CYCLIC OPERATORS ON SHIFT COINVARIANT SUBSPACES

STEVEN M. SEUBERT

ABSTRACT. Let ψ be a Blaschke product on the unit disk and denote by P_{ψ} the orthogonal projection of H^2 onto $H^2\theta\psi H^2$. Necessary and sufficient conditions for the adjoint $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ of the compression of an analytic Toeplitz operator $T_{\phi}: F \to \phi F$ to $H^2\theta\psi H^2$ to be cyclic are given.

1. Introduction. Let H^2 and H^{∞} denote the standard Hardy spaces on the unit disk $\mathbf{D} \equiv \{z \in \mathbf{C} : |z| < 1\}$. The standard unilateral shift S on H^2 is given by $S : F(z) \to zF(z)$.

For each function ϕ in H^{∞} , the analytic Toeplitz operator T_{ϕ} with symbol ϕ is a bounded linear operator on H^2 defined by $T_{\phi}: F \to \phi F$. The commutant of the shift operator S on H^2 is precisely the algebra $\{T_{\phi}: \phi \text{ is in } H^{\infty}\}$ of analytic Toeplitz operators. In [8], Wogen showed that there exists a fixed function in H^2 which is a cyclic vector for the adjoint T_{ϕ}^* of every analytic Toeplitz operator T_{ϕ} having nonconstant symbol ϕ (see Wogen [8, Theorem 1, p. 163]).

Let ψ be an inner function on the unit disk and denote by P_{ψ} the orthogonal projection of H^2 onto $H^2\theta\psi H^2$. Let ϕ be any function in H^{∞} . The compression $P_{\psi}T_{\phi}P_{\psi}$ of the analytic Toeplitz operator T_{ϕ} to the shift coinvariant subspace $H^2\theta\psi H^2$ is given by

(1)
$$P_{\psi}T_{\phi}P_{\psi}: F \to P_{\psi}(\phi F).$$

For $\phi(z)=z$, the operator $S_{\psi}\equiv P_{\psi}T_{\phi}P_{\psi}$ is the compression of the shift operator S to $H^2\theta\psi H^2$. Sarason has shown that a bounded linear operator T on $H^2\theta\psi H^2$ commutes with S_{ψ} if and only if T assumes the form (1) for some function ϕ in H^{∞} (see Sarason [5, Theorem 1, p. 179]). Nikolskii points out that it would be of interest to determine those functions ϕ in H^{∞} for which $P_{\psi}T_{\phi}P_{\psi}$ and $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ are cyclic (see [4]). Incidental results have been obtained for the case

Received by the editors on September 14, 1991, and in revised form on December 3, 1992.

 $\psi(z) = e^{(z+1)/(z-1)}$ (see [6]) and ψ an arbitrary singular inner function (see [7]).

The purpose of this paper is to give necessary and sufficient conditions for the adjoint $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ of an operator in the commutant of the compression S_{ψ} of the shift operator to $H^2\theta\psi H^2$ to be cyclic for the case ψ a Blaschke product.

Throughout this paper, ψ will denote a Blaschke product on the unit disk having distinct zeros $\{\lambda_n\}$ with multiplicities $\{m_n\}$ respectively and ϕ will denote an arbitrary function in H^{∞} .

For a complex number λ in the unit disk \mathbf{D} , the reproducing kernel $K_{\lambda}(z)$ for H^2 is given by $K_{\lambda}(z) \equiv 1/(1-\bar{\lambda}z)$ for all z in \mathbf{D} and has the property that $F(\lambda) = \langle F, K_{\lambda} \rangle_{H^2}$ for each function F in H^2 . An orthonormal basis $\{e_n\}$ for $H^2\theta\psi H^2$ is provided by the Malmquist-Walsh lemma (see, for instance, Nikolskii [4, Malmquist-Walsh lemma, p. 116] or the proof of Theorem 3.1 in Ahern and Clark [1, p. 337]). The functions e_n are given explicitly as follows. Write

$$\psi(z) \equiv \prod_{k=1}^{\infty} \frac{\overline{a_k}}{|a_k|} \cdot \frac{z - a_k}{1 - \overline{a_k}z}$$

where $a_k = \lambda_1$ for $1 \le k \le m_1$, $a_k = \lambda_2$ for $m_1 + 1 \le k \le m_2$, For $\lambda_k = 0$, the term $\overline{a_k}/|a_k|$ is taken to be one. Define $\mathcal{B}_1(z) \equiv 1$, and for each integer n greater than one, let

$$\mathcal{B}_n(z) \equiv \prod_{k=1}^{n-1} \frac{\overline{a_k}}{|a_k|} \cdot \frac{z - a_k}{1 - \overline{a_k}z}.$$

Then the n^{th} basis element e_n for $H^2\theta\psi H^2$ is given by $e_n(z)=\{1-|a_n|^2\}^{1/2}\mathcal{B}_n(z)K_{a_n}(z)$.

2. A matrix representation for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$. Let ψ be a Blaschke product on the unit disk having distinct zeros $\{\lambda_n\}$ with multiplicities $\{m_n\}$ respectively, and let ϕ be an arbitrary function in H^{∞} .

We show that the matrix representation for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ with respect to the basis $\{e_n\}$ assumes the form

$$\begin{pmatrix}
T_1 & * & * & \cdots \\
 & T_2 & * & \cdots \\
0 & \ddots &
\end{pmatrix}$$

where each block T_n on the main diagonal is of the form

$$\begin{pmatrix} \alpha_n & \beta_n & * & \cdots & * \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & * \\ 0 & & & \ddots & \beta_n \\ & & & & \alpha_n \end{pmatrix}$$

where α_n and β_n are complex numbers.

Theorem 1. A matrix representation for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$. Let ψ be a Blaschke product on the unit disk having distinct zeros $\{\lambda_n\}$ with multiplicities $\{m_n\}$, respectively. Let ϕ be any function in H^{∞} . Then the matrix representation for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ with respect to the basis $\{e_n\}$ for $H^2\theta\psi H^2$ assumes the form

$$\{P_{\psi}T_{\phi}P_{\psi}\}^* = egin{pmatrix} T_1 & * & \cdots & & & \ & T_2 & * & \cdots & & \ & & \ddots & \vdots \ & & \ddots & \vdots \ 0 & & & \end{pmatrix}$$

where the n^{th} block T_n on the main diagonal is an $m_n \times m_n$ matrix given by

$$T_n = \begin{pmatrix} \alpha_n & \beta_n & * & \cdots & * \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & * \\ 0 & & & \ddots & \beta_n \\ & & & \alpha_n \end{pmatrix}$$

where $\alpha_n = \overline{\phi(\lambda_n)}$ and $\beta_n = \{1 - |\lambda_n|^2\}(\overline{\lambda_n}/|\lambda_n|)\overline{\phi'(\lambda_n)}$. If $\lambda_n = 0$, then the term $\overline{\lambda_n}/|\lambda_n|$ in β_n does not occur.

Proof. For each positive integer n, define

$$\mathcal{H}_n = \operatorname{span}\left\{e_k : \sum_{j=1}^{n-1} m_j < k \le \sum_{j=1}^n m_j\right\}$$

and denote by $P_{\mathcal{H}_n}$ the orthogonal projection of $H^2\theta\psi H^2$ onto \mathcal{H}_n . Since \mathcal{H}_n has dimension m_n , the operator $T_n \equiv P_{\mathcal{H}_n} \{P_{\psi} T_{\phi} P_{\psi}\}^* P_{\mathcal{H}_n}$ acting on \mathcal{H}_n is an $m_n \times m_n$ matrix.

We show that the main diagonal entries of the n^{th} block T_n are all equal to $\overline{\phi(\lambda_n)}$. Let n be any positive integer and let j be any integer in $\{1,2,3,\ldots,m_n\}$. Define $N\equiv j+\sum_{k=1}^{n-1}m_k$ and let ψ_N denote the analytic continuation of ψ/B_N to the unit disk. So $a_N=\lambda_n$. The j^{th} main diagonal entry of the n^{th} block T_n is given by $\langle \{P_{\psi}T_{\phi}P_{\psi}\}^*e_N,e_N\rangle_{H^2\theta\psi H^2}$. There exists a unique function H_N in H^2 such that $\phi e_N+\psi H_N\{1-|a_N|^2\}^{1/2}$ is in $H^2\theta\psi H^2$. Since B_N is an inner function and $\psi_N(a_n)=0$, we have that

$$\begin{split} \langle \{P_{\psi}T_{\phi}P_{\psi}\}^*e_N, e_N\rangle_{H^2\theta\psi H^2} \\ &= \langle e_N, \phi e_N + \psi H_N \{1 - |a_N|^2\}^{1/2}\rangle_{H^2} \\ &= \{1 - |a_N|^2\} \langle B_N K_{a_N}, B_N (\phi K_{a_N} + \psi_N H_N)\rangle_{H^2} \\ &= \{1 - |a_N|^2\} \langle K_{a_N}, \phi K_{a_N} + \psi_N H_N\rangle_{H^2} \\ &= \{1 - |a_N|^2\} \cdot \{\overline{\phi(a_N)/(1 - |a_N|^2) + \psi_N(a_N)H_N(a_n)}\} \\ &= \overline{\phi(a_N)} = \overline{\phi(\lambda_n)}. \end{split}$$

We show that the super diagonal entries of the n^{th} block T_n are all equal to $\{1-|\lambda_n|^2\}(\overline{\lambda_n}/|\lambda_n|)\phi'(\lambda_n)$ where $\overline{\lambda_n}/|\lambda_n|$ is taken to be 1 if $\lambda_n=0$. Let n be any positive integer and let j be any integer in $\{2,3,4,\ldots,m_n\}$. Define $N\equiv j+\sum_{k=1}^{n-1}m_k$. So $a_N=a_{N-1}=\lambda_n$. The (j,j+1)-entry of T_n is given by $\langle \{P_\psi T_\phi P_\psi\}^*e_N, e_{N-1}\rangle_{H^2\theta\psi H^2}$. There exists a unique function H_{N-1} in H^2 such that $\phi e_{N-1}+\psi H_{N-1}\{1-|a_{N-1}|^2\}^{1/2}$ is in $H^2\theta\psi H^2$. Since \mathcal{B}_N is an inner function and $\langle zK_\lambda^2, F\rangle_{H^2}=\overline{F'(\lambda)}$ for all functions F in H^2 and all complex numbers λ in the unit disk (see, for instance, Nikolskii [4, p. 33(2)]), we have that

$$\begin{split} & \langle \{P_{\psi}T_{\phi}P_{\psi}\}^{*}e_{N}, e_{N-1}\rangle_{H^{2}\theta\psi H^{2}} \\ & = \langle e_{N}, \phi e_{N-1} + \psi H_{N-1}\{1 - |a_{N-1}|^{2}\}^{1/2}\rangle_{H^{2}} \\ & = \{1 - |a_{N}|^{2}\}^{1/2}\{1 - |a_{N-1}|^{2}\}^{1/2} \\ & \cdot \langle \mathcal{B}_{N-1}\frac{\overline{a_{N-1}}}{|a_{N-1}|}\frac{z - a_{N-1}}{1 - \overline{a}_{N-1}z}K_{a_{N}}, \mathcal{B}_{N-1}(\phi K_{a_{N-1}} + \psi_{N-1}H_{N-1})\rangle_{H^{2}} \end{split}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \langle (z - a_{N})K_{a_{N}}^{2}, \phi K_{a_{N}} + \psi_{N-1}H_{N-1} \rangle_{H^{2}}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \{\langle zK_{a_{N}}^{2}, \phi K_{a_{N}} + \psi_{N-1}H_{N-1} \rangle_{H^{2}}$$

$$- \langle K_{a_{N}}^{2}, \overline{a_{N}} (\phi K_{a_{N}} + \psi_{N-1}H_{N-1}) \rangle_{H^{2}} \}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \{\langle zK_{a_{N}}^{2}, \phi K_{a_{N}} + \psi_{N-1}H_{N-1} \rangle_{H^{2}}$$

$$- \langle zK_{a_{N}}^{2}, z\overline{a_{N}} (\phi K_{a_{N}} + \psi_{N-1}H_{N-1}) \rangle_{H^{2}} \}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \{\langle zK_{a_{N}}^{2}, (1 - \overline{a_{N}}z)(\phi K_{a_{N}} + \psi_{N-1}H_{N-1}) \rangle_{H^{2}} \}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \{ \overline{d}(1 - \overline{a_{N}}z)(\phi K_{a_{N}} + \psi_{N-1}H_{N-1}) \}|_{z=a_{N}} \}$$

$$= \{1 - |a_{N}|^{2}\} \frac{\overline{a_{N}}}{|a_{N}|} \overline{\phi'(a_{N})}$$

$$= \{1 - |\lambda_{n}|^{2}\} \frac{\overline{\lambda_{n}}}{|\lambda_{n}|} \overline{\phi'(\lambda_{n})}. \quad \Box$$

3. Cyclicity of $\{P_{\psi}T_{\phi}P_{\psi}\}^*$. We give necessary and sufficient conditions for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ to be cyclic. The following will be of use.

Lemma 1. Let T be a bounded linear operator on a separable Hilbert space \mathcal{H} . Suppose that there exists a basis for \mathcal{H} such that the corresponding matrix representation for T assumes the form (2). If $\alpha_m \neq \alpha_n$ for $m \neq n$ and $\beta_n \neq 0$ for all positive integers n, then T is cyclic.

Proof. Let T assume the form (2). Define the block diagonal matrix D on \mathcal{H} by

$$D = \begin{pmatrix} T_1 & & 0 \\ & T_2 & \\ 0 & & \ddots \end{pmatrix}.$$

Since $\sigma T_m \cap \sigma T_n = \{\alpha_m\} \cap \{\alpha_n\} = \emptyset$, there exists a bounded linear operator X on \mathcal{H} which is one-to-one and has dense range such that TX = XD (see Davidson and Herrero [2, Proposition 2.5, p. 35]). By Lemma 3.5 of Herrero, Larson, and Wogen [3], it suffices to show that D is cyclic.

Since each β_n is nonzero, the operator T_n has cyclic vector $x_n \equiv (0,\ldots,0,1)$. Define $x \equiv \bigoplus_{n=1}^\infty \delta_n x_n$, where $\{\delta_n\}$ is a sequence of positive numbers to be specified later. There exists a collection $\{p_{n,k}\}$ of polynomials such that for each pair of positive integers n and k, $p_{n,k}(T_k)$ is the identity operator, and for each j in $\{1,2,\ldots,k-1,k+1,\ldots,n\}$, $p_{n,k}(T_j)$ is the zero operator. So $p_{n,k}(T)x = x_k + \bigoplus_{j=n+1}^\infty p_{n,j}(T_j)\delta_j x_j$. The sequence $\{\delta_n\}$ can be chosen to decrease to zero rapidly enough so that for each fixed positive integer k,

$$||p_{n,k}(T)x - x_k|| = \left\| \bigoplus_{j=n+1}^{\infty} p_{n,j}(T_j)\delta_j x_j \right\|$$

tends to zero as n tends to infinity. Hence, each x_k is in $\{\overline{p(T)}x : p \text{ is a polynomial }\}$ and so x is a cyclic vector for D. The result follows.

If a bounded linear operator T on a separable Hilbert space \mathcal{H} is cyclic, then T is cyclic on each invariant subspace of \mathcal{H} having an algebraic complement which is also invariant for T.

Lemma 2. Let T be a bounded linear operator on a separable Hilbert space \mathcal{H} . If \mathcal{N} is a closed invariant subspace of T with an invariant complement \mathcal{M} , then $T \mid \mathcal{N}$ is cyclic on \mathcal{N} .

Proof. Let x be any cyclic vector for T on \mathcal{H} . Since \mathcal{M} is a complementary subspace of \mathcal{N} , there exist unique vectors x_1 in \mathcal{N} and x_2 in \mathcal{M} such that $x = x_1 + x_2$. For each positive integer n, we have that $T^n x = T^n x_1 + T^n x_2$. Since $T \mathcal{N} \subseteq \mathcal{N}$ and $T \mathcal{M} \subseteq \mathcal{M}$, $T^n x_2$ is always in \mathcal{M} and so x_1 is a cyclic vector for $T \mid \mathcal{N}$ on \mathcal{N} .

Using Theorem 1, we show that $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ is cyclic if and only if ϕ is one-to-one on the set of zeros of ψ and has nonvanishing derivative on the set of multiple zeros of ψ .

Theorem 2. Cyclicity of $\{P_{\psi}T_{\phi}P_{\psi}\}^*$. Let ψ be a Blaschke product on the unit disk having distinct zeros $\{\lambda_n\}$ with multiplicities $\{m_n\}$, respectively. Let ϕ be any nonconstant function in H^{∞} . Then $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ is cyclic if and only if

(i)
$$\phi(\lambda_m) \neq \phi(\lambda_n)$$
 for $m \neq n$

and

(ii)
$$\phi'(\lambda_n) \neq 0$$
 whenever $m_n \geq 2$.

Proof. Conditions (i) and (ii) are sufficient for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ to be cyclic by Theorem 1 and Lemma 1.

Conversely, let $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ be cyclic. We assume that there exist distinct positive integers m and n such that $\phi(\lambda_m) = \phi(\lambda_n)$ and deduce a contradiction. By reordering the zeros of ψ , we may assume without loss of generality that there exists a positive integer N such that $\phi(\lambda_k) = \phi(\lambda_1)$ for k in $\{1, 2, \ldots, N\}$ and $\phi(\lambda_k) \neq \phi(\lambda_1)$ for each integer k greater than N. By hypothesis, N is at least two. Define $\mathcal{M} \equiv \text{span}\{\text{Ker}(S_{\psi}^* - \bar{\lambda}_k)^{m_k} : 1 \leq k \leq N\}$ and $\mathcal{N} = \text{span}\{\text{Ker}(S_{\psi}^* - \bar{\lambda}_k)^{m_k} : k \geq N+1\}$. Since the operators $\{P_{\psi}T_{\phi}P_{\psi}\}^*$ and S_{ψ}^* commute, the subspaces \mathcal{M} and \mathcal{N} are invariant for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$. Since $\text{Ker}(S_{\psi}^* - \bar{\lambda}_k)^{m_k} = \text{span}\{z^jK_{\lambda_k}^{j+1} : 0 \leq j < m_k\}$ for each positive integer k (see Corollary 3 of [4, p. 82]), we have that the set of positive integers

$$\mathcal{M} + \mathcal{N} = \operatorname{span} \left\{ z^{j} K_{\lambda_{k}}^{j+1} : k \in \mathbf{N}, 0 \leq j < m_{k} \right\}$$
$$= \operatorname{span} \left\{ e_{n} : n \in \mathbf{N} \right\} = H^{2} \theta \psi H^{2}$$

(see Corollary 5 of [4, p. 83]). Moreover, $\mathcal{M} \cap \mathcal{N} = \{0\}$ so that \mathcal{M} is a complement for \mathcal{N} which is invariant for $\{P_{\psi}T_{\phi}P_{\psi}\}^*$.

By Theorem 1, the matrix representation for $\{P_{\psi}T_{\phi}P_{\psi}\}^* \mid \mathcal{N}$ assumes the form

Since N is at least 2 and $\overline{\phi(\lambda_1)} = \overline{\phi(\lambda_2)} = \cdots = \overline{\phi(\lambda_N)}$, the eigenspace corresponding to the eigenvalue $\phi(\lambda_1)$ is at least two-dimensional. Hence $\{P_{\psi}T_{\phi}P_{\psi}\}^* \mid \mathcal{N}$ is not cyclic, contradicting Lemma 2.

A similar argument holds if there exists a positive integer n for which $\phi'(\lambda_n) = 0$ with $m_n \geq 2$.

Acknowledgment. The author thanks Professor Domingo Herrero and the referee for suggestions simplifying the proofs of Theorems 1 and 2.

REFERENCES

- P.R. Ahern and D.N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332–342.
- 2. K.R. Davidson and D.A. Herrero, *The Jordan form of a bitriangular operator*, J. Funct. Anal. **94** (1990), 27–73.
- ${\bf 3.}$ D.A. Herrero, D.R. Larson and W.R. Wogen, $Semitriangular\ operators,$ to appear.
- 4. N.K. Nikolskii, *Treatise on the shift operator*, Grundlehren der mathematischen Wissenschaften, Band 273, Springer-Verlag, New York, 1980.
- ${\bf 5.~D.~Sarason},~Generalized~interpolation~in~H^{\infty},$ Trans. Amer. Math. Soc. ${\bf 127}$ (1967), 179–203.
- 6. S.M. Seubert, Dissipative finite convolution operators, Houston J. Math. 16 (1990), 573-581.
 - 7. ——, Dissipative operators on quotient spaces of H^2 , to appear.

8. W.R. Wogen, On some operators with cyclic vectors, Indiana Univ. Math. J. 27 (1978), 163-171.

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio $43\,403\text{-}0221$