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COUPLED ELASTIC AND VISCOELASTIC RODS
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. We examine the spectrum for equations for
longitudinal vibrations in coupled elastic and viscoelastic rods.
A fractional derivative model is used for the viscoelastic rod.
We show that, except in an exceptional case, the spectrum
asymptotically decomposes into two sets corresponding to the
elastic and viscoelastic parts, respectively. Thus, the model
can be said to decouple.

1. Preliminaries. In this paper we formulate a linear model for
coupled elastic and viscoelastic rods and examine the spectrum of this
model. The model is the standard one for a one-dimensional elastic rod,
while we employ a fractional derivative type model for the viscoelastic
rod. Fractional derivative models for viscoelastic materials have been
used frequently in recent years in a variety of studies. A representative
list of references includes [1-6]. We note particularly the paper [4] by
Desch and Miller where they examine equations with singular kernels.
They show that a fractional derivative model for a viscoelastic rod
can be written in the more usual form of a partial differential integral
equation with a singular kernel. In particular, there are two types of
kernels possible. One which we refer to as “strong” while the other
is “weak.” This, of course, refers to the type of singularity of the
kernel at the origin. The treatment of each of these types has similar
motivation, but the details are sufficiently different to require that they
be considered separately. In each case we will treat the problem as
a perturbation problem and show that a characteristic equation has
solutions in a prescribed region with the aid of Rouché’s theorem.
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The equation of interest is given by

P11Vt = 70
(1.1-) z <0,

or "’
¢ 0
o= . E, %v(s, x)ds,

0
V¢ = —O0.
P2V O ’

t x> 0.

(1.14)
o= /_ g(t — s)%v(s,x) ds,

In addition, at the interface one has the continuity conditions
v(t,0—) = v(t,0+), o(t,0—) = o(t,0+).
At the boundary, we have the boundary conditions
v(t, £1) = 0.

Here p1, p2,0, and v are densities, stress and velocity, respectively. E;
is Young’s modulus for the elastic material and g(¢) is the relaxation
function for the viscoelastic material.

If we now take Laplace transforms we obtain the equation

.0
Pl)\v - 8_07
(1.2—-) Ex 5 z <0,
.o
o= A Oz’
P2 = 836’
(1.24) * 8 x>0,
o= g()\)a—mv,

with the additional conditions

(1.3) (A, 0—) = (X, 0+), (A, 0—) =6(\,0+)
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and

(1.4) (X, £1) = 0.

From (1.2) we are able to determine the characteristic equation which
will be at the center of our investigations in this paper. First, we
consider (1.2—) with < 0. This yields the second order differential
equation

o7
= w’v’

This equation together with (1.2—) lead to the solutions for ¢ and &,

(A, z) = ksinh(y/p1/E1A(z + 1))

(p1/E1)\%% o(\, —1) = 0.

(A z) = k(E1/A) cosh(+/p1/E1A(x + 1)) (A/p1/Er)
= ky/E1p1 cosh(y/p1/E1 X (z + 1)).

Evaluating ¥ and & at the interface, x = 0, and solving for £ yields the
relation

(1.6) (), 0) = f/(;l_EOz tanh <\/gzx>

Consideration of (1.2+) for x > 0 gives the second order equation

(1.5)

82
922"

which together with (1.2+) yields

paXb = §(N) s 1) =0,

9(A, z) = ksinh(y/p2A/§(A)(z — 1))

G\ z) = kv/paAg(\) cosh(v/par/G(N) (z — 1)).

(1.7)

Evaluating ¢ and ¢ at the interface z = 0 and proceeding as above now
yields

PR 09 BT 19\
(1.8) 5(X,0) = Tt h( g(A))
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Finally, (1.6), (1.8) and continuity considerations at the interface x =0
lead us to the characteristic equation

(1.9) ﬁtanh(&A) —i—\/ﬁtanh( mi) =0

or, equivalently,

(1.10)  +/p1E coth <\/g:11)\> + /p2Ag(\) coth ( g”fﬁ) =0

As we mentioned earlier, we shall assume a fractional derivative
model. Such models have a constitutive equation relating the stress
o and the strain € of the form

v

0 0¥
1.11 — =F —
M) a0+ Aol = B0 +agie0),
with positive constants o, 3,7 and F, with 0 < 8 < aand 0 < v < 1.
The fractional derivative is defined by the relation

o 1 o [t

(1.12) 2ot = T =) 2 700(

t—s)"Yo(s)ds.
In [4] it is noted that if 8 = 0, then

Ea ¢
o(t) = Ee(t) + =— (t—s)V=—e(s)ds
(1.13) i —-v) /*

:A (E + Bou(t - s)*V)%g(s) ds.

Here we have gathered the expression involving the gamma function
and the « into «y. It is this model which we call the strong fractional
derivative model. If (8 is not zero the situation is a bit more complicated.
In this case it is shown in [4] that

(1.14) o(t) = /_too <E 4 E(% - 1) R(t - s)> %6(5’) ds,
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where R(t) satisfies the equation

(1.15) R(t)+/0 B%M(t—s)"—lzz(s) ds—1.

R(t) is completely monotone and is bounded at the origin, but R'(¥)
is unbounded near the origin. Because this case is “less singular” than
the other, we call this the weak fractional derivative model. We shall
see that there is a difference in the spectrum of the models (1.2) if g
corresponds to the strong or weak fractional derivative model.

We shall first state the results for each of the fractional derivative
models and then in the last section the proofs of the results will be
presented.

2. The strong fractional derivative model. Let us now assume
that the model is the strong fractional derivative model given by (1.13).
That is, g is given by
- E2 OéEQ

(21) g()\) by T, O<r< ]., Eg,a > 0.

We first note that if the rods were not coupled and instead of the
interface condition (1.3), the condition

(2.2) v(t,00=0 or ©(A,0)=0

was imposed on the elastic rod, we would obtain the characteristic
equation

1 P1
2.3 ————tanh —A\| =0,
(23) Vp1Er o < Ey >

for the elastic rod. In addition, if for the viscoelastic rod a stress-free
boundary condition

(2.4) &(2,0)=0

were imposed, we would obtain from (1.2+) the characteristic equation

(2.5) p22g(N) coth ( ;(2;\)> =0,
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for the viscoelastic rod.

The main result of this section states that the solutions A of the
characteristic equation (1.9)—(1.10) which have large magnitude are
close to the solutions of the equations (2.3) and (2.5). In this sense,
the model can be said to decouple into its component elastic and
viscoelastic parts. One interpretation of this is that, because of the
strong singularity, the viscoelastic material acts instantaneously like a
rigid material at the interface, reflecting the vibrations from the elastic
material directly back into the elastic material.

In order to clearly state our result concerning the strong fractional
derivative model we first need an elementary lemma concerning the
uncoupled model.

Because ) is a solution to the characteristic equation whenever \ is
a solution, we may restrict our attention to A with Im (\) > 0, and we
shall usually do so in the future, often without further comment.

Lemma 2.1. The characteristic equation for the uncoupled elastic
rod, (2.3), is satisfied by A, which satisfy

(2.6) , /g—llAn = ni.

The characteristic equation for the uncoupled viscoelastic rod, (2.5), is

satisfied by \ for which
gy 2 )"
or, equivalently,

If Im () > 0, such X\ satisfy arg(\) — 7/(1 +v) as |A\| = oo.

Proof. As tanh(zi) = itan(z), (2.6) is readily apparent. Similarly,
(2.7) is also apparent.
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It is clear that the solutions of

p2)\1+u N <(2n+ 1)277'2) o

OéEQ 4
will occur along the line in the second quadrant with arg(\) = 7/(1+v).

As (p2A/g(\)) ~ (p2A11") /aEy the result follows. O

Our result for the strong fractional derivative model states that the
spectrum is asymptotic to that of the decoupled model.

Theorem 2.2. Assume the strong fractional derivative model given
by (1.13) so that g satisfies (2.1). The solutions X of the characteristic
equation (1.9) (equivalently (1.10)) are asymptotic to the solutions of
either (2.6) or (2.7) as |A\| = oco.

3. The weak fractional derivative model. Now we consider the
constitutive equation relating the stress ¢ and the strain ¢

(3.1) o (t) +5%a(t) — B, <E(t) —i—a%s(t)),

when 0 < 8 < a. We recall from the discussion in the introduction
that

(32)  o(t)= /too (Ez + EZ(% - 1) R(t - 5)> %5(5) ds,

where R(t) satisfies the equation

3.3 R(t —l—/—t—s”*des:l.
(33 0+ [ 5o RO

In this case, g satisfies

g:Ez(H(g_l)R).

A short calculation shows that the Laplace transform of g satisfies

(3.4) o =2 (105 )
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We shall see that there are two essentially different cases in the weak
fractional derivative model. These correspond to whether

Bp1E1

3.5 1
(3.5) opsEs #
or

Bp1Eq

3.6 —=1.

(3.6) ap Iy

The second case we call impedance matching and we shall show that
in this case the spectrum is quite different than in the first case.
In particular, the indication from the spectrum in this case is that
vibrations from the elastic material strike the interface between the
two materials and enter the viscoelastic material without a related
wave of reflection. This is a feature of stress waves at the interface of
two elastic media when the characteristic impedance of each material
match. For elastic materials the characteristic impedance is defined
to be the product of the mass density and the velocity. For a wave
equation of the form (1.1—) the characteristic impedance would then be
vV p1E1. We thus see that (3.6) is the statement of impedance matching
if « = 8 = 1 so that we are returned to the elastic case for x > 0. A
discussion of these matters may be found in Kolsky [7].

Theorem 3.1. Suppose that (3.5) is valid. That is, consider the
case in which we do not have impedance matching. Then the spectrum
is asymptotically composed of two sets. One set of solutions of the
characteristic equation tends to a vertical line \g + bi in the complex
plane as |\| = co. Here Ay < 0 is the solution of

p1 Bp1Ey

tanh —Xo | =—
" ( Ey 0) \| ap2B»
p1 [apz By
tanh —X | =— ,
< Ey 0> Bp1E1

depending on whether Bp1E; is less than or greater than apsFo. The
other set of solutions of the characteristic equation tends asymptotically

or
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to a curve in the complex plane which is symmetric with respect to the
real azis, and if Im () > 0 then Re(A\) — —oo and Im (A\) — oo and
the argument of A along the curve satisfies arg(\) — /2.

Theorem 3.2. Suppose that (3.6) is valid. That is, we have
impedance matching. If )\, is a sequence of solutions of the charac-
teristic equation with |\,| — oo, then Re (\,) — —oo.

4. Proofs of the theorems.

Proof of Theorem 2.2. We shall proceed in three steps. First we shall
show that as n — oo there is a solution A, to (1.9) which is arbitrarily
close to a solution of the uncoupled elastic rod given by (2.6). Then we
shall show that as n — oo there are solutions of (1.9) which are close
to the solutions of (2.7) as n — oo. Finally, we shall show that there
are no other solutions of (1.9).

As noted in Lemma 2.1, for A which satisfies

1/Lpa—ll)\:nm',
we have
P1
4.1 tanh —\)=0.
(41) aut (/720

Now 5 B
AG(A) = A(TZ + %) = E> + Exa\'™"

and so |Ag(A)| = oo if |A\| = oco. Thus,
1
(4.2) ——0 as |A| = oo.
Ag(A)p2

We wish to demonstrate that tanh(4/(Ap2/g(A))) is bounded for A =
r 4 is with |r| < M < oo and |s| — oo. First note that if z; and 2,
are complex with (z1/22) — 1 then arg(z;) — arg(z2) — 0. Then, as
(Ap2/G(N)/((p2AX ") /aEs) — 1 when A = r + is with |[r| < M < oo
and |s| — oo, if follows that

(4.3) tanh(v/(Ap2/5(V)) — 1
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as A1 has argument 7(1 + v)/4 in the limit and 0 < v < 1. Now,
utilizing (4.2) and (4.3) as well as the periodicity of tanh(a + bi) in b
we see we can choose circles about the zeros of tanh(1/(p1/E1)\) on
the imaginary axis with small radius so that on these circles

(4.4) mtanh Q/%)‘ < ﬁmm( %A)‘.

(In fact the radii of these circles may be chosen to be decreasing.) By
Rouché’s theorem, we know we can solve the characteristic equation in
the interior of each of these circles if s is sufficiently large.

We now consider the viscoelastic part of the spectrum. Consider
again the characteristic equation

(4.5) ﬁtanh( 2—11/\> = —m tanh( ;(2A/\)>

or

(4.6) \/p1E; coth <\/g:11/\> = —/p22Ag()) coth ( ;%\A))

Now, recalling Lemma 2.1, we know that

(4.7) coth< ;(2;\)) =0

whenever

p2A <(2n + 1)27r2>
9N 4
and that such \ satisfy arg(\) — 7/(1 + v) as |\| = 0.

Aroung such \,, which satisfy (4.7) we wish to construct a circle so
that on the boundary we have an estimate of the form

coth<\/g>‘> |%|<1+5)

(4.8)
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with some ¢ > 0, in order to again invoke Rouché’s theorem. Estimat-
ing, we see

Vp1EL ‘ p1EL
VP22V p2Ba(1+al™")

(4.9) 0 Y
p2E2 1+C¥)\1_V

2pm By ‘)\u 1) /2|
ngga

if A7 > 1/(2a).
The centers of the circles of interest are )\, where

AL+v (2n + 1)2w2>
4.10 n - .
(4.10) P00 T q) ( 1

Asn — oo,

aFEym?
P2

or A\n| ~ K(2n + 1)2/(1+”) where K 1s constant. Now write z =

(Ap2/g(N)) and z, = /(Anp2/g(A From the Taylor series for

coth(z), we obtain

ALY (2n +1)?

coth(z) = —(z — 2,)/sinh?(z,) + O((2 — 2,)?)

if z is close to z,. As A, is chosen so that coth(z,) = 0, we have
cosh(z,) = 0 and |sinh(z,)| = 1. Thus,

(4.11) |coth(2)| > |z — z,|/2 if |z — z,| is small.
Now

o] = f’(z}f\) P2An
(4.12)

VBN

1+ aAt—v 1+a)\1 v
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Further,

A2 A2
4.13 — n
(4.13) ‘\/ T+ax— | 1+ar
1—v
A(1+V / (1-‘,—1/ )\
1+a)\1 v 1+O[)\1 v
(14v)/2 (14v)/2y, /—
‘()\ — M ) 1+ all—v
Ad+v —
" 1+ aAl—v 1+ a\™
Al*l/
V14+arl—v
vﬁ??f‘ A
L+aX= | 14+arL "

> (A1+)/2 _ N0/

- |>\n|(1+u)/2

(14v)/2
= |An|(1H)/2 e ~1
)\ V= 1+a
|2 \/ ! _\/
AV*l_’_a )\z 1+O[

As (d/dz)(z +a) /2 = —a3/2/2 at z = 0 and (d/dz)z" "' = (v — 1)
at z = 1 we have for large |A|, |\n|,
(4.14)

1
< - 3/2 )\I/fli)\llfl
\/)\”1+a \/A;1+a_a | n |
<o 2 (/A - 1]

<2272y =1 Al (A AR) — 1
<2073y — 1 [ An]" 72X = Anl.

1 ~1/2
Bv= e

Similarly, as
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we have

o Q)
(51) o) - N

2 (14 v) /4l a] THA = Anfa™H2,

v

Now v € (0,1) so v — 2 < —1; thus estimate (4.15) dominates the
estimate given in (4.14) for |A,| large, and collecting the estimates
(4.12), (4.13) and (4.15), we obtain

|2 — 2] > ,/g—gwu + | Al D20 = A, /8
(4.16)

> /2—204—1/2\1 + | ]A@D72|\ = A, /16.
2

Examining (4.8) and (4.9) we see that to establish (4.8) we need

201 F
(4.17) |z—zn\22(l+€)1/ P1 1|)\\” 1/

Thus, (4.8) will be satisfied if

2p1Ey P2 172
4.18 20+ e)y | —— </ =« 1+ v||A—A,|/16.
(4.18) ( )Vngza \ E, | | |/

That is,

|)\ — )\n| Z 32(1 + 6)\/ 2p1E1/|1 =+ I/|p2 =R

Thus, for circles about A, of radius R, we can implement (4.8) to get

coth<\/p2T>‘ > | \/_pz;\% (1+e)
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coth (1 / 2—11)\> ‘ — 1.

Then, by Rouché’s theorem, the characteristic equation

Vp1E; coth <\/g:11>\> = —Vp2Ag(3) coth < 9/1(2;‘)>

has precisely one solution in the disk of radius R around A, if n is
chosen sufficiently large.

as

We now will show that (asymptotically) there are no solutions of the
characteristic equation ((4.5) or (4.6)) other than the ones we have
found.

Let A\, be a sequence of solutions of the characteristic equation with
[Arn| = 0. that is,

An
—\/plElcoth(Mg—l)\n): p2Ang(An)coth( P2 >
1

9(An)

Assume first that Re (\,,) = —oo. We will show that there is a fixed
radius N so that coth(4/p2A/g(\)) has a zero in the circle about A,, if
An is sufficiently large.

Define w,, by

(4.19) Wy = —+/p1Ey coth <1 /%/\n>.
1
Notice that as Re (A,) = —o0, w, = v/p1E1. Now
coth< Ap2A> = [coth( Ap2>\> - w"A ] + w"A .
9(N) 9(N) p22nd(An) p2And(An)

The expression in the brackets has a zero at \,. Thus,
coth(4/p2A/g(X)) has a zero in the circle about A, with radius N if
we can show the estimate

coth < Fﬁ) — coth < f)2)\n >‘ > ‘ w"A

(4.20)
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on the boundary of the disk. Again we write

2= (Ap2/9(A)) and  zp = /(Anp2/d(An)).

If |\, — A| stays bounded while |A,| — oo, we have from (4.12) and

(4.13)
E2| | A2 / A2
2z —z,| = —
P2 1+ al™ 14 aXl—v
\/ 1 \/ 1
Al 4o Aot
1
VIw-1l4a

We now estimate, much as we did previously, assuming that |\, — A|
is bounded by N and |A,| — 0.

< |>\n‘(1+u)/2

4 AOH/2 N0/

< a73/2|)\1171 _ )\71/;1| |)\n‘(1+u)/2 +2a71/2‘)\%1+u)/2 _ )\(1+V)/2‘
v—1

()
(v+1)/2

&)

< 2@ 2N < 1 4 207, 04D

< a—3/2|)\n|(3u—1)/2|

+ 2a71/2|)\n|(u+1)/2

DI
2 An

=2(a 32| A |® 2y — 1| 4+ a7 V2 M| YV 2 0 4 1)) A = A

< 4o V2 N2 0 1] A = Ay

which — 0 when |\, — A| remains bounded and |A,| — oco. Thus,
|z — zp| — 0 and we may estimate the difference |coth(z,) — coth(z)]
by Taylor’s formula.

| coth(z) — coth(z,)| > |sinh?(z,)| 7Yz — za| + (|2 — 24])

and as w
coth(z,) = ———— — 0,

P2 )\ng(An)
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we have
-1

. —1-—coth%(z,) = 1,
sinh?(z,) (2n)

and thus
| coth(z) — coth(z,)| > |z — 2a|/2.

For |z — z,,| we have from (4.16)

2=zl 2 4 [Za 2L 4 ] A ¢ TVA - A /8.
2

Thus, we have

| coth(z) — coth(zy,)| > ,2_2&—1/2|1 + ] AV IN = A, |/16.
2

On the other hand, we have

2V E1p1 < 4/ E1p1 \(w=1)/2
\/Egpg(]. + a)\»}L_V) \/Ezapz

Therefore, the estimate (4.20) holds, if

E -1
A=A =N > 4,/?.'3012(1 /g—za*/?\wr 1|/16>

v
\/Pz )‘ng()‘n)

_ 64 VEip
lv+1  p2

We have proved that if A, is a pole of the coupled problem sufficiently
large and Re (\,) — —oo, then in the disk about A, with radius N
there is a zero of coth(4/p1A/g(N)).

Now suppose that A, are poles of the coupled problem with Re ()\,,)
bounded. Then

An
———tanh ( f?z ) —0
P22 (An) g(An)

since

1

T 0’
p2)\ng(>‘n)
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and

tanh< gpf;n))

is bounded because of (4.3). We therefore have that

1 P1 >
tanh —X] —=0.
vp1Eq (\/ E,

By the periodicity of the tanh in the imaginary direction we can infer
that the distance of A, to the next zero of tanh(,/(p1/FE1)A) goes to
zero, that is, the A\, approach the imaginary axis. ]

Proof of Theorem 3.1. Recall first the characteristic equation

(4.21) \/[%tanh <\/g:11/\> - mt nh< 5&)

We consider first the possibility that (4.21) has solutions A, with
[An| = oo but Re (\,) is bounded. Referring to (3.4),

pg)\ 2A2 l+ﬂ>\y
E2 ].+Oé>\’/
—\ P2\/> p2l 1+ﬁ)\y_ﬁ
E2 E2 1+a)\V «
1+ BAY
Ay E20<1+(w_&>

z

using the notation from earlier. We are interested in estimating the
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real part of z when |A| — co but Re ()) is bounded.

Re(z>=0<1)+Re< p: M) +o< Ry

Ezaﬂ 1 + O[)\V

—0(1) + O + L2 (@)

Eraf «

A A
+O(‘1+a)\” CaN >
=0(1)+O(A* ) + 0<

p2_ (o —p)
BB «

A

A VRe (it Y).

A+ aX

)

Re (A7)

)\21/

It is clear that the last term is dominant and tends to co, so

i (122 1 sua Wﬂ/(@)

Thus, in order to solve the characteristic equation (4.21), we shall want

to solve

P1 Bp1Er
4.22 tanh A =y —/—.
(4.22) <V E, > \/ apz By

We first assume that

Bp1Eq

4.23
(4.23) apa Iy

<1

Now, denote by Ay the real solution of

P1 Bp1Eq
4.24 tanh —Xo | = —/ ——.
(4.24) o <V Ey 0> \ ap2Es

Choose an € > 0 small, and consider the ¢ disks about the points

E
(4.25) kn = Ao + (nmi) p—l.
1
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By periodicity of tanh in the imaginary direction, we can assume that
on the boundary of each disk,

p1 Bp1Ey
tanh —A
an ( E7 0> —+ _E

4.26
( ) 1 apa L

> M > 0.

In addition, as |A\| = oo but |Re (\)| is bounded,

(4.27) ‘ BprEr  VEip: h( p2A >‘ o

tan —
ap2Ey  (/paAg(N) g(N)
This implies that there is a zero of the characteristic equation (4.21)

in the € disk about k&, if n is sufficiently large by Rouché’s theorem as
before.

We now consider the case where

E
(4.28) bpbr
ap2Es
If we note that 1
tanh 1/2) = ———
anh(a + 7i/2) tanh(a)

we see that we must look for solutions of the characteristic equation

near
|E
kn = o + (n + 1/2)mi p—l.
1

The argument is exactly as above to show that there are solutions of
the characteristic equation near k,, as n increases to infinity.

We consider now the characteristic equation of the form

(4.29)  coth ( 5(2;\)> = /[)2”;75(1/\) coth (g)\)

The term on the right hand side of (4.29) converges to

Bp1Eq
ap2Es
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when |A| — oo along with Re (\) — —oo. Therefore, we consider A,
which satisfies

p2An \  [BpiEr
(4.30) coth <\/§(>\n)> \/Oéngg =0

We first note that the A, must satisfy

pZ)\n

(4.31) a0w)

=r+nni

where, depending on the size of the square root, r is either real or
Im (r) = w/2. Using the equation for § given in (3.4) and (4.31) yields

[p2 [(L+BX)) _ :
(432) )\n E—2 m =r + nme.
Now
(4.33) d [z+B _ (a—B)Vzta

dzeVz+a 2@+a)2/r+p3

and so, setting x = 0, we see that (4.32) can be written

[p2 | (B 12 a—pf
—v —2v :
An —E2|:<_> +2T 11/2)‘71 +O()\n ) =71+ nm

or

=r 4+ nmi.

p23 \/P2(a - 5) 1— 1-2
4.34 An A, U+ O

As the real part of r +nmi is bounded, we see that ¥,, = arg A,, — /2.
Taking real parts in (4.34) we see that

%ib\n| COS('&n) + \/?— \(/a.EQOéﬁ)p\an COS('l9n(1 - V)) + O|>\17V| =0
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and so

p23 v \/E(O‘ -B) _
m|)\n| cos(9,) + Ea cos(¥,(1 —v)) +o(1) = 0.

Now, recalling that 9, — 7/2, we obtain

o) relni)

+ A7 % (a2—a,8) cos(m(1 —v)/2) +o(|Au]7") =0
Thus,
= 2+l 5 conta(t = )/2) + of( )

and

An = |Anle™n
~ ihafesp (155 costnlt =) DAl ) + o).

From (4.34), we see that

EzOé
Al =1/ —nm + o(|\n]).
Ml = 4/ 225 + o)

Thus, the A, will be, roughly speaking, on a curve

ReA, = —K|A,|' .

We will now show that, for an arbitrarily small radius € and sufficiently
large n, the e circle about A, contains a zero of the characteristic
equation. For this purpose we rewrite (4.29)

o= [eomn (1 75) - (y 725
N Wf;;g; N ¢p;;§&) con (/23)]

(4.35)
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The first bracketed term in (4.35) has the unique zero A, in the e-
circle. Thus, we must show that the second bracketed term is smaller
in magnitude than the first on the boundary of the e-disk. As the
second term goes to zero, it is sufficient to show that for fixed (though
small) e the first term is bounded away from 0 as A,, — co. Again, we

put
z= P2\
g(A)
/P2, A+ B
E2 AV —+ Ck’
and

_ p2 (A" +8
Zn—)\n T S—v ,
E2 )\nu+a

If we can show that |z — z,| stays sufficiently small we may rely on the
Taylor’s series expansion of coth(z) to get

(z — zn)
coth(z) — coth(z,)| > | —5—< +0o(z — 2,
coth(z) —coth(z)] 2 |57 oz — =)
> |1 — coth? — Zn|/2
(4.36) > |1 — cot E(Zn)llz znl/
:‘l_ﬁpl 1 |2 — 20| /2
apa B
= M|z — zy,]|.

Notice that M; # 0 since we have assumed that we do not have
impedance matching. That is, (3.5) is valid. We now wish to estimate

|z — zpn|. We first write
~[p2|y [ATV+B A+ B
|7 = 2l = Ez)\ AV +a An At +a
[ P2 A"+
4.37 =, /A=) —E
( ) E2 ( ) AV 4+«
A+ /A;”+B>
An — .
+ < AV 4o AnY +a
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Now using (4.33) we have

439 ol [\ S~ | 3o
~ A |[ 3/251/2» PR P Yl]
< 2] a1 5/261/'2 .
<ol A A,

The first term in (4.37) behaves like |A — A,,| times a constant. There-
fore, the first term in (4.37) is dominant and

p2p3 P2
20 =X = An| > |2 — zn| >4/ =—X— \a|/2.
\/E2a| | > |2 Z\_\/E2a| |/

In particular, if the radius of the disk is small, |z — z,| stays small and
we can use (4.36). Then

| coth(z) — coth(z,)| > M ]’;Z—ﬁu —al/2
2Qx

is bounded away from zero on the boundary of the disk.

Applying Rouché’s theorem again, we have proved that there is a set
of zeros of the characteristic equation approaching the A, as |A,| — co.
This concludes the proof. a

Proof of Theorem 3.2. Consider the possibility that {\,} is a
sequence of solutions of the characteristic equation with |A,| — oo
and |[Re (\,)| < M < oo. Thus,

1 1
tan h<,/ L-EpY > = tanh( Ap2)\">.
prEn Ey P22And(A) 9(An)

(4.39)
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The argument at the beginning of the proof of Theorem 3.1 shows that

P1 Bp1E1
4.40 tanh — X\ | & — =—1.
(4.40) <\/ Ey > ap2E

Now write

An = tn +mp L
P1
where pu,, is a bounded sequence and m,, is a sequence of integers. By
choosing a subsequence if necessary, we can assume that p, — p as
n — 0o, u a finite complex number such that

tanh <1 / %u) =-1

which is impossible. Thus, in the impedance matching case there are
no solutions A, of the characteristic equation with |\,| — oo while
Re ()\,,) remains bounded.
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