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AN ANALOGUE OF THE STABILIZATION MAP
FOR REGULAR 7, ACTIONS

DAVID C. ROYSTER

ABSTRACT. Several authors have used the stabilization
technique introduced by Boardman to analyze the fixed point
structure of a smooth action of a compact Lie group on smooth
manifolds. Using regular Z, actions, defined herein, and the
bordism groups of regular Z, actions, we show that if there is
a regular action of Z, on a smooth manifold and the manifold
is not a boundary in the Thom oriented cobordism group mod
the ideal of those elements all of whose Pontrjagin numbers
are 0 mod p, then the manifold must have some component of
its fixed point set of dimension at least half that of the ambient
manifold. As a coda to this, we study the relationship between
this stabilization map and the factorization of the cyclotomic
polynomials over Z.

1. Introduction. We want to know how the size of the fixed point
set of an action of a group on a manifold affects the bordism class of
the ambient manifold in the appropriate bordism ring. For example,
we know that if Zy acts freely on M, or if (Z3)* acts on M without
fixed points, then the manifold bounds in the Thom unoriented bordism
ring, M.. Also, Ossa [14] has shown that if S* acts without fixed points
on a closed smooth oriented manifold then a suitable multiple of this
manifold bounds equivariantly, and the manifold represents a torsion
element in ..

What can be proved if the fixed point set is not empty? The first
result appears in Conner-Floyd [3, Theorem 27.1], and this dealt with
involutions.

Theorem 1.1. Forallk € Z, k > 0, there exists ¢(k) € Z, ¢(k) > 0,
such that if (T, M™) is a smooth involution on a closed manifold with
dim(M?%2) < k and n = dim(M) > ¢(k), then M™ bounds in N..
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They inquired as to a suitable estimate for ¢(k). Boardman [2]
showed that one can take ¢(k) = 5k/2 and that this is the best possible
general result; i.e., there exists a nonbounding manifold of dimension 5
on which there is an action of Zy which has a nonbounding component
of its fixed point set of dimension 2. In 1978 Kosniowski and Stong
[13] and, independently, this author [15] strengthened this result by
showing that the manifold in question actually bounds equivariantly.

Z, actions are nice objects with which to work, having a particularly
nice representation structure. One direction that was followed in this
direction was to look at semifree S' actions—actions in which the
isotropy group is either the whole group or the identity subgroup. These
are a particularly nice oriented analogues of involutions on unoriented
manifolds. Similar questions were considered by Kawakubo [8] and the
author [16].

Theorem 1.2. Let T be a smooth orientation preserving semifree
Sl-action on the closed oriented smooth manifold M™. Let k be the
mazimum of the nonbounding components of the fized point set of T on
M™ If [M"]|#0in QQ Q then k > n/2.

The oriented analogue of the example in the unoriented case is still
present. There is a ten-dimensional oriented manifold with semifree
Sl-action with a four-dimensional fixed point set. This manifold is a
torsion element though.

This, of course, skips a large class of groups about which a lot has
become known. An analogous approach to orientation preserving Z,-
actions for p an odd prime would seem appropriate. Much has been
done in the area of fixed set dimension and what this determines about
the ambient manifold by Tom Dieck [5, 6, 7] and Kosniowski [10, 11].
The approaches are quite distinct. The elegant work of Tom Dieck
is by an analysis via equivariant homotopical cobordism, and that of
Kosniowski is arrived at from the direction of the G-Signature Theorem
approach.

The purpose of this paper is to study the case of regular Z, actions,
defined in Section 2. Suffice it to say that if one restricts a semifree
Sl-action to the action of Z, that is naturally included—as Z, is
included as the p-th roots of unity—then one has a regular Z, action.
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In Section 3 we analyze the bordism group of regular Z,-actions on
manifolds, R,(Z,) and calculate how the image of the bordism group
of semifree S'-actions, SF,.(S') sits in it. Next in Section 4 an
endomorphism I' of degree 42 is defined on }/i*(Zp), a quotient of
R.(Z,). We show that it satisfies certain nice properties analogous
to the map defined in [1, 3, 12, 15 and 16].

In Section 5 we study an ideal of E*(Zp) described by I' and use it
to set up the machinery to prove the main theorem in Section 6. This
is completely analogous to the proof technique in [15] and [16]. Our
main result is:

Theorem 1.3. Let T' be a smooth orientation preserving regular Z,
action on M™ and let k be the fized point dimension of T on M™. If
[M™ # 0 in Q/I(p), then k > n/2.

This says that some component of the fixed point set has dimension
at least half that of the ambient manifold.

In Section 7 we look at the connection between the mapping I' and
its role in the algebra R.(Z,) and the factorization of ¢ — 1 by the
cyclotomic polynomials in one variable over the integers mod p.

All manifolds are assumed to be smooth. All mappings of our
manifolds are assumed to be smooth and orientation preserving. If M™
is a closed oriented manifold, then we will use —M™ to denote the same
manifold given the opposite orientation. Throughout the remainder p
will denote an odd prime.

2. Regular Z,-actions. Let (T, M™) be a smooth action of Z, on
the smooth closed oriented manifold M™; i.e., T is a smooth map of
M?™ to itself of period p, TP = 1;;. We identify Z, with the pt" roots
of unity {exp(27ik/p) | k = 0,1,2,...,p — 1}. Let F(T) denote the
fixed point set of T on M"™—we shall use F' when there is no possibility
of confusing the author. Each component of the fixed point set is
orientable. The normal bundle to each component, F;, of the fixed
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point set has a canonical Z,-invariant decomposition into subbundles

(p-1)/2

A=Y Ak)
k=1

where E(A(k)), the total space, has a unique complex structure so that
Z,, acts by multiplication in the fibers by exp(27ik/p).

We can then canonically orient F; so that the orientation of a fiber
followed by that of F; gives the orientation of E();), where E()\;) has
the orientation of a tubular neighborhood of F; in M™.

When \; = A(k) for some fized k and for all components, we say that
the action of Z,, is regular. Notice that we are requiring that there be
only one representation of the group Z, which is the same at every
fixed point. For the purposes of this paper and to make the analysis
look nicer, we will take £ = 1 throughout the paper. The results hold
true for any choice of k. Regular actions were considered by Kawakubo
in [8].

Following the now standard outline from Conner-Floyd, [3], it will
come as no surprise that we can define a bordism relation for regular
Z,-actions. From this point onward all actions of Z, are assumed to
be regular. We say that the regular actions (71, M7*) and (T2, M) are
isomorphic if there is an equivariant orientation preserving diffeomor-
phism of M}* onto M. A regular Z, action (T, M™) bounds if there
is a regular Z, action (7, W"*!) on a compact manifold with bound-
ary so that (7]pW"*1) is isomorphic to (T, M™). Given a regular Z,
action (T, M"™), define —(T, M™) = (T, —M™) to be (T, M™) with the
opposite orientation. Two regular Z, actions are bordant if the disjoint
union (77, M7") U —(T», M}) bounds. This clearly forms an equiva-
lence relation and denote the equivalence, or bordism, class of (T', M™)
by {T, M™}. The collection of these bordism classes forms an abelian
group under disjoint union, and will be denoted by R,,(Z,). The direct
sum

is a graded ring with the product given by the Cartesian product:

{Tl,M]_} X {Tg,Mz} = {Tl X TQ,Ml X Mg}
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We will also use the augmentation map ¢: R,(Z,) — 2, given by
forgetting the action: ({7, M™}) = [M"].

Using the notation of [3] we let ©,(Z,) denote the bordism group
of free Z, actions. Any free action of Z, is clearly regular, so if
[T,M"] € Q(Z,) then it also represents an element in R, (Z,). Let
a: Q,(Zp) — Rn(Zp) denote this correspondence, which is clearly a
homomorphism.

For the regular Z,, action (T, M"™) let F"~2* denote the union of the
2k codimensional components of the fixed point set of 1" oriented as
mentioned above. Let §;: E — F™ 2* denote the normal complex

bundle to F"~2*. Define a map v: R,,(Zp) — > Qn_2k(BU(k)) by

v({T,M"}) = e = F* 7] = "],

k k

Note that since we have fixed the actions to have only one representa-
tion, we have tremendously simplified the fixed point data. In general
there are (p — 1)/2 conjugate representations that must be considered.
This map v is the standard fixed point data map of Conner-Floyd [3]
restricted to regular actions. It, too, is a homomorphism.

Let 8y: .12 Q_ox(BU(k)) = Qn_1(Z,) denote the usual bound-
ary map. Let &,: E, — B" 2 be a k dimensional complex vector bun-
dle. S(&x) denotes the unit sphere bundle of &, the set of all vectors
in each fiber of norm 1. Z, acts on S(§) by restriction of the complex
multiplication in each fiber to the unit sphere. Denote this action on
S(&k) by ¢k Clearly this action is free, so we set 9'([€x]) = [¢k, S (k)]
Define 9; to be the sum of the &’ and put 9;(Q2,,) = 61(2,(BU(0))) = 0.

There is a canonical augmentation map e: Q,(Z,) — Q, given by
e([T,M™]) = [M™/Zy) = [M™/T] € Q,. Let Q(Z,) = kere. This map
splits by a mapping s: Q, — Q,(Z;) given by

s([M™]) =@, M™U---UM"] = [p, M™ X Zy)]
p copies

where ¢ acts by permuting the copies of M™ cyclically. Easily, es =1
and Q,(Z,) splits as
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The following theorem is found in Kawakubo, [8].

Theorem 2.1 [Kawakubo]. The sequence

n/2
0— Q0 L Ro(Z,) > 0 ak(BU(K)) -2 Q0 1(Z,) — 0
k=0

18 exact.

Note that the mapping «| in the above sequence is nothing but
a[M™] = {p, M" x Z,} where ¢ permutes the factors of M" cyclically.

Now, let us consider the bordism groups of S!-actions as in [12].
We let SF,,(S1) denote the bordism group of semifree S!-actions on
n-dimensional manifolds. Analogous to the above regular Z,-actions
there is a natural homomorphism

i SFu(S') = > Qu_ar(BU(k))

and

0: Y Qnak(BU(K)) = 2 (S1),

where Q,,(S') to denotes the bordism group of free S*-actions on n-
dimensional manifolds. We find the following theorem no surprise, see
[18].

Theorem 2.2 [Uchida]. The sequence

n/2 -
0 —— SF(8") —2> > " 0 ok (BU(K)) —2= Q1 (S") — 0
k=0

is split exact.

Since we have chosen k = 1 for our representation of Z, at every
fixed point, when we restrict a semifree S! action to the subgroup Z,
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acting as the p'® roots of unity, we get a regular Z,-action. Thus, we
have natural restriction homomorphisms p;: SF,(S!) — R,(Z,) and
p2: Qn(SY) — Q,(Z,) for free actions. Putting Theorems 2.1 and 2.2
together with these maps gives us the following commutative diagram.

n/2 _
0 —— SFu(S") == " Qn ok (BU (k) —2= Q1 (S") — 0
k=0
P1 || P2
n/2
00— Q25 Ry(Zy) Y Qo (BU(K)) ~25 Qi (2,) — 0
k=0

Figure 2.3

3. Analysis of R,(Z,). Let I(p) C Q. denote the ideal consisting
of those bordism classes all of whose Pontrjagin numbers are divisible
by p. From [4, Theorem 50.3] we get the following theorem.

Theorem 3.1. There exists a sequence of regular Z,-actions
(T, MZ*) for k > 0 that satisfy

(1) F(T,MZ") = wp_ (—1)F M2 where MY is p distinct
points.

(2) {[M{],[My], [M§],...} generates I(p).
(3) {Ov({T, MZ*}) Yo is an Q, base for the free Q, -module ker(ps).

Let J, be the submodule of R.(Z,) generated by {{T, M#*}}r=o.
The following lemma is due to Kawakubo [9], but its proof is included
here for local completeness.

Lemma 3.2. There is a direct sum decomposition

Rn(Zyp) = Jn @ p1(SFA(SY)) @ .
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Proof. We know that the top sequence in the commutative dia-
gram 2.3 splits. The splitting map is easily defined s;: Q, 1 —
>k Y2k (BU(k)). Q.(S?) is a free Q.-module on agy,_1 = [p, SZ*71],
k > 1, where §?*=1 C CF as the elements of norm 1 and S' act by
multiplication in each factor. If m € Q,,_1(S!) then we can write m as

(n—1)/2
m = Z [VQk]Oln,Zk,l.
k=0
Then define
(n—1)/2 -
sim)= > (VMo F,
k=0

where 6 /27K is the trivial complex (n/2— k)-plane bundle over a point.

Let z € R,(Z,). Then 0 = dv(z) = py(dv(x)) so that dv(z) €
ker p5. From [4] we know that we can use the manifolds postulated in
Theorem 3.1 to write anything in the kernel of ps as

n/2+1
Ov(z) =D [Mg*lom_ok-1.
k=0
Then, s,0v(z) = ZLZOH[M(?’“]H,L,%,l = v(z) for some unique z € J,,.

Now

ov(x — z) = Ov(z) — v (2)
= dv(z) — ds10v(x) = 0.

Thus, there is a unique y € SF,,(S1) so that 7(y) = v(x — 2).

Then, v(z —z—p(y)) = v(z—2) —vp(y) = v(z —z) —¥(y) = 0. Thus,
again there is a unique w € €, so that a(w) = ¢ — z — p(y). This gives
us that each element in R,(Z,) can be written uniquely as

z=z+p(y) + a(w),

and this gives us our direct sum decomposition. ]
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Let }/%n(Zp) = R,(Z,)/af),. This gives us a short exact sequence
in the above commutative diagram 2.3, and we shall make use of this
group later.

4. Definition of the map I'. Let A = exp(27i/p). Let M™ be an
oriented manifold together with an action of Z, which extends to an
action of S. Let S% = {(z0,21) € C? | ||(20,21)|| = 1}. The circle acts
freely on M™ x S3 by

(t7 (m7Z07Z1)) = (tm,tZ(),tzl),
for t € St. Let I'(M) = (M x §3)/S™. Z,, acts on T'(M) by
()‘7 [mv Z07zl]) = [)\m, )\Zo,zl].

The action extends to an action of S* on I'(M), so we can define I'* (M)
inductively: T™(M) = I'(T"~1(M)) and T°(M) = M. This map so
defined raises dimension by 2. From our above remarks, this map is
defined on most of R,(Zy). It is not defined on J,, or af2,. However,

the construction of the manifolds that generate J, is related to the map
T.

Let us generalize the construction of these manifolds {(7, M&*)} from
[3]. Let (T, M) be a regular action of Z,, on a manifold and let F' denote
its fixed point set, with normal bundle {: £ — F. Z, acts regularly
on the manifold M™ x S! by the diagonal action ¢ x T" where o is
multiplication in S* by A. By [3, 35.1] this action is cobordant to the
action, Ty, on M™ x S given by Tys(z,2) = (x,A2), or Tyy = 1 X 0.

We add a trivial line bundle to the normal bundle &, £ & C. The
diagonal map T x T7 on E(¢ @ C), where T is multiplication by A
restricts to a free Z, action, 1", on the sphere bundle, S({ ® C). From
(3, 35.2] (Tar, M x S1) is freely cobordant to (77, S(£@® C). Thus, there
is a manifold with boundary, V"2, with free Z,-action, 7, satisfying

(1, V') = (Tp, M x S*) U —(T', S(¢€ @ C)).
Let W™t2 be the manifold V"2 closed up, i.e.,

(1, W™*2) = (Tag, M x D?) Uy (1, V") Uy (T', D(€ & C),
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where

(1) the action of Z, on D? is the obvious extension of the mapping
on St

(2) the action of Z, on the disk bundle, D(¢ & C) is the restriction

of the diagonal map to the disk bundle, and is the extension of T to
the disk bundle;

(3) the disk and the disk bundle are glued to V"2 along their
respective boundaries.
Put I'(T,M") = (r,W"*2). From [3, Theorem 42.7] if the action
comes from an S' action then these two definitions of ' agree up to
equivariant diffeomorphism. Thus, they are the same on the image of
SF,(S') in R, (Z,). This is the essentially the same definition that was
used in [3] to construct the manifolds which generate J., so that this
definition of I' will be defined on J, as well.

It is not well-behaved, because it is not well-defined. We had to
make a choice of manifold when we chose the free coboundary for the
two ends. The bordism class of any free action on a closed oriented
manifold is divisible by p in OY°(Z,). The indeterminancy of this map

thus in our case must lie in af2,. Hence, on ﬁn(Zp) =T, ®p1(SF,(S?)
we have a well-defined endomorphism I': R,(Z,) — R.(Z,) of degree
+2.

Lemma 4.1. This endomorphism T satisfies the following properties.
(1) T is well-defined.
(2) T is additive.
(3) T is an Q.-module map.
(4) If z,y € E*(Zp) and : ﬁ*(Zp) — Q. is the augmentation map,
then
[(zy) =T(z) y+e(z) - T(y)

(42) =z-I'(y)+T(z)-y.

Proof. This consists for the most part of checking the normal data

~

and using the fact that v: R,(Zp) — >, Qn—2x(BU(k)) is monic. Note
this is Rn(Zp).
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(1) This is done.

(2) The fact that I is additive follows from the fact that the Cartesian
product distributes over disjoint union; i.e., that

(Ml |_|M2) X Sl = (Ml X Sl) L (M2 X Sl)
(3) The Q,-module structure on R, (Z,) is given by [VK{T, M"} =
{T x 1, M™ x V*}. To see that D([V¥|{T, M"}) = [VFIL({T, M"}) we
just check the normal data. The fixed point set of T'x 1 on M™ x V* is

F x V* with normal bundle ¢ x 0, where 0 denotes the 0-plane bundle
over V*. Thus, the normal data for D([V¥|{T, M™}) is

(Ex0)@C)U—-C over (FxVFyu—(M"xVF).
The normal data for [V*|T({T, M"}) is
(x0)®C)U—-C)x0 over (FU-M")xVk

Passing to the bordism level finishes this.

(4) We will check that I'(zy) = z-T'(y) + I'(z) - £(y). Assume that =
and y are represented by manifolds (77, M;) and (T%, M3), respectively,
and let F; with normal bundle &; be the fixed data for T; on M;. The
fixed point data for I'({T, M1} - {Ts, M>}) is

(&1 x&)dC)U—-C over (Fi x Fo)U —(My x Ms).
The fixed point data for z - ['(y) is
(&1 x&)BC)U (2D C) over (Fy x Fp) U —(Fy X Ms).
The fixed point data for I'(z) - ¢(y) is
(&L C)u—C over (Fyx My)U—(My x Ms).

The result follows when we pass to the bordism level, noting that the
&1 @ C over Fy x M- have opposite orientations. u]

5. An ideal of R.(Z,). Let 2= {z+T(z)|s(x) =0} C R.(Z,).
It is easy to check that if # + I'(z) € % and y € R.(Z,) then

zy + D(zy) = zy +e(z)'(y) + I'(z) -y
= (z +I'(z))y,
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and 2 is an ideal of R, (Z,). For simplicity let ME =312 Q. (BU(K)).
Lemma 5.1. E*(Zp)/Ql ~ ME/(1+ 6p), as rings.

Proof. By the commutative diagram 2.3 and from [17], we know that
ME =~ Q,[00,01,...], where 6,, = [, — CP(n)] is the bordism class of
the canonical line bundle over CP(n).

The proof of this lemma is entirely analogous to the proof of Theorem
3.1 of [12]. T will include an outline here, again for local completeness.
If m: ME — MZE/(1+6,) is the quotient map, it is necessary to show
that mv: ﬁ*(Zp) — ME/(1+6,) is onto. This is easily done by noting
that in the quotient ring, we have identified the trivial 1-plane bundle
M"™ x D! with M™. We thus have identified all trivial r-plane bundles
over M™ with the trivial 0-plane bundle over M™, which is hit by
{1, M™}, under v.

To see that 2 C ker(nv) is a matter of the construction of I' and the
choice that e(z) = 0. It is easy to check that

vz +T(z)) =[§ = F]- (1+60),

where £ is the normal bundle to the fixed set, F, of x. The proof of the
other inclusion is a construction of an element in 2 and requires the
use of the Smith homomorphism and the splitting. It is exactly like
the previous proof and will not be reproduced here. ]

It follows from the remarks at the beginning of the previous proof,
that R,(Z,)/? is a polynomial ring over Q. Put Ar(Z,) = R.(Z,)/A
and let

0.{{6}} = {Z[vk]ek V4 € Q}

k=0

denote the ring of homogeneous power series over {2,. Define a map
¥: Ru(Zp) — Q.{{O}} by

Y(@) =Y (=) eI ()0,

k>0
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where = € ﬁ*(Zp). ¥ is additive by the additivity of ¢ and I". For
z € R.(Z,)

Y(z+T(z)) = Z(*l)ks(Fk(x))QTH%

k>0

+ 3 (1) (D(2)))Om 2+

k>0
=¢e(z)O".

From this it follows that ¢ () = 0. Once again the product formula for
I' and the fact that e is multiplicative yields that v is multiplicative.
We have just shown the following:

Lemma 5.2. ¢ is additive and multiplicative and () = 0.

Thus, ¢ induces a well-defined, additive, multiplicative homomor-
phism ¢: Ar(Z,) — Q.{{O}}.

Note that the mapping ﬁn(Zp) — Ag(Z,) is a monomorphism for any
fixed n > 0. The quotient ring M /(1+6)) can easily be identified with
Q. (BU) = MSO.(BU), for in the quotient [¢] is identified with [£Dby],
i.e., we are stabilizing by adding trivial bundles. The stabilization
on R.(Z,) requires that we identify elements in differing dimensions.
While Ag(Z,) and Q.(BU) are no longer graded algebras, the map
v: ﬁn(Zp) — MFE induces a mapping v: Ag(Z,) — Q.(BU) which is
an isomorphism by Lemma 5.1.

In lieu of the grading on Agr(Z,) we will introduce two filtrations.
First if (T, M") is a regular Z,-action, with non-empty fixed point
set, we can consider it as belonging to Ar(Zp,). The first filtration
will be geometric. The fixed point filtration of {7, M™} is defined
to be filpp({T, M"}) = k if the maximum of the dimensions of the
nonbounding components of the fixed point set is k.

The second filtration is algebraic, based on the mapping of En(Zp)
to Q{{O}}. Put the y-filtration to be fil,({T,M"}) = n + 2j if
e(TI({T, M"})) # 0 but e(T*({T, M™})) = 0 for all i < j. This consists
of picking off the lowest power of ©® which has a nonzero coefficient in
the power series ¥({T, M™}).



702 D.C. ROYSTER

These filtrations behave well as is noted in [15].

Lemma 5.3. Let z,y € Ar(Z,),
(1) filpp(zy) = filpp(z) + filpp(y) for x A0 and y # 0,
(2) fily(zy) = fily () + fily (y) for © # 0 and y # 0,

(3) filpp(z + y) = max{filpp(z),filpp(y)} o = and y have no
monomaals in common,

(4) fily(z +y) = min{fily (z),fily(y)} if  and y have no monomials
N COMMOn.

So, given a set of polynomial generators for Ag(Z,), it follows that
the fixed point filtration of a polynomial in the generators will be the
maximum of the fixed point filtrations of its terms, while the i-filtration
of the same polynomial will be the minimum of the -filtrations of its
terms.

6. Proof of main theorem. To prove the main result, it is
necessary to produce a set of polynomial generators for Ag(Z,) as a
polynomial ring over Q,. It is actually better to study a quotient of
Ar(Z,). We could choose to study the mapping ¢: Ar(Z,) ® Z, —
(2 ®Z,){{O}} or ¥: Ar(Z,)/T — Q. /I(p){{O}}. In either case the
result is the same for regular actions.

We look at Ar(Zp)/J as a polynomial ring over 2, /I(p). In this case
we see that we only need to take as generators the generators for the
semifree S actions and restrict these actions to the included regular
Z,-action. In doing so, we do not lose any information of real interest.
Recall that the generators of J, are those manifolds that are the
generators of the ideal of all manifolds all of whose Pontrjagin numbers
are divisible by p. Thus, mod p we do not gain any information
from J,. Furthermore, the fixed point set of each of those elements
is completely understood. Saying this, we deduce the following lemma
from [16].

Lemma 6.1. There are classes {T, M*"} € Ar(Z,) for each n > 0
so that
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[MAn}ee ) generates Q.. /I(p) as a polynomial over Zy;

M {
(2) {{r,M*"}}2, generates Agr(Zy)/F. as a polynomial ring over
Q./1(p)

These are the manifolds M4" = CP(2n) with the regular Z,-action

TN [205 215+« 5 203 213 205+ 5 20]) = 205 215+ - - 5 203 A2 A2h; ... 5 Az

Note that for these generators the filtrations have the value

filpp ({70, M*"}) = 2n
fily ({1, M*"}) = 4n.

Proof of Theorem 1.3. Let (T,V™) be a regular Z, action that is
not in the image of o and assume that [V"] # 0 in ./I(p). Thus,
fil,({T,V"}) = n. Also, we have filpp({T,V"}) = k. Write {T,V"}
as a polynomial in Ag(Z,)/J. in terms of the generators {r;, M*}.
Now, for any monomial X in these generators, from Lemma 5.3 and
the above remark, we have that fil,(X) < 2filpp(X). {T,V"} can
be uniquely expressed as a sum of distinct monomials in Ar(Zp)/J,.
From the remarks following Lemma 5.3, fil, ({T, V"}) is the minimum
of the w-filtrations of these monomials, while filpp({T,V"}) is the
maximum of the fixed point filtrations of these monomials. Thus,
n = fil,({T,V"}) < 2-filpp({T,V"}) = 2k. This is the stated result.
O

This theorem tells us that for at least one m with 0 < m < 2k

e(™({T, M"})) & I(p)-

Since k < n it follows that 0 < m < k.

Corollary 6.2. Let T' be a smooth orientation preserving regular Z,
action on a closed smooth manifold M™ and let filpp ({T, M"}) = k. If
n > 2k, then {T,M"} € J,.

7. Coda. Assume that n +m < N and assume that ¢(I'*(z)) = 0
for 0 < k < N with z € R.(Z,).
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Lemma 7.1. Under these assumptions

(z — T(z)) nz:; C‘) T (z) = 2* — T (z2).

This follows from the repeated use of the product formula for I' and
the fact that the augmentations are zero for all j < n + 1.

We can recognize MZ as a polynomial ring over Z,. To see how the
polynomial 1—6™ factors in the polynomial ring Z,[#] we only need look
to cyclotomic field extensions. Any standard text in algebraic number
theory will contain the following lemmas, cf. [19].

Recall once again that p denotes an odd prime. Consider the poly-
nomial t” — 1 over the rationals, Q, and let (,, denote the primitive
n*® root of unity. The minimal polynomial for ¢, is the n*® cyclotomic
polynomial, denoted by ®,(t). The following are consequences of the
definition.

e.0t)= ] -

(n,m)=1

(7.2)
t" —1=[] ®at),
d

where d | n means that d divides n.

&.(t) = (¢ - 1)/ [] @att).
d|n
d#n

Theorem 7.3. If p { n, then p factors in Q((,) into the product
of v distinct prime ideals of degree f, where rf = ¢(n) and f is the
smallest positive integer such that pf =1 (mod n), where ¢ is the Euler
¢-function.

Corollary 7.4. If p {1 n, then p splits completely in Q((,) if and
only if p=1 (mod n).
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Theorem 7.5. If p | n, write n = pkn' with (p,n') = 1. Then p
factors in Q((,) in the form

pOq(,) = (B1...B,)*")

where By,...,B,. are distinct prime ideals in the ring of integers,
0q(c,), of degree f with rf = ¢(n') and f being the smallest positive
integer such that pf =1 (mod n’).

Theorem 7.6. Oq(,) = Z|[Ca]-

$(p")
Theorem 7.7. If p factors in Z[(,] as pOq(c,) = | [1i—o Bi

with the above restrictions on r, f, and the ideals B;, then

Bo(t) = (f[pi(t))m mod p,

=1

with the p;(t) being distinct and irreducible and deg(p;(t)) = f for
1=1,...,7.

Proof. By Theorem 7.6 Oq,) = Z[(,] and this is a Dedekind
domain. Thus, %; being prime is maximal in Z[{,] and, hence,
R = Z[¢,]/B; is an extension field of F, = Z/pZ. By assumption,
[Ri : Fp] = f. Take (,, € & and let p;(Y) be its minimal polynomial.
Now, p; (t)d’(pk) divides ®,,(t) mod p. Doing this for all 7, we have our
result. i

Thus, from Theorem 7.3 and Theorem 7.7 we have that

v 1= T 0

d|n "ia=1

B(p*e)
] mod p

where deg(pi,(t)) = fa, ia = 1,...,7q; d = p**d’; and rafa = ¢(d')
with f; being the smallest positive integer with pf¢ = 1 (mod d’) for
each d which divides n.
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Now, we look at what happens with T'.
Lemma 7.8. ' (z)'™(z) = I+ (2?).

Proof. This is a simple double induction argument on n and m using
the product formula for I' and the assumptions about the augmenta-
tions: n+m < N and ¢(T*(z)) = 0 for 0 < k < N with z € R.(Z,).
O

Lemma 7.9. ['(z)["(2") = [T (z7F1).

Lemma 7.10. T (z")[™(2®) = Itm (g7 +s).

These both follow by induction and the product formula.
Corollary 7.11. Under the above assumptions [I'(z)]* = T (z™).

Now divide the positive integers into two disjoint collections. Let
n € ¢ if n = p* for some k > 1; otherwise, n € ¢;.

Theorem 7.12 [The Freshman Theorem|. If n € &, then (I'(z) —
z)" =T"(z™) — 2™ if (I (x)) =0 for 0 < j < m.

Proof. Expanding the left hand side we have

(M) - 2)" = Z_J (1) @y

Since n is a power of p, this reduces to

(C(z) — )" = (C(z))" — 2"

= Fn(mn) - mn’

by Corollary 7.11. O
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Let n € €; and let f(t) be a polynomial over Z, defined by f(t) =
> o aitt, a; € Zy,. Define a polynomial operator f(T') by

F(D)a) = (Z r’) ) = ZF()

If g(T) is another polynomial operator, g(I')(z) = Y.~ b:;T(z), define
the product of these two polynomial operators in the obvious fashion:

n+m
F)-g(l) = fg() = > e,
i=0
where

%
C; = Zakbifk S Zp.
k=0

By Lemmas 7.8, 7.9, and 7.10 we easily see that

[f(D) ()] [9(T)(x)] = Fg(T)(=?).

Pulling all of this information together, we have the following result.

Theorem 7.13. If n € € and ift" — 1 = Hdln[H:;izl 9iy (t)]¢#" )
mod p with the g;,(t) not necessarily distinct for different values of d
and with the above restrictions on rq, fq, and kg, then

rd ¢™)
() - 2b =] [ II (gid<r>><w>] e Ru(2,)

dln -ig=1

where k=31, rap(pF?).
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