bop?

(2.8) u(z,0) = uo(z) = /0 po(z,a)da >0
(2.9) Q(x70) = QO(m)7 p(m,O) :po(w)
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where

(2.10) po(z) = Jo € *plz,0,a) da
Jy boae=p(x,0,a) da

and

(2.11) w(z) = Iy boae**p(z,0,a) da

I p(2,0,a) da

if pg(z,a) > 0 in a set of positive measure. Otherwise, go(z) = po(z) =
0.

This is a mixed system composed of a degenerate parabolic and first
order nonlinear hyperbolic differential equations.

Let h(z,t,u) = B(u)g — u(u). Equation (2.6) is

ur = (uug)s + h(z, t,u)u
(2.12) u(z,0) = up(z) > 0.

With A = 0 it is the porous medium equation:

(2.13) up = (utg)g, u(z,0) = up(z) > 0.

It models the diffusion of a homogeneous gas flow through a homo-
geneous porous medium. There is a large literature for this equation.
Complete references are given in Aronson [1], Peletier [19] and Vazquez
[21].

The most striking difference between the solutions of (2.13) and those
of the usual heat equation

(214) Ut = Ugg, u(mv 0) = ’U,[)(QT)

is their speed of propagation. Assume that a population u(z, t) satisfies
the random dispersal equation (2.13) and it is initially restricted to
a bounded interval Iy, i.e., ug(z) > 0 in Iy, ug(z) = 0 on R\I.
These solutions are characterized by an infinite speed of propagation:
u(z,t) > 0 for all z € R, t > 0. Thus, the population would spread
immediately to all the space. On the other hand, if a population u(z, t)
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satisfies (2.13) it will have a finite speed of propagation: If Iy = (aq, bp),
there are two monotone interface curves vy (¢), v2(¢) with ap = 71(0),
by = 72(0), that separate the region of positivity of u(z,t) from the
region in which u(z,t) = 0.

In this work we shall assume that the initial population for the
anticrowding model is nonnegative and satisfies ug(z) > 0 on Iy,
up(z) = 0 on R\Ip. It is therefore reasonable to expect that it will
present a behavior similar to that of the solutions of the porous medium
equation.

In [14] it is proved that when B(a,u) = B(u)e™*%, the support of
u(z,t) increases with ¢ and it is always an interval. Further, if

su — <
0cucr, Blu) ozusk: B(u)

then the support of u(z,t) grows to (—00,00) as t — oo. In this case
all the real line will be ultimately populated.

On the other hand, if

(2.16) sup B g B

o<usk, Bu) osuskiB(u)’

then the population remains localized in an interval [—L, L] for all
times. In this case the interaction between age dependence and diffu-
sion produces that the population persist in a limited region.

Similar results are given in [13] for the problem with radial symmetry
in several variables.

It is well known that equation (2.13) does not have classical solutions
unless the initial datum is strictly positive. (See Aronson [2], Kalash-
nikov [17]). This is because if ug has compact support the solutions
will not have a continuous first derivative when crossing the interfaces.
A fortiori equations (2.5) should not have a classical solution either.

We shall use the following definition of weak solutions (see [15]):
Let

K ={p(z,t) € C°(Qr) : u =0 for large |z| and ¢ near T'}.
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Given ¢ € K, multiply (2.6) by ¢ and integrate on R x (0,7 to
obtain

(2.17) / / < VP, — u<pt> dx dt
/ / )ug@dmdt—i-/R o(@)¢(x, 0) da.

For ¢ we multiply (2.6) by ¢ and (2.7) by u, add and integrate

(2.18) / / < )2 s — qu@t> dz dt
= / [ top 0 plw)aupdode + [ wo(e)an(o)ple,0) do

and for p

/ / ( )aPqPz — upq%) dz dt

(2.19) / / u) + a)p))quep dz dt
+ /R wo()po () go(z) p(x, 0) dax

We define a Weak solution of (2.6)—(2.8) as a triple (u,q,p) such
that (u?), € L2 (Qr) in the sense of distributions, g(z,t),p(z,t) €
L2 (Qr), and (2.17)—(2.19) are satisfied for any ¢ € K.

The following notation will be used:

C*(Qr) is the Banach space consisting of functions u(z,t) defined
in Q7 with continuous second derivatives in & and continuous first
derivative in t.

C*(Qr) is the Banach space of functions u(z,t) defined in Qr for
which the a-norm

|’I,L(.Z',t) - u(y,s)\
U||q = SUp |u| + su
H ||a QTp| | Qp |x_y‘a+‘t_s|a/2

is bounded.
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C17T(Q7) is the Banach space for which the 1 + a-norm ||ul|14q =
[|uz|la + ||ue]|a + ||u||a is bounded.

Similarly, C?*%(Qr) is the Banach space for which the 2 + a-norm
|[ull2+a = [|tazlla + [[ul|1+a is bounded.

3. Existence results. Concerning the functions u(u),8(u) and
po(z,a) the following assumptions will be adopted throughout.

(A1) B(r),p(r) are bounded continuously differentiable functions on
[0, 00).

(A2) po(z,a) is sufficiently smooth so that ug, gy and py are bounded
continuous functions in R.

The continuous differentiability assumption on  and p can be easily
relaxed to require only continuity. We have preferred to avoid this
apparently more general case in order to keep the notations simple.
With respect to po(z, a) we are basically assuming that it is integrable
with respect to a for every x and that it is not overly concentrated at
a = 0 for any z. For definiteness we assume that there exist constants
My and M; such that ug, |ug| < My and B, |8|, 1, |1'] < M;.

Theorem 3.1. Under the previous assumptions there ezists a (weak)
solution (u, q,p) of (2.5)—(2.11). The population u is uniformly bounded
in R and u? is differentiable with respect to x.

Theorem 3.2. Assume there exist 1,22 € R such that po(z,a) > 0
for all x € (x1,x2) and po(z,a) = 0 for x € R\(z1,22). Then the
support of u(x,t) is a finite interval for every t, and there exist two
interface curves v1(t),v2(t) such that 1 = v1(0) and z2 = 72(0), and
supp u(-, t) = [v1(t),72(t)] for every t.

In Section 4 we study the localization of u and its behavior as t — co.

Proof of Theorem 1. Assume u € C*t%(Qr) is given. We shall first
study equations (2.7) and (2.6).
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Define characteristics z(¢; Z, ) by
(3.1) 0zx /0t = —ug(z,t), z(t;z,t) = T.

Since u, is Lipschitz continuous there is always a local solution of this
equation. Since u, is also bounded, this solution can be made global by
extending it to the boundary of [0,7] x R. With P(t) = p(z(t; z,t), t)
we get

(32)  dP/dt =) bF?,  P(0) = p(x(0;,1),0).
We shall first establish a comparison lemma for this equation.

Lemma 3.1. If R,S €' (0,T), R(0) < S(0), f(t) < g(t) and

dR ) ds )
ik _ < = _
a + boR fit) < at + boS g(t)

for allt € (0,T), then R(t) < S(t) on [0,T).

Proof. If w(t) = R(t) — S(t), then

dw/dt + bo(R + S)w < f(t) — g(t) < 0;

thus,
w(t)efot bo (R+S)(s) ds

is a decreasing function which is nonpositive at ¢ = 0. Therefore,
w(t) <0 and R(t) < S(¢) on [0,T).

Now if k is a positive constant and k # Ry the unique solution of
(3.3) dR/dt = k —boR?*,  R(0) = Ry
is
_ e\/nbot _ Cef'\/ rbot
=h ex/libgt + C@*V’ibot

R(t)

where k1 = \/k/bg and C = (k1 — Rp)/(k1 + Ro). In fact, if Ry < k1,
R(t) increases from Ry to k1, if Ry > k1, R(t) decreases from Ry to k;.
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When Ry = k1, R = Ry is the constant solution. From this observation
and Lemma 3.1, it follows that any solution of (3.2) is bounded above
and below by the corresponding solutions of (3.3) withk = * and
K = B, thus if by = min{y/B./bo, P(0)} and by = max{+/3*/bo, P(0)}
then

(3.4) b1 < P(t) < by

for any solution P(t) € C(0,T) of (3.2).
It follows now by standard existence theorem that there is a unique
solution of equation (3.2) in the rectangle [0,T") X [b1, bo].

Along the same characteristics given by (3.1)—(3.3), for Q(t) =
q(z(t; z,%),t) we have

dQ/dt = (boP(t) — @)Q — B(u)Q?

(3.5) Q(0) = q(x(0;z,©),0).

This is a Bernoulli type equation that can be solved letting R = Q*.
Integrating along characteristics we obtain
(3.6)

3 t - -1
ala,) = el O g a(032,,0) 1+ [ ek 0 ar
0

This is just a formal solution. Direct differentiation shows that it is an
actual solution.

Let y = (z,t). In R? we consider a mollifier J(y), a symmetric C°°-
function such that J(y) > 0 if |y| < 1 and [,. J(y)dy = 1.

(For instance

—-1/(1-]yl*)
J(y) = {ke , lyl <1 for appropriate constant k).

0, iyl >1

Let Ju(y) = (1/n?)J(ny) and (¢ * Ju)(y) = [, _y<1/nd (M(y —
y)aly) dy'.

It is then clear that if ¢ € £2, {q * J,}°; is a C*-sequence that
converges to ¢ in £2, and if ¢ is continuous {q * J,,}°, converges to q
uniformly on compact sets.
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We will apply Schauder’s fixed point theorem to the following e-n-
approximating systems:

(3.7) ur = (Uue)e + (B(w)(q* Jn) — p(u))(u—¢)
(3.8) 4t — uaqe = (bop — @)q — B(u)g?

(3.9)  pa— uspx = B(u) — bop®

(3.10) u(z,0) = up(x) + ¢, q(z,0) = qo(z) + ¢

p(z,0) =po(x) +¢

Let K; be a constant to be specified later, and for a € (0,1), let
V ={w e C?®T™(Qr) : ||w||24a < Ki,w > €}. V is a closed convex set.
o

Define 7' : V + C***(Qy) in the following way:

Given w € V, by the previous discussion there exist unique solutions
(depending on w), p € C***(Qr), ¢ € C***(Qr) of (2.7), (2.6),
respectively. Further, (3.5) implies that

a5t (P~ @)@ = —Bw)Q* <0

SO
t
e fo (boP—a)ds

is a decreasing function of ¢ that at ¢ = 0 takes the value Q(0)
q(z(0,7,t),0) < 1. It follows that q(z,) < 1 for all z, .

Since 0 < ¢ < 1, ||g * Ju|lo < 2n, for any o € (0,1). Since u(z,0) >
is strictly positive, from the standard theory of parabolic differential
equations we get that (3.8) has a unique solution u € CZ+9(Qr).
Further, there exists a constant K> (depending on ¢ and n) such that
[lull240 < K3. Choose K; > K5 and 0 > . Then T maps V into V.
Since bounded sets in C2T7 are precompact in C27* for 0 < a < o < 1,
we also obtain that T is precompact. Standard estimates show that
T is continuous. Thus, Schauder’s fixed point theorem implies the
existence of a fixed point v of 7. This u with the corresponding p
and ¢ is a solution of (3.8)—(1.13). Further, since 0 < ¢ < 1, from the
maximum principle it follows that ¢ < u(z,t) < My where Ms depends
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only on the initial bounds My, M;. The solution found will be denoted
by Uen,gen and pen. O

After this, the proof of existence of solutions follows similar lines as
in [13] and we will just sketch it here.

From [16] we quote the following

Theorem 3.3. Let u € C2t*(Qr) be a (classical) solution of

up = (utg)y + h(z, t,u)(u—¢)

(8:11) u(z,0) = up(z) +¢

where ug(z) > 0. Then the a-norm of u is uniformly bounded indepen-
dently of € and the modulus of continuity of h, i.e., there exists K3 >0
depending only on ||ug||eo and ||h||o such that ||ul|z+a < K3 in Qr.

Using the Arzela-Ascoli theorem in the sequence {u. ,} we can ex-
tract a subsequence {u. n,} that converges to an a-Holder continuous
function u.(z,t). Since ||¢e.nlla and ||pen|loa are bounded indepen-
dently of n (but depending on €) we can also extract subsequences
{qe.ny, } 0f{ge,n} and {pe n, } of {pc .} that converges uniformly in com-
pact subsets of Q0 to continuous functions ¢. and p., respectively.

Since ., > ¢, the equations (3.7) are uniformly parabolic in n. It
follows then from the standard theory that ||u||l24a < Kg a constant
independent of n, and for o/ < « there exists a subsequence {ucy, }
that converges to u. in C2+* (Qp).

We rename these sequences {uc .}, {¢en} and {pe n}, respectively.

Let p(z,t) be a test function as defined in this introduction. Multiply
equation (3.7) by ¢ and integrate. Multiplying (3.8) by u, (3.7) by ¢
and subtract, to obtain the equation for ¢

1

(3.12) (ug)e = 5(a(w?)z)e = (bop — @ = p)qu.

Now multiply (3.12) by ¢ and integrate. Multiply (2.7) by qu and
(3.12) by p and subtract to obtain the equation for p

(313) (g~ 5(pale?)e)e = (Bw) ~ (B(w) + a)p)qu.



106 G.E. HERNANDEZ

Now multiply (3.13) by ¢ and integrate. Performing this calculation
with e p, ge, and pc n, we obtain the equivalent of (2.17)—(2.19). The
uniform convergence discussed above implies that the limiting functions
Ue, g and p. are weak solutions of the e-limiting equations

(3.14) up = (wug)y + (B(u)g — p(u))(u —¢)
(3.15) @ — Ue@e = (p — @)q — B(u)q?
(3.16) Pz — UzPe = B(u) — p*

u(z,0) =uo(z) +e,  q(x,0) =qo(z) +¢
(3.17) p(z,0) = po(z) +¢

(Actually, it can be shown that u. is a classical solution of (3.15) and
that g. is continuous).

Again, using that ||uc|o < K3 we can extract a subsequence {u. }
that converges uniformly in compact sets to an a-Hoélder continuous
function u(z,t). As in [15] it can be shown that u? is differentiable,
{(u?%).} is uniformly bounded and {(u?).} converges pointwise to
u2. The corresponding {g.} and {p.'} converge weakly to a pair of
integrable functions ¢ and p, and equations (2.17)—(2.19) are satisfied.
Thus, (u,q,p) is a weak solution of (2.1)—(2.2).

4. Qualitative behavior of solutions.

4.1. Populated and unpopulated regions. The existence of the inter-
face that separates the populated region from the unpopulated region
will be investigated first.

Proof of Theorem 2. We begin with the following

Lemma 4.1. If u(zg,ty) > n > 0 then u(zy,t) > 0 for all t > ty.
Thus, if a region becomes populated at time toy it remains populated
for all later times. In particular, the initial region (zy1,z2) remains
populated for all times (but it might tend to 0 as t — 00).

Proof. Assume first tg = 0 and 1 < xg < z2. Using the continuity of
ug(x) choose § > 0 small, § < /2 such that §2 < /2 and ug(z) > n/2
on Is = (zg — 0, zp + 0).
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For = € [xg— 6,z +0] x (0,717, let v(z,t) = e k(6% — (z —x0)?) +¢/2,
where k =4 + My, |h| < M;.

If
AC[Z] =2t — (Zzw)z + (Ml + 2)(Z - 5)

then Luc] = (h+ My +2)(u: —€) > 0 and
£lo] = e M8 — (r — ro)?)(—4 + 264
e (g )2 3(26*’“ ~M;—2)<0.

Also,
2 2, € _1N €
v(z,0) =6 — (z — xo) +§§§+§§uo(a:)+6:us(a:,0)
and .
v(xg £6,t) = 3 <e < ue(mog £ 6,t).

The maximum principle now implies that
v(z,t) <wu(z,t) on [zg— d,z0 + ] x [0,T].
As € — 0, we obtain

u(zg, t) > e~ (M52,

If tg > 0 we use the Holder continuity of u and the uniform conver-
gence of u. to u to find a § such that

ue(z,to) > n/24+¢ on [zg — §,x0 + 0].

Then the function w(z,t) = v(x,t +to) satisfies all the requirements of
the previous argument. m]

Lemma 4.2. For every t > 0 there emists R. > 0 such that
u(z,t) = 0 for |x| > R.. Thus, the support of u(zx,t) is finite for
every t.

Proof. Choose R > |z1],|z2| so ug(xz) =0 for |z| > R.
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Let ¢ < 1, 0 < 1/K; (without loss of generality we assume that
K; > 1). Fix x¢ such that 2o —1/0c > R and 7 = 1/(14M;). Consider
g(t) =27/(2T —t) and

v(z,t) = og(t)(z — x0)* + g (t)

on By =[zg — 1/0,20 + 1o] x [0, 7].

We will use v as an upper bound for « and obtain u(z,t) < 2% on
B.

Let L[z] = 2t — (222)s — h(2,t,2)(2 — €). Then Lu;] =0 and

L] = U%(l 1207 — h(2r — 1))
+ g<<% - 20>g“+1(t) — hla,t,u.) (g7 () - 1)>-

By the mean value theorem
97(t) =1 =0g” H(s)g'(s)t = og” (st

for some s € (0,1).

Since |h| < My, 0 <t < 7 and g(s)/g(t) = (27 — t)/(27 — s) lies
between 1/2 and 1, we have

_ 2 2
£ 2 e C0NI W 190r —arary)
o+1
+ go'g(t2)7_ (1— 47 —2My7) >0

by the choice of 7 and o.
On the parabolic boundary of By,

v(z,0) = o(z — 20)? + € > ¢ = uc(z,0)
for z € [xg — 1/o,20 + 1 /0], and
v(zo £ 1/0,t) = g(t) /o +e9°(t) 2 1o

for0<t<r.
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Thus v(zg £ 1/0,t) > u(zg £ 1/0,t) for 1/0 > K;.
It follows then by the maximum principle that u < v on [zg—1/0, zo+
1/0] x [0, 7). In particular
2r 1\’
<2%.
27 — t) =cc

Since the only restriction for z, is to be larger than R + 1/0 equation
(4.1) is valid for any x > zy. We repeat the argument with z3 >
zo + 1/o on [r,27] with initial datum u(z,7) < 29¢ and obtain that
u(w,t) < 2% for z > x3 > R+ 2(1/0).

(4.1) u(zo,t) < a(

Now for a given ¢, after k = [¢/(7 + 1)] steps we arrive at
u (z,t) < 2F7¢

for
x>z > R+E(1l/o), 0<t<t.

As € — 0 we obtain that u(z,t) = 0 for
z>R+k(1/0), 0<t<t.

Hence the theorem. m]

This last lemma implies that the support of u(z,t) is finite for all
t. On the other hand, by Lemma 3.1, we know that once u becomes
positive it stays positive for all later times; hence, the support of u(-,t)
increases with ¢. In particular, if suppug(z) is an interval, another
application of the maximum principle shows that supp u(z, t) is also an
interval. This proves Theorem 3. u]

4.2. Localization. We now turn to the question of localization. The
fact that supp u(-, t) increases with ¢ leads us naturally to the question
of determining the limit of supp u(-,t) as ¢t — oo.

We say that the population is localized if there exists L > 0 such that
suppu(-,t) C [-L, L] for all t > 0.

We shall use as comparison the solutions v(z,t) of

(4.2) vy = (Vg )z — OV, v(z,0) = vo(z) > 0.
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Our previous discussion shows that the support of v(-,t) is always
finite and increasing with t.

Introduce the change of independent and dependent variables t(s) =
(1/6)log(l — ds) for 0 < s < 1/4 and w(z,s) = [1/(1 — ds)]v(z, t(s)).
With this change (4.2) reduces to

(4.3) ws = (WWwy)q, w(z,0) = v(z,0) = vo(x).

This is the standard porous medium equation. Thus w(z,s) has
finite support for every s > 0. In particular, for s = 1/§ there
exists L > 0 such that suppw(z,1/8) C [-L,L]. It follows that
suppv(-,t) C [-L, L] for all t > 0.

Our first localization result is:

Theorem 4.1. Assume that B(r) < p(r) on [0, M;]. Then u(z,t) is
localized.

Proof. There exists § > 0 such that 8(r) — p(r) < —6 < 0 for all
re [O,Kl]

Let v.(z,t) be the classical solution of
vy = (Vz)z — 6(v — €)

(4.4) v(z,0) = up(z) + > 0.

If L[z] = 2zt — (224)z + 0(2 — €) we have that L[v.] = 0 and
Lluc] = B(ue)ge(z,t) — plue) < =6 < 0, since 0 < ¢(z,t) < 1.
The maximum principle implies that u.(z,t) < ve(z,t) in Qp.

As e — 0 we obtain that u(z,t) < v(z,t) in Qp. Since v(z,t) is
localized, so is u(z,t). This ends the proof. u]

Now let us suppose that h(r,t,u) = S(u)g—p(u) > 0. The comparison
principle implies that u(z,t) > w(z,t), the solution of the porous
medium equation

(4.5) wy = (Wwyg)y, w(z,0) = v(z,0) = vo(x).

It is known [17] that suppw(z,t) — [0,00) as t — oo. Therefore
supp u(z,t) — [0, 00) in this case.
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Thus, if the birth module is definitely less than the death module, the
population will not diffuse further than a fixed interval. On the other
hand, if h(z,t,u) > 0, the population will eventually cover all [0, c0).
Of course, the latter condition cannot be checked based on the data
alone. Other conditions for localization and nonlocalization have been
given in [14] for the birth function S(a,u) = B(u)e **. We present
here similar results.

Let
p*= sup B(r),  p=_inf u(r)

0<r<K; 0<r<Ki

and B, pu* defined similarly.

Also, let
S1 = Sup M ’l — lnf /J/(U)
ocu<k, Blu) 0<u<K, B(u)
and
$2 = sup () ip = inf VboBs = @
0<u<k, Bu)’ o0<u<k:  B(u)

Theorem 4.2. Assume that s1 < i1 and qo(z) < c¢; for some
c1 € (s1,41). If also bgMy < +/boB*, then u(x,t) is localized.

Proof. There exists 6 > 0 such that

VboB* — a p(u) — 6

ﬂ(u) <c <

for every u € [0, K7].

From the bounds for p given in (3.4) we obtain
bope < max{\/bof*,boMo} < \/boB*.

Consider L[g] = ¢t — uzq; — q(bop — @ — Bq). The usual comparison
principle is valid for this ¢ (see [13]).
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We have L[g.] =0 and
—L[e1] = e1(bop — a — B(uw)er) < e18(u) <ﬁ;(_u)0z - c1> <0.
Thus Le1] > 0 = L[g.].

Since go(x) < ¢1 we get g(z,t) < c¢; in Qp. Therefore S(u)q(x,t) —
p(u) < —6 < 0 and the argument of Lemma 4.1 applies. Thus u(z,t)
is localized.

Theorem 4.3. Assume that sy < iz and ca < go(z) < 1 for some
co € (82,12). If also bgMy > \/bofBx, then u(z,t) is nonlocalized, i.e.,
supp u(-,t) = 0o as t — co.

Proof. This time from the bounds for p given in (3.4) we obtain

bope > min{~/boBx, bo Mo} > 1/bofx

and

—L[e1] = ea(bop — a — B(u)ea) > e2B(u) (% - 02> > 0.

Thus L[cz] <0 = L[g.].

Since ca < go(x), we get g(z,t) > c2 in Qr. Therefore S(u)q(z,t) —
p(u) > 0 and by the previous arguments u(x,t) is nonlocalized. o
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