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CHARACTERISTIC 4 WITT RINGS THAT ARE
THE PRODUCT OF GROUP RINGS

TIMOTHY P. KELLER

ABSTRACT. Necessary and sufficient conditions for a Witt
ring of characteristic four to be the Witt product of group
rings are presented. The proof is similar to a result of
M. Marshall for Witt rings of characteristic two.

The definition of a Witt ring is that of [5]. Following [3], G will denote
the group of units associated with the Witt ring R, and ¢: G X G — R
will denote the quaternionic map. For z € G, D(1, z) denotes the value
group of the Pfister form (1,x); if one takes the quaternionic map as
the primitive concept one may define D(1,z) = {y € G | q(y, —z) = 0}.
For S C G, gr (S) denotes the group generated by the set S.

Motivation for the main result comes from [4], where Marshall proves:

Theorem 1. Suppose R is a Witt ring of characteristic two. Then,
in the category of Witt rings, R is a product of n group rings if and
only if there exists an element a # 1 in G satisfying:

(i) rad(a) = D(1,a) has 2" elements and
(il) D(1,b)D(1,ab) = G holds for all b € rad (a).

The main result of this paper is an analogy of Theorem 1 for Witt
rings of characteristic four. Making the correct analogy depends on the
simple observation that 1 = —1 for rings of characteristic two, and so
the element a of Theorem 1 is not equal to —1; but —1 can serve as
this special element when char R = 4.

The main result:

Theorem 2. Suppose R is a nondegenerate Witt ring of character-
istic 4. Then in the category of Witt rings, R is a product of n group
rings if and only if:
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(i) |D(2)] =2"™ and D(2) C D(1,w) for all w € D(2).
(ii) D(1,w)D(1l,—w) = G for all w € D(2).

Remarks. 1. The assumption of nondegeneracy is not severe. If R
is degenerate one may decompose R as a Witt product R’ X R" where
R’ is nondegenerate and R” is totally degenerate. If the conditions:
D(2) ¢ D(l,w) for all w € D(2) and D(1,w)D(l,—w) = G for all
w € D(2) hold for G they also hold for G'; hence R’ is a product of
group rings. Moreover, a totally degenerate Witt ring is isomorphic to
a product of Z4 and group rings Zs[cs] where c» is cyclic of order two.

2. The condition D(2) C D(1,w) for all w € D(2) always holds when
[D(2)] = 4.

The necessity of conditions (i) and (ii) is easily established. If R
is the product of n group rings Rj,...,R, then G = Gy X --- X G,
and Dg(2) = {£1,+1,...,+1}; and conditions (i) and (ii) are easily
verified.

To establish the sufficiency requires proving a number of lemmas,
analogous to Lemmas 9-16 of [4]. Sign changes must be watched
carefully in the characteristic four case. In particular, the identity
¢(w,—t) = ¢(w,t) holds if and only if w € D(2). This observation is
frequently employed in the following proofs.

Lemma 1. Suppose w € D(2), x € G. Further suppose x = z1x2
is a decomposition of x with x1 € D(1l,w) and x2 € D(1,—w). Then
D(1,z) N D(2) is a subgroup of D{1,z;) N D(2), i =1,2.

Proof. Let a € D(1,z) N D(2). Then ¢(z,—aw) = ¢(z,—w) =
q(z2, —w) = gq(xz2,—1). By the linkage property there is a 6 € D(2)
so that

q(z2,—1) = q(dz2,—1) = q(dz2, —aw) = q(z, —aw).

From that last equality it follows that g(dz1, —aw) = 0. Hypothesis
(i) implies ¢(d, —aw) = 0, hence also ¢(z1, —aw) = 0. But 21 € D(1,w)
implies ¢(z1, —w) = 0 and so ¢(z1,a) = 0. Since ¢(—2z,a) = ¢(z,a) =
0, g(z2, @) = 0 also. O
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Lemma 2. Suppose that, in addition to the hypotheses of Lemma 1,
g(z,w) # 0 and q(z,—w) # 0. Then z; ¢ D(2) for i = 1,2 and the
inclusions of Lemma 9 are proper.

Proof. If 1 € D(2), then z1 € D(1,—w) by (i); but then = xoz; €
D(1,—w), that is g(z,w) = 0, a contradiction. Similarly, zo € D(2)
would lead to the contradiction ¢(z, —w) = 0.

That z; € D(1,w) implies —z; € D(1,w) by (i); so —w € D(1,xy).
However, —w ¢ D(l,z), so D(l,z) N D(2) is a proper subgroup
of D(1,z1) N D(2). Similarly w € D(l,z2) but w ¢ D(1,z) so
D(1,z) N D(2) is a proper subgroup of D(1,z2) N D(2). O

Analogously to [4] an element x € G\D(2) is defined to be mazimal
if the group D(1,x) N D(2) is maximal with respect to inclusion. On
the set of all maximal elements define an equivalence relation by z ~ y
if D(1,z) N D(2) = D(1,y) N D(2). The observations of Marshall are
still valid and useful:

(1) = € G\D(2) is maximal if and only if D(1,z) N D(2) has index
2 in D(2). Suppose D(1,z) N D(2) has index z in D(2). Then for
z € D(2) either z € D(1,2) N D(2) or —z € D(1,z) N D(2).

Suppose there is an element y so that

Also suppose by way of contradiction there is a z in D(1,y) N D(2) so
that z is not in D(1,z) N D(2); and since —z and z are both elements
of D(1,—zy) N D(2) it follows that —1 € D(1, —zy) N D(2). But then
zy € D(2) and D(1,z) = D(1,y) after all.

If D(1,z) N D(2) is maximal in D(2), then for z € D(2) not in
D(1,z) N D(2)D(1,zz) N D(2) = D(l,z) N D(2). But D(1,z) N
D(1,zz) C D(1,—=z), so D(1,z) N D(2) = D(1,—=z) N D(2). Hence
—z € D(1,z), and D(1,z) N D(2) has index z in D(2).

(2) Each element z € G\D(2) is a product of maximal elements.

(3) If w € D(2) and z is maximal wx is maximal and wz ~ z. This
follows from hypothesis (i).

(4) Suppose z and y are maximal and & ~ y. Then D(1,y) N
D(2) N D(1,y) = D(1,z) N D(2) N D(1,y); hence D(1,y) N D(2) C
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D(1,zy) N D(2). So either zy € D(2) (and D(1,zy) N D(2) = D(2)) or
Ty ~ .

Let « be maximal and define A = {y | y is maximal and y ~ z}-D(2).
From (3) and (4) it follows that A is a subgroup of G.

Lemma 3. If tq,... ,ts are pairwise inequivalent mazimal elements,
then

(1) t1,...,ts are linearly independent modulo D(2). (Here G\D(2)
is viewed as a Z/2Z vector space.)

(2) D(L,ty...t,) N D(2) = N:D(L,t;) N D(2).

Proof. The proof of (1) is by induction on the number of ¢;, N, that
are linearly independent. For any index 4, t; ¢ D(2) so for N =1 one
has a set of linearly independent elements. Now by induction suppose
t1...ty ¢ D(2), and consider § = t1te...tNtN11-

By way of contradiction, suppose § € D(2). Repeatedly using
observation (4), one has the product t1t2...tx ~ t1. Now t; and tn41
are inequivalent, hence t1t2...ty and ty41 are inequivalent. From
Lemmas 1 and 2 the inequivalence of ¢1t2...tx and ¢y41 implies the
existence of a 8 € D(2) so that

tny1 € D<1,,6> and ty...ty € D<l, —,6>

Now hypothesis (i) and § € D(2) imply 6t;...¢tx € D(1,—3). But
0ty ...ty =tys1;and tyq1 € D(1,8)ND(1,—3) implies tnx+1 € D(2),
a contradiction. Hence § ¢ D(2). And so, by induction, N = s.

For (2) one first notes that N;D(1,t;) N D(2) C D(1,t1...ts) N D(2)
is always true. To obtain the reverse containment suppose, by way
of contradiction, there is a 8 € D(2) so that 8 € D(1,t;...ts); but
B ¢ D(1,t;) for some i. Without loss of generality suppose 8 ¢ D(1,t).
If 3 ¢ D(1,t), then t; € D(1,B8). Now since ¢; and tg...ts are
inequivalent t5...ts € D(1,—3). That 8 € D(l,t;...ts) implies
tl e ts € D<1, 7,8), and then tl = (tl e ts)(tg e ts) € D<1, 7ﬂ> But
t1 € D(1,8)ND(1,—p) implies t; € D(2), contradicting the maximality
of t. [}
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The next lemma is a technical result that will be used in the proofs
of the lemmas that follow.

Lemma 4. Suppose € D(1,8) and y € D(1,—p) for some
B € D(2). Then there is a v € D(2) so that ¢(—yz,~vy) = 0.

Proof. That q(y, 8) = 0 and q(z,—) = 0 imply q(zy, B) = q(z, 8) =
q(z, —1).

Thus by the linkage property there is a 6 € D(2) such that
q(z,—1) = q(bz,—-1) = q(éz,zy) = q(zy,B). This last equality im-
plies g(zy, 68x) = 0. Then since ¢q(dz,zy) = q(zy,3). This last equal-
ity implies ¢(zy,88z) = 0. Then since ¢(—dBz,5B8z) = 0, one has
q(—=6By,6Bx) = 0. Take v = —§3 and the proof is complete. O

Lemma 5. Suppose ty,ts,... ,ts are pairwise inequivalent mazimal
elements. Then the group N;D(1,t;) N D(2) has index 2° in D(2).
Moreover, s < n.

Proof. When s = 1 the truth of the conclusion follows from Lemmas
1 and 2. So assume s > 2. Let H be the group N;D(1,t;) N D(2); by
induction on s assume H has index 2° in D(2) and let ¢ be a maximal
element with H C D(1,t). One must show ¢ ~ ¢; for some index 4,
1 < i <'s. By way of contradiction, suppose t is not equivalent to any
t;.

Since H has index 2% in D(2) there are elements (1,...,08s in D(2)
that generate D(2) modulo H. For every ¢, D(1,¢;) N D(2) has index
2 in D(2), hence one may choose these elements so that ¢(t;, —3;) = 0
and ¢(t;, 8;) = 0 for all indices j # i.

Now D(1,t) N D(2) also has index two in D(2); hence, for any
w € D(2) one has either ¢(t,w) =0 or ¢(t,—w) = 0. If ¢(¢,6;) = 0 for
all i, then D(2) C D(1,t); in particular, —1 € D(1,t) and ¢t € D(2), a
contradiction. Therefore ¢(t,—3;) = 0 for some index i. Without loss
of generality assume this index is s.

Then one has q(tts,—8s) = 0 and q(t1t2---ts_1,8s) = 0. Applying
Lemma 4 with = t1ty---ts_; and y = tts there is a v € D(2) so that
q(—vz,vy) = 0. Replacing ¢; with ¢, and ¢s; with v¢5 one may assume
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~=1and g(—=z,y) = 0.

Using Lemma 4 again, but now applied to elements z and S;y, one
concludes that for each index i, 1 < i < s— 1, there is an a; € D(2) so
that ¢(—o;z, a;B;y) = 0.

Expanding the last equality gives

(1) g(-aiz, B;) = g(— iz, o;y) and

(2) q(—=,B:) = q(—asz, ;).

From g(—z,y) = 0 it follows that ¢(zy, —z) = 0. After expanding
one has

(3) a(zy, —aiz) = q(zy, i)

Now ¢(—ajz, o;y) = q(zy, —a;z). So together (1), (2) and (3) imply

(4) Q(IBM *CE) = q(xya ai)‘
From ¢(B;,t;) = 0 for j # ¢ and q(t;, —B;) = 0 it follows that

(5) a(Bi,z) =q(-1,t).

Now ¢(Bi,z) = ¢q(Bi,—x) so from (4) and (5) it follows that
q(ai, zy) = q(=1,t:).

Write a; as a linear combination a; = []; B;jé; § € H and ¢; € {0,1}
for all j.

Then g(ay, zy) = q(—1,t5* ...t%tf) where f € {0,1}. This last equal-
ity and the equality q(o, zy) = q(—1,t;) imply q(—1,#5*¢5? .. . t; 3 50
Lteth) =0.

By Lemma 3 the elements t¢1,%s,...,t; are linearly independent
modulo D(2), hence e; =1, e; =0 for j # i, and f = 0. Then a; may
be written as §8; and from (4) it follows that ¢(8;, —z) = ¢(68;, zy) =
q(Bi, zy). Hence also ¢(83;, —y) = 0, that is q(8;, —tts) = q(B;, tts) = 0.
Now ¢(B;,tts) = 0 and q(B;,ts) = 0 imply ¢(B;,t) =0, 1 <i<s—1.

Now note that gr (81,...,8s—1, H) C D(2)ND(1,t), and both groups
have index 2 in D(2); hence D(1,¢) N D(2) = gr(B1,...,Bs—1,H).
Similarly D(1,ts) N D(2) = gr(B4,...,Bs—1,H). By definition ¢t ~ t;,
contradicting the assumption that ¢t was inequivalent to any ¢;. o

If s is maximal, then ¢y, ... ,ts is a basis for G modulo D(2). Thus if
B € H, q(B,t;) =0for 1 <i < simplies ¢(8,t) =0 for all t € G. By
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assumption R is nondegenerate, so this last identity implies H = {1}
and so s = n.

Lemma 6. Ift and u are inequivalent mazximal elements, then
ezactly one of the following holds: q(t,u) =0, q(—t,u) =0, q(t,—u) =
0, and q(—t,—u) = 0.

Proof. Since t and u are inequivalent there is a 8 € D(2) such that
t € D(1,—pB) and u € D(1,3). Then by Lemma 4 there is a v € D(2)
such that g(—vt,yu) = 0. Expanding this equality gives

(A) gq(=t,yu) = g(—u,yu).

(B) a(u, =vt) = q(t, =7t).

Since t and uw are maximal, ¢ is an element of one of D(1,v) and
D(1,—~); u is an element of one of D(1,~) and D(1,—~). This means
there are four possibilities

(1) q(v,t) =0, q(y,u) =0

(2) a(nt) =0, 9(=7,u) =0

(3) a(=71) =0, q(y,u) =0

4) a(=71) =0, g(=7,u) = 0.

Now if (1) holds, g(y,ut) =0.

Identity (B) implies g(—~t,ut) = 0. Hence, q(—t,ut) = q(—t,u) = 0.

If (2) holds ¢(—v,u) = 0 implies ¢(¢,u) = g(—7¢,u), and then (B)
implies q(t,u) = q(t,—yt) = q(u,—7t). That g(y,t) = 0 implies
q(—~t,t) =0, hence ¢(t,u) = 0.

If (1) holds one notes that ¢(v,u) = q(vy, —u) = ¢(yu,—u) = 0. By
(A), g(=t,yu) = 0. Then g(—t,—v) = q(—t,—u). Now g(~t,—7) =
q(t, —y) = 0; hence, ¢(—t,—u) = 0.

Now if (4) holds, then g(—~, ut) = 0; and (A) implies that q(ut, yu) =
0. Hence, ¢(ut, —u) = 0, and since ¢(u, —u) = 0 one has ¢(¢, —u) = 0.

Since neither ¢ nor u is an element of D(2), it follows that the four

possibilities given in the statement of the lemma are mutually exclusive.
O
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Let Ay,Aq,...,A, be the groups A, defined by A; = {y |
y is maximal and y ~ t;}D(2), where {t1,ts,...,t,} is a maximal set
of maximal inequivalent elements. Following [4], define a maximal ele-
ment t; of A; to be Aj-compatible if either q(t;,t;) = 0 or g(t;, —t;) =0
for all indices j # 1.

Lemma 7. For each pair of indices (i,j) with i # j either t; is
Aj-compatible or —t; is Aj compatible.

Proof. If the conclusion does not hold there exist tj,u; € A; so
q(ti,t;) = 0 and g(—t;,u;) = 0. Consider the element t;u; € Aj.
By observation (4) following Lemma 2, either ¢;u; is maximal or
tju; € D(2)

Case 1. tju; is mazimal. By Lemma 6 one of
q(ti7 tjuj)a q(ftia tjuj)a q(ti7 7tjuj)’ q(iti’ 7tjuj)

is zero. Now if q(t;,tju;) = 0, then q(t;,t;) = 0 implies g(¢;,u;) = 0.
But ¢(t;, u;) = 0 and g(—t;,u;) = 0 imply u; € D(2), contradicting the
maximality of u;. If one of the other three possibilities maintains, one
similarly obtains u; € D(2) or t; € D(2), contradicting maximality.

Case 2. tju; € D(2). Since t; is maximal, either ¢(¢;,tju;) = 0
or q(—t;,tju;) = 0. If q(t;,tju;) = 0, then q(t;,t;) = 0 implies
q(ti,u;) = 0; and then g(—t;,u;) = 0 implies u; € D(2), contradicting
the maximality of w;. If g(—t;,t;u;) = 0, then g(—t;,u;) = 0 implies
q(—ti,t;) = 0; and then in turn q(t;,t;) = 0 implies t; € D(2),
contradicting the maximality of ¢;. ]

For the remainder of the discussion let 31, 52,...,08, be a basis for
D(2) as described in Lemma 5, and let {¢1,...,t,} be a corresponding
set of maximal elements. Recall ¢(t;, —f3;) = 0 for all ¢ and ¢(t;,3;) =0
for all (¢,7) with ¢ # j.

Lemma 8. Suppose that u = at; for some a € D(2). Then either u
is A; compatible for all j # i or Biu is Aj-compatible for all j # 1.
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Proof. Write u = 87852 -+ Btrt;, €; € {0,1} for 1 < i < n. Then
q(u,tj) = 0 for all j # i. Since ¢q(B;,t;) = 0 for all j # ¢, this implies
that ¢(8;'t;,t;) = 0 for all j # 4; further, since ¢(¢;,5;) = 0, one may
conclude g((—1)%t;,t;) =0 for all j # 1.

One must have e; = 0 if ¢; is Aj-compatible, and one must have

e; = 1 if —t; is Aj-compatible for all j # 7. There are no restrictions
on e; for j # i, and hence the result.

Define S; = {t € A; | t is maximal and ¢ is Aj-compatible for all j #
Z}, let Gi = gr (Bza Sl) O

Proof of Theorem 2. Consider the groups G1,...,G,.

Since {B1,...,Bn} is a basis for D(2), the definition of the groups G;
implies

G1Gs...Gp = D(2)515. .. 5,.

By Lemma 7, A; ={£1}S;. Hence G1G>...G,=D(2)A1Ay... A, =
G.

The elements {f3i,...,58,} are linearly independent, as are the el-
ements {ti,...,t,}; hence G is the direct product of the groups
G1,Ga, ... ,G,.

Now consider g; = 85t for t € S; and g; = 6qu for u € 55,7 # j and
e, f € {0,1}. By definition of S; and S}, ¢(u,t) = 0. But the identities
a(Bi,t;) = 0, a(B,t:) = 0 imply q(Bits, t;) = a(ti, t;) = a(ts, Bit;) =
qa(Bits, Bjt;).-

Hence g¢(gi, g;) = 0 for all choices of e and f. Thus the decomposition
G =Gy X Gy X --- X Gy, is orthogonal.

The quaternionic map on G induces a quaternionic map on each Gj
with associated Witt ring R;. Note D(1,3;) N G; = {1, 5;}, that is, 5;
is a rigid element of G;. It follows that each R; is a group ring. By
Theorem 3.4 of [2], R is isomorphic to Ry X Ry X -+ X Ry,. o
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