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CYCLIC OPERATORS ON
SHIFT COINVARIANT SUBSPACES

STEVEN M. SEUBERT

ABSTRACT. Let 1 be a Blaschke product on the unit
disk and denote by P, the orthogonal projection of H? onto

H?0yH?. Necessary and sufficient conditions for the adjoint
{PyTyPy}* of the compression of an analytic Toeplitz oper-

ator Ty : F' — ¢F to H?0yH? to be cyclic are given.

1. Introduction. Let H? and H>™ denote the standard Hardy
spaces on the unit disk D = {z € C : |z| < 1}. The standard unilateral
shift S on H? is given by S : F(z) — 2F(2).

For each function ¢ in H*°, the analytic Toeplitz operator Ty with
symbol ¢ is a bounded linear operator on H? defined by Ty : F — ¢F.
The commutant of the shift operator S on H? is precisely the algebra
{T4 : ¢ is in H*} of analytic Toeplitz operators. In [8], Wogen showed
that there exists a fixed function in H? which is a cyclic vector for the
adjoint T; of every analytic Toeplitz operator Ty having nonconstant
symbol ¢ (see Wogen [8, Theorem 1, p. 163]).

Let ¢ be an inner function on the unit disk and denote by P, the
orthogonal projection of H? onto H20yH?. Let ¢ be any function in
H*®°. The compression PyTy P, of the analytic Toeplitz operator Ty to
the shift coinvariant subspace H?#yH? is given by

(1) P¢T¢,P¢ F— P¢(¢7F)

For ¢(z) = z, the operator Sy, = PyT4P, is the compression of the
shift operator S to H26yH?. Sarason has shown that a bounded
linear operator 7' on HZ6yH? commutes with Sy if and only if T
assumes the form (1) for some function ¢ in H* (see Sarason [5,
Theorem 1, p. 179]). Nikolskii points out that it would be of interest to
determine those functions ¢ in H* for which PyTyPy and {PyTPy}*
are cyclic (see [4]). Incidental results have been obtained for the case
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Y(z) = e(#+1/(=1) (see [6]) and 1) an arbitrary singular inner function
(see [7]).

The purpose of this paper is to give necessary and sufficient conditions
for the adjoint {PyTyPy}* of an operator in the commutant of the
compression Sy of the shift operator to H20H? to be cyclic for the
case Y a Blaschke product.

Throughout this paper, 1) will denote a Blaschke product on the unit
disk having distinct zeros {\,} with multiplicities {m,} respectively
and ¢ will denote an arbitrary function in H>°.

For a complex number A in the unit disk D, the reproducing kernel
K(z) for H? is given by K,(z) = 1/(1 — A\z) for all z in D and has
the property that F(\) = (F, Ky))g» for each function F in H?. An
orthonormal basis {e,} for H26yH? is provided by the Malmquist-
Walsh lemma (see, for instance, Nikolskii [4, Malmquist-Walsh lemma,
p. 116] or the proof of Theorem 3.1 in Ahern and Clark [1, p. 337]).
The functions e,, are given explicitly as follows. Write

71—[ Z—(lk;
= =| e

where ap = A for 1 <k < mq, ar = X for m; +1 <k <msgy,.... For
Ar = 0, the term a/|ag| is taken to be one. Define B;(z) = 1, and for
each integer n greater than one, let

o=ty

Then the n'™ basis element e, for H20yH? is given by e,(z) =
{1~ lan Y *Bu(2) Ka,, (2)-

\@l

zfak

l\z

ay.

_‘ g|

2. A matrix representation for {P,T,P,}*. Let ¢ be a Blaschke
product on the unit disk having distinct zeros {\,} with multiplicities
{my} respectively, and let ¢ be an arbitrary function in H>.

We show that the matrix representation for {PyTyPy}* with respect
to the basis {e,} assumes the form
T1 * ES
(2) T, =«
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where each block 7T, on the main diagonal is of the form

o Bn ke
*
fo'™

where o, and (,, are complex numbers.

Theorem 1. A matrix representation for {Py,T,Py}*.Let ¢ be
a Blaschke product on the unit disk having distinct zeros {\,} with
multiplicities {my}, respectively. Let ¢ be any function in H*. Then
the matriz representation for {PyTyPy}* with respect to the basis {ey}
for H?01pH? assumes the form

1"’1 * .
T2 *
{PyTpPy}™ =

0

where the nt" block T,, on the main diagonal is an m, X m, matric
given by

On Bn * e
Qn

where an, = ¢(An) and Bn = {1 — MY O/ Mn)0' (M), If An = 0,

then the term A, /|An| in Bn does not occur.

Proof. For each positive integer n, define

n—1 n
Hn :span{e;c : ij <k< ij}
j=1 j=1
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and denote by P, the orthogonal projection of H20yH? onto H.,.
Since H,, has dimension m,,, the operator T,, = Py, {PyTyPy}* Py,
acting on H,, is an m,, X m,, matrix.

We show that the main diagonal entries of the n'® block T), are
all equal to ¢()\,). Let n be any positive integer and let j be any
integer in {1,2,3,...,m,}. Define N = j + Zz;ll my, and let ¢y
denote the analytic continuation of ¢/By to the unit disk. So ay =
An. The j*® main diagonal entry of the n*® block T, is given by
({PyTyPy}*en,en)mzopmz. There exists a unique function Hy in H?
such that gey + WHN{l — |ay|?}'/? is in H?6:pH?. Since By is an
inner function and ¥y (a,) = 0, we have that

{PyTyPy} en,en)nzopm:
= (en, den + VHN{1 — |an[*}'/?) 2
= {1 - lan|*}(BnKay, BN (0Kay + YN HN)) 12
={1-lan[*}Kay, dKay + onHN) 2
= {1 —lan*} - {g(an)/(1 = lan]?) + ¥n(an)Hn(an)}

= ¢(an) = ¢(An).

We show that the super diagonal entries of the n*" block T}, are all
equal to {1 — [A.|2}( A\ /|An])@' (A,) where A, /|\,| is taken to be 1 if
An = 0. Let n be any positive integer and let 7 be any integer in
{2,3,4,... ,m,}. Define N = j + Zz;ll mg. S0 ay = an—_1 = An.
The (j,j + 1)-entry of T, is given by ({PyTyPy} en,en—1)a20pH2-
There exists a unique function Hy_; in H? such that ¢en_1 +
YHn_1{1 — |aN_1\2}1/2 is in H%0¢yH?. Since By is an inner func-
tion and (zK3, F) g2 = F'(X) for all functions F in H? and all complex
numbers A in the unit disk (see, for instance, Nikolskii [4, p. 33(2)]),
we have that

<{P¢T¢P¢}*€Na eN—1>H29¢H2
= <6N7¢6N—1 + ’QZJHN_l{]_ — |aN—1|2}1/2>H2
0 PR a2

GN-1 Z —aN-1
lan-1]1—an_12

- (Bn-1 Kay,Bn-1(¢Kay | + ¥N-1HN_1))H2
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an
={l- \GN\Q}ﬁ«Z —an)KZ, ¢0Kay + N 1HN 1) m2

={1- \aN\2}%{<zK2N,¢KaN +Yn_1Hy_1)pg2

- <K2N,W(¢Kw +YN_1Hn-1))u2}
={1- \aN\2}%{<zK2N,¢KaN +Yn_1Hy_1)pg2

— (2K, 7an (¢Kay + Yn—1Hn-1)) g2}

={1- \aN\2}‘Z—Z|{<zK2N, (1— an2)(¢Kay + ¥n_1Hy_1)) o

a d _
={l- ‘GN‘Z}ﬁ E(l —an2)(PKay +UN_1HN_1)}z=an

= {1~ lan P} lan)

PV
={l- P\nIZ}mqﬁ’(}\n)- O

3. Cyclicity of {PyTyPy}*. We give necessary and sufficient
conditions for {PyTsPy}* to be cyclic. The following will be of use.

Lemma 1. Let T be a bounded linear operator on a separable
Hilbert space H. Suppose that there exists a basis for H such that
the corresponding matriz representation for T assumes the form (2). If
Qm F# apn for m #n and B, # 0 for all positive integers n, then T is
cyclic.

Proof. Let T assume the form (2). Define the block diagonal matrix
D on H by

T 0
D= T
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Since 0T, N 0Ty, = {am} N{a,} = @, there exists a bounded linear
operator X on H which is one-to-one and has dense range such that
TX = XD (see Davidson and Herrero [2, Proposition 2.5, p. 35]). By
Lemma 3.5 of Herrero, Larson, and Wogen [3], it suffices to show that
D is cyclic.

Since each (3, is nonzero, the operator 7T, has cyclic vector z, =
(0,...,0,1). Define z = & ,4,,z,, where {d,, } is a sequence of positive
numbers to be specified later. There exists a collection {p,x} of
polynomials such that for each pair of positive integers n and k, py, i (T%)
is the identity operator, and for each j in {1,2,... ,k—1,k+1,... ,n},
Pn.k(T}) is the zero operator. So pp i (T)z =z + BF2,, 11Pn,i(T})d;z;.
The sequence {4, } can be chosen to decrease to zero rapidly enough so
that for each fixed positive integer k,

(T — 2| = H B e Py ()02

tends to zero as n tends to infinity. Hence, each zy, is in {p(T)z : p is a
polynomial } and so z is a cyclic vector for D. The result follows. |

If a bounded linear operator T' on a separable Hilbert space H is
cyclic, then T is cyclic on each invariant subspace of H having an
algebraic complement which is also invariant for 7.

Lemma 2. Let T be a bounded linear operator on a separable Hilbert
space H. If N is a closed invariant subspace of T' with an invariant
complement M, then T | N is cyclic on N

Proof. Let z be any cyclic vector for T' on . Since M is a
complementary subspace of N, there exist unique vectors z; in N and
2o in M such that x = x1 + z2. For each positive integer n, we have
that Tz = T"zq + T"xy. Since TN C N and TM C M, T"z, is
always in M and so z is a cyclic vector for T | N on V. O

Using Theorem 1, we show that {PyTyPy}* is cyclic if and only if ¢
is one-to-one on the set of zeros of ¥ and has nonvanishing derivative
on the set of multiple zeros of .
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Theorem 2. Cyclicity of {P,TyPy}*. Let ¢ be a Blaschke prod-
uct on the unit disk having distinct zeros {\,} with multiplicities
{my}, respectively. Let ¢ be any nonconstant function in H>. Then
{PyTyPy}* is cyclic if and only if

(1) ¢(Am) # ¢(An) for m #n

and

(ii) ¢'(A\n) # 0 whenever m, > 2.

Proof. Conditions (i) and (ii) are sufficient for { P, T}, Py }* to be cyclic
by Theorem 1 and Lemma 1.

Conversely, let {PyTyPy}* be cyclic. We assume that there exist
distinct positive integers m and n such that ¢(A\,,) = ¢(\,) and
deduce a contradiction. By reordering the zeros of ¢, we may assume
without loss of generality that there exists a positive integer N such
that ¢(Ax) = ¢(A\1) for k in {1,2,... ,N} and ¢(Ag) # ¢()\1) for
each integer k greater than N. By hypothesis, N is at least two.
Define M = span{Ker (S}, — A\)™ : 1 < k < N} and N =
span {Ker (57, — Ak)™ : k > N + 1}. Since the operators {PyT,Py}*
and Sy, commute, the subspaces M and N are invariant for { P, T} Py }*.
Since Ker (S, — Ak)™* = span {zjKi;H :0 < j < my} for each positive
integer k (see Corollary 3 of [4, p. 82]), we have that the set of positive
integers

M—i—./\/:span{zjKﬁ;:l:kEN,0§j<mk}

= span{e, : n € N} = H*9yH?

(see Corollary 5 of [4, p. 83]). Moreover, M NN = {0} so that M is a
complement for N which is invariant for { P, T, Py }*.

By Theorem 1, the matrix representation for { PyT, Py }* | N assumes
the form



726 S.M. SEUBERT

$(M1) *
*
0 p(A1)
$(A2) *
0 P(A2)
P(An) *
0 0 | P(An)
Since N is at least 2 and ¢(A1) = ¢p(A2) = --- = ¢(An), the eigenspace

corresponding to the eigenvalue @(\;) is at least two-dimensional.
Hence {P,TyPy}* | N is not cyclic, contradicting Lemma, 2.

A similar argument holds if there exists a positive integer n for which
@' (\n) = 0 with m,, > 2. O
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