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ON GENERALIZED HOMOGENEITY
OF CURVES OF A CONSTANT ORDER

JANUSZ J. CHARATONIK

ABSTRACT. Locally connected plane curves with the prop-
erty that all their points are of the same Menger-Urysohn
order are considered. The problem of their generalized ho-
mogeneity is discussed with respect to various classes of map-

pings.

All spaces considered in this paper are assumed to be metric, and
all mappings are continuous. By a continuum we mean a compact
connected space. A curve means a 1-dimensional continuum.

The concept of the order of a point p in a space X, denoted by ord, X,
is used in the sense of Menger-Urysohn [22, p. 48; 11, Section 51, I, p.
274]. Roughly speaking, for a point p of a space X we write ord,X = n,
provided n is the minimal cardinal number such that there is a local
base at p whose elements have boundaries of cardinality n. If a point
p has a local base with finite boundaries, and if the supremum of the
cardinalities of the boundaries of elements of the base tends to infinity
if their diameters tend to zero, we write ord, X = w.

A surjective mapping f : X — Y between spaces X and Y is said to
be:

—a local homeomorphism in the large sense provided that for every
point x € X there is an open neighborhood U such that the partial
mapping f|U : U — f(U) is a homeomorphism;

—monotone provided that for each point y € Y the set f~1(y) is
connected;

—open if images of open sets under f are open;
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——confluent provided that for each subcontinuum @ in Y each com-
ponent of f~1(Q) is mapped onto Q under f.

A topological space X is said to be homogeneous provided that for
every two points p,q € X, there is a homeomorphism f of X onto
itself such that f(p) = ¢. This notion was introduced by W. Sierpiniski
in 1920 [20, p. 16]. In the same journal, viz. in the first volume of
Fundamental Mathematicae, B. Knaster and K. Kuratowski asked if
the simple closed curve is the only plane homogeneous continuum. A
partial answer was given four years later by S. Mazurkiewicz [13, p. 137]
under an additional assumption of local connectedness of the space.

Theorem 1 (Mazurkiewicz). Fach nondegenerate locally connected
plane homogeneous continuum is a simple closed curve.

Local connectedness is essential in this result because the pseudo-
arc is a plane homogeneous continuum which is not locally connected
[3, 15], and also planability is an indispensable condition because the
Menger universal curve is a locally connected continuum which is not
embeddable in the plane [1, 2].

It is observed below that the two assumptions, i.e., local connected-
ness and planability of the continuum can be replaced in the result by
only one condition, namely saying that the continuum contains a point
of order 2, and that homogeneity can then be relaxed to homogene-
ity with respect to some larger classes of mappings. To formulate this
rigorously, we recall some definitions.

A class M of mappings is said to be admissible if it contains all
homeomorphisms and if the composition of any two mappings in M is
also in M. A space X is said to be homogeneous with respect to a class
M of mappings of X onto itself provided that, for every two points
p,q € X, there is a mapping f € M such that f(p) = gq.

We say that a surjective mapping f : X — Y does not decrease
(increase) order of points provided that for each point z of X the
inequality ord,X < ords,)Y (respectively, ord, X > ords)Y) is
satisfied.

Proposition 2. If a space X is homogeneous with respect to a class
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of mappings that does not either decrease or increase order of points,
then all points of X are of the same order.

Proof. Indeed, assume X is homogeneous with respect to a class
of mappings that does not decrease order of points. If there are two
distinct points x and y in X of different orders, say ord, X < ord,X,
then taking a mapping f from the considered class for which f(z) =y
we get a contradiction. For the other class of mappings we take a
mapping g with g(y) = = and argue in a similar way. O

Conversely, the following observation is evident.

Observation 3. If all points of a space X are of the same order, then
any mapping of X onto itself does not decrease and does not increase
order of points.

Let us recall that if all points of a continuum X are of a finite order,
and if all are of order at least n, where n is a positive integer, then
there exists in X a point of order at least 2n — 2 ([21, Chapter VI,
Section 2, the Fundamental Theorem, p. 105]; compare [4, Theorem
13.19, p. 473]. It implies that if all points of a continuum X have the
same finite order n > 0, then n = 2.

As a consequence we conclude with the following result due to P.S.
Urysohn (see [21, Chapter VI, Section 2, p. 105]).

Proposition 4 (Urysohn). If all points of a continuum are of
the same order n, then this order can take only four values, namely,
n e {2,w, N, c}.

In the light of Proposition 4 it is natural to ask about existence and
topological properties of continua, all points of which are of the same
order. It is widely known that if all points of a continuum X are of
the same order n = 2, then X is the simple closed curve (see, e.g., [11,
Section 51, V, Theorem 9, p. 298]). With regard to n = w and n = Xy,
Urysohn constructs (see [21, Chapter VI, Sections 6-8 and 9-10, pp.
109-115], examples of curves whose points are all of the same order
w and R (for order w see also [14, Chapter VIII, Section 5, p. 279].
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However, his description of the examples is rather complicated and
cumbersome. So, we give here another construction of two examples
with the same basic attributes that all their points are of the same
order Ny or w and with some additional properties. But it should be
stressed that the idea of this construction is due to P.S. Urysohn.

It will be more convenient to us to start with n = Ry and to consider
the case of n = w later.

Ezample 5. There exists a plane locally connected curve X (Xg) such
that each point of X (RXg) is of order Y.

Proof. Let R? denote the Euclidean plane. By a disc we mean
a homeomorphic image of the closed unit square. The set of all
nonnegative integers is denoted by IN. Let a fixed disc Dy in the plane
R? be given. Assume that for some k € N a disc Dy, is defined. We
perform the following construction. Consider a chain of discs By, such
that for each n € N we have

(6) Bi,n C Dy;

(7) Bgn CintDy if n > 0;

(8)

(9) Biyn N Brny1 = {Pr,nt1} for some point pg pn1;

(10) the topological limit of the sequence of discs By, for the fixed
k and n tending to infinity is a singleton {gr} C bd Di\{pr0}-

It follows from (9) and (10) that if £ is fixed and n — oo, then

bd By 0 N"bd Dy, = {p0} for some point py o;

(11) limdiam By , =0 and limpg, = gx # pk.o-

Then Dy \ U {int By ,, : n € N} is the union of two discs which are
labelled as D1 and Dag2, and we see that

(12) Dop+1 N Dagro = {qr} U {prn:n € N}

is a closed countable set with exactly one limit point, ¢, where
qr € bd Dy,. Put

A2k+1 =bdDrNbd Dogt1 and A2k+2 =bdDrNbd Dogto.
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Hence As41 and Asg 9 are two arcs with end points py ¢ and g such
that

A1 N Asgyo = {pro,qx} and  Asgy1 U Aggyo = bd Dy.

Moreover,
(Agk+1 U Aoky2) N (Daky1 N Daky2) = {Pr,0, qk }-

The above inductive procedure can be done in such a way that:

(13) if we take in Dy a chain of discs By, for n € N such
that Dp\ U {int Bx,, : n € N} = Dgpi1 U Dogyo with (12), then
@2k+1 € Aoky1 and gopyo € Aopyo;

(14) limdiam Dy =0 if k — oo;

(15) U{int By, : k,n € N} is a dense subset of Dy;

(16) for distinct indices k the sets Dag 41N Doy 42 are pairwise disjoint.

Let U,, be the union of 2 discs Dy, where k runs over nonnegative
integers from 2™ — 1 to 2™*1 — 2. Note that

(17)  Um = Do\ U{U{int By, : n € N} : k € {0,...,2™ ! — 2}};

hence it follows that each U, is connected, thus a continuum. Further-
more, (17) implies that U,,4+1 C U, for each m € N.

Therefore, putting
(18) X(Ro) = Do\ U {int By, : k,n € N} =n{U,, : m € N}

we see that X (Xg) is a continuum as the intersection of a decreasing
sequence of continua (see, e.g., [11, Section 47, II, Theorem 5, p. 170]).
Condition (15) implies that X(X¢) is a nowhere dense subset of Dy,
and hence it is 1-dimensional, i.e., X (Rp) is a curve.

It follows from the above construction that
(19) D, N X(Xg) is connected for each k € N,

and that
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(20) the boundary of Dy N X (Rg) with respect to X (Rg) consists of
countably many points of the form ¢; and p; ,, for some ¢,5,n € N.

Now we conclude from condition (14) that

(21) for each € > 0 there is an m € N such that for every
ke{2m—1,...,2m"! — 2} we have diam Dy, < ¢.

Since
(22) X(Ro) =U{Dr N X(Rg) : k€ {2™ —1,...,2mF1 —2}},

we see by (19) that for each ¢ > 0 the continuum X (X) is the union
of finitely many subcontinua of diameters less than ¢, from which local
connectedness of X (Ry) follows by the Sierpiriski characterization (see
[11, Section 50, II, Theorem 2, p. 256]).

Finally, observe that no point of X(Xo) has a local base consisting
of sets with finite boundaries, since no finite set separates X (Xp).
Further, conditions (19)—(22) imply that interiors of subcontinua of
X (Rp) having the form Dy N X (Xg) form an open basis with countable
boundaries for X (Ro). Hence it follows that ord, X (Ng) = N¢ for each
p € X(Ng). The proof is complete. O

Ezample 23. There exists a plane locally connected curve X (w) such
that each point of X (w) is of order w.

Proof. The present construction is a modification of the previous one,
and thus we keep notation from the proof of Example 5. In each disc
D, instead of an infinite sequence of discs By, with n € N we take
a finite one, with n € {0,... ,ng}, in such a way that the following
conditions are satisfied:

(24) By, C Dy, for each n € {0,... ,ng};
(25) Bk,n Cint Dy if O 7é n 7é Nk,
(26) bd By o Nbd Dy = {pg,o0} for some point pg o;

(27) ifng >0andn € {1, . ,nk—l}, then Bk,ntk,n-H = {pk,n+1}
for some point pg n1;

(28) bd By n, Nbd Dy = {gi} for some point gx # pi,o;
(29) limng = oo if k — oo.
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Then D\ U {int By, : n € {0,...,ng}} is the union of two discs
which are labelled as Dok 1 and Dgg42, and we see that

(30) Dsgy1 N Dapyo = {qu} U{pkn :n €{0,... ,ni}}

is finite. Let Asri1 and Asgio have the same meaning as before. All

this is done in such a way that conditions (13)—(16) hold true with the

only change that n € N is replaced by n € {0,...,nx}. Defining U,,

for each m € N as previously, we put

(31) X(w) =D\ U{U{int B, : n € {0, ... ,ng}}: k € N}
=N{U,, : m € N}.

Arguing as in the proof of Example 5, we see that X(w) is a 1-
dimensional continuum, and we observe that further steps of the proof
run almost without change (obviously with X (w) in place of X (Xg)).
The only difference is condition (20), which should be replaced by

(32) the boundary of Dy N X (w) with respect to X (w) consists of
finitely many points of the form ¢; and p; , for some ¢,5,n € N.

Thereby, using (29), we conclude that ord, X (w) = w for each point
p € X (w). Thus the proof is finished. O

Remark 33. Note that the continua X (X¢) and X (w) just defined de-
pend on how the discs By, and the points g;, are situated in Dy with
respect to other discs and points py,, and gx. In the case of X (w) we
have a definition of not any particular (uniquely determined) example,
but of a class of examples, each of which enjoys the properties formu-
lated in Example 23. This can be seen by the following argument. If we
assumed that n; > ng for ¢ > 0, then the set {po0,P0.1,--- sP0,n0>90}
is the only subset of X (w) of cardinality 2 + ny which separates X (w).
Therefore, taking different values for ny we obtain topologically distinct
continua X (w).

Question 34. Recall that by X (Xg) we have denoted any continuum
defined by (18), where By, and U, satisfy all the conditions (6)—(17).
Are the continua X (Xg) homeomorphic?

Passing to the last of the four values of n (see Proposition 4 above),
i.e., to n = ¢, recall that the Sierpiriski universal plane curve is a (locally
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connected) continuum that consists exclusively of points of order ¢ (see,
e.g., [11, Section 51, I, Theorem 5, p. 275]). So, taking X (2) as a simple
closed curve and X (c) as the Sierpifski universal plane curve, we have

Corollary 35. For each n € {2,w,Rg,c} there exists a locally
connected plane curve X (n) such that

(36) ord, X (n) =n  for all points p € X(n).

Condition (36) for n = 2 characterizes X (2) (i.e., a simple closed
curve) in the class of all continua (see, e.g., [11, Section 51, V, Theorem
9, p. 298]). The same condition for n = ¢ is very far from being a
characterization of the Sierpinski universal plane curve X(c). Namely
the condition ord,X = c for all p € X holds if X is a disc or the
cone over the Cantor set. Also, the one point union of two copies of
X (c) has the same property. It is quite obvious that we have a similar
situation for n = w and n = Ny, i.e., for these n condition (36) does not
characterize X (n). Note, however, that the constructions of continua
X (Rp) and X (w) resemble the well-known construction of the Sierpinski
universal plane curve. That curve has been topologically characterized
by G.T. Whyburn in [23].

Question 37. What topological properties characterize the curves
X(w) and X (Rg)?

Given a class L of topological spaces, we say that a space U is
universal in L if U is in £ and each member of £ can be embedded into
U, i.e., for each X € L there is a homeomorphism h: X — h(X) C U.
The simple closed curve X (2) is universal in the class of all continua X
such that ord, X < 2. Namely each such X is either an arc or a simple
closed curve [14, p. 267]. Further, the Sierpifski universal plane curve
X (c) is known to be universal in the class of all plane curves ([19, p.
629]; see also [4, Theorem 12.11, p. 433], compare [14, p. 73]). Since
for each continuum X we have

38 ord, X < c¢ for all points p € X,
P

we can say that X (c) is universal in the class of all plane curves with
(38). Thus it is quite natural to ask if similar statements hold true for
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n =w and n = Ny. In both cases the answer is no. To show this, recall
two definitions and two old results.

A space X is said to be (a) regular (b) rational (in the sense of the
theory of order) if for each point p € X we have (a) ord,X < w (b)
ord, X < Ny. It is evident that each regular or rational continuum is a
curve.

In 1931 G. Noébeling ([16, p. 82]; compare [14, Theorem p. 290])
proved that for every regular curve K there exists a (plane) regular
curve L such that no subcontinuum of K is homeomorphic to L. As
a consequence, we conclude that there is no universal element in the
class of plane regular curves (compare Footnote 7 in [16, p. 82]).

In 1930 H. Reschovsky (|18, p. 19]; compare [11, Section 51, IV,
Theorem 13, p. 290]) proved that for every compact rational space X
there exists an ordinal number « less than the first uncountable ordinal
wy such that for every point p € X and every € > 0 there exists an
open set G C X which satisfies conditions: p € G, diam G < ¢ and
the derived set of bd G of order a is empty. Since o can be chosen
arbitrarily close to w; (this can be seen by taking cones over compact
countable subsets C(a) C [0, 1] whose derived sets of order 8 < « are
nonempty while one of order « is empty), it follows that there is no
universal element in the class of plane rational curves. Thus neither
X (w) nor X(Ng) is universal in the considered classes of plane curves.

It is worth noting that all four examples of continua having a constant
order of points are locally connected. Since each locally connected
continuum is homogeneous with respect to the class of all (continuous)
mappings according to Theorem 1 of [10, p. 347], each of these four
examples has this property. The simple closed curve is homogeneous in
the strongest sense, i.e., with respect to homeomorphisms and, by the
Mazurkiewicz result (Theorem 1 above), it is the only one of the four
having this property. Further, it is known that the Sierpinski universal
plane curve is homogeneous with respect to monotone mappings [6,
Theorem 5, p. 131]. Thus it is natural to ask the following question.

Question 39. What are admissible classes M of mappings having the
property that if all points of a locally connected (plane) continuum X
are of the same order, then X is homogeneous with respect to M?



500 J.J. CHARATONIK

The rest of the paper addresses this question. We start with a remark
that concerns local connectedness of X.

Remark 40. Let a continuum of X have all its points of the same order
n. Then it follows from Proposition 4 that n € {2,w, Rg,c}. If n =2 or
n = w, then X is regular in the sense of the theory of order, and hence it
is locally connected [11, Section 51, IV, Theorem 1, p. 283]. Therefore
X is homogeneous with respect to the class of all (continuous) mappings
(see [10, Theorem 1, p. 347]). Nothing similar holds if n = Ry or n = c.
Local connectedness not only does not follow from the assumption, but
even no version of homogeneity can be obtained, even in its weakest
form, i.e., with respect to all mappings. Thus, local connectedness is
essential in Question 39 only in the case of orders Ry or ¢. This is shown
by two examples below.

FEzamples 41. There exist plane continua X; and X3 such that

(42) ord, X1 =g for all points p € X;,
and
(43) ord,X> = ¢ for all points p € X,

which are not homogeneous with respect to any class of mappings.

Proof. In the Cartesian coordinates in the plane take points ag =
(0,0), bp = (0, 1), and for each positive integer n put a, = (1/n,0) and
b, = (1/n,1). Let agbg be the straight line segment with end points
ag and by. For each k € {1,2,3,...} let Ty,_1 and Ty stand for the
triangle with vertices asg_1,bak—1, asr and asg, bag, G2k 41, respectively.
Then the union

U:aob()UU{Tk:k€{1,2,3,...}}

is a 2-dimensional not locally connected continuum having two arc
components. Now each triangle T} is considered as a closed disc in
which either a copy C1 of the curve X (X¢) of Example 5, or a copy
Cs, of the Sierpiriski universal plane curve X(c) is located. Putting
forj=1and j =2

Xj = aob()UU{Cch 1k e {1,2,3,}}
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we see that conditions (42) and (43) hold true. Note that both X;
and X5, have two arc components, one of which, agby, is compact. It is
known that if a continuum is homogeneous with respect to a class of
mappings, is not arcwise connected and has a compact arc component,
then it has infinitely many arc components [10, Proposition 4, p. 354].
Thus the proof is complete. u]

Our next propositions are also related to Question 39.

Proposition 44. If a continuum X contains a point of order 2, then
the following conditions are equivalent:

1) X is homogeneous;

2) X is homogeneous with respect to any class of mappings that do
not decrease order of points;

3) X is homogeneous with respect to any class of mappings that do
not increase order of points;

4) X is a simple closed curve.

Proof. The implications 1) = 2) and 1) = 3) are obvious. If either
2) or 3) is assumed, then all points of X are of the same order by
Proposition 2, thus of order 2 since X contains a point of order 2 by
assumption. Since a continuum X is a simple closed curve if and only
if each point of X is of order 2 (see [11, Section 51, V, Theorem 6, p.
294]) we get 4), which trivially implies 1). o

It is known that each local homeomorphism in the large sense of
a compact space does not decrease order or points [12, Section 3,
Theorem 2, p. 55| and that each open mapping of a compact space
does not increase order of points [22, Corollary (7.31), p. 147]. Hence
Proposition 44 implies the following corollary.

Corollary 45. If a continuum X contains a point of order 2, then
the following conditions are equivalent:

1) X is homogeneous;

2) X 1is homogeneous with respect to local homeomorphisms in the
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large sense;
3) X is homogeneous with respect to open mappings;

4) X is a simple closed curve.

Remark 46. The assumption that X contains a point of order 2 is
essential in Proposition 44 and Corollary 45 because, as was recently
shown by J.R. Prajs [17, Corollary 5], the disc By = {(z,y) € R? :
x? +y? < 1} is homogeneous with respect to open mappings. This is a
negative solution of Problem 4 of [6, p. 132]. Note, however, that this
counterexample is 2-dimensional.

As a more specific case of Question 39, one can ask the following.

Questions 47. Let X = X (n) where n € {w, R, c}. Is then X homo-
geneous with respect to the class of (i) open mappings, (ii) monotone

mappings (if n # ¢)?

Remark 48. Each open mapping of a compact space is confluent [5,
VI, p. 214; 22, (7.5), p. 148], and obviously each monotone mapping
of a continuum is confluent. However, neither monotone nor confluent
mappings can be joined to ones listed in Corollary 45 because each
dendrite contains points of order 2 (even as a dense subset, see [11,
Section 51, VI, Theorem 8, p. 302]), and each standard universal
dendrite D,, of order n € {3,4,... ,w} is homogeneous with respect
to the class of monotone, thus of confluent mappings (for n = 3 see [8,
Example 2.4, p. 59] and [9, Proposition 2.4, p. 223]; for an arbitrary
integer n > 3 and n = w see [7, Theorem 7.1, p. 186]).

For n = w we have the following analog of Proposition 44 and
Corollary 45.

Proposition 49. If a continuum X contains a point of order w
and is homogeneous with respect to any class of mappings that does not
either decrease or increase order of points, then X is locally connected.

Proof. If X satisfies the homogeneity assumption, then all its points
are of the same order by Proposition 2, hence all are of order w. Thus
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X is locally connected by Theorem 1 of [11, Section 51, IV, p. 283].
[}

Remark 50. In Proposition 44 and Corollary 45 equivalences of the
discussed conditions are shown. Unlike in Proposition 49 only the
implication in one direction is true because, e.g., the union of countably
many straight line segments pa,, of lengths 1/n each, emanating from
p and pairwise disjoint out of p, is a locally connected continuum
containing just one point p of order w, so it is homogeneous with respect
to the class of all mappings [10, Theorem 1, p. 347], except those which
do not decrease or increase order of points.
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