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ON THE ABSOLUTE RIESZ SUMMABILITY FACTORS
HUSEYIN BOR

ABSTRACT. In this paper a theorem on |N, p,|; summa-
bility factors, which generalizes a theorem of Mazhar [6] on
|C, 1| summability factors of infinite series, has been proved.
We also apply it to Fourier series.

1. Introduction. Let Y a, be a given infinite series with the
partial sums (s,). We denote by u,, and ¢, the nth (C, 1) means of the
sequences (s,,) and (na,,), respectively. The series Y a, is said to be
summable |C, 1|, k > 1, if (see [3])

o0

(1.1) anfl\un — Up—1|" < oo0.

n=1

But since t,, = n(u, —up,—1) (see [5]) condition (1.1) can also be written
as

=1
(1.2) > = tnl* < oo
n
n=1

Let (p,) be a sequence of positive numbers such that

(1.3) Pn:ZpU—M)o as n — 0o, P,=p ;=0 i>1.
v=0

The sequence-to-sequence transformation
1 n
(1.4) wn = 5 ;pvsv

defines the sequence (w,) of the Riesz means, or simply the (NV,p,)
means, of the sequence (s,,) generated by the sequence of coefficients
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(pn) (see [4]). The series 3 a,, is said to be summable |N, p,|x, k > 1,
if (see [1])

(1.5) D (Puf/pn)* Hwn — wn1|F < 00,
n=1
In the special case when p, = 1 for all values of n (respectively,

k = 1), then |N,pn|x summability is the same as |C, 1| (respectively,
|N,pn|) summability.

If we write
(1.6) Xn:va/Pva
v=0

then (X,,) is a positive increasing sequence tending to infinity with n.

Mazhar [6] proved the following theorem.

Theorem A. If

(1.7) An =0 asn— oo
(1.8) anogn\AQ)\n| =0(1),
n=1
and
1
1.9 Zta ¥ = O(1 ,
(1.9) nz::ln| | (logm) asm — o0

then the series Y ap\, s summable |C, 1|, k > 1.
Note. A?Xn = AXn — A),y1 and Adn = X\, — A\py1-

2. The aim of this paper is to generalize Theorem A for |N,p,|x
summability in the form of the following theorem.
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Theorem 1. Let (p,) be a sequence of positive numbers such that

(2.1) P, =0O(np,) asn — oo.

If

(2.2) Z nX,|A%\,| = O(1) asm — oo
n=1

(2.3) nz::l %|tn|k =0(X,) asm — oo,

and (1.7) is satisfied, then the series Y. an)\, is summable |N,p,|x,
k>1.

Note. It should be noted that if we take p, = 1 for all n € N in
Theorem 1 (in this case X,, ~ logn), then we get Theorem A.

We need the following lemma for the proof of Theorem 1.

Lemma. Under the conditions of Theorem 1, we get

(2.4) nXnp|AA,| =0O(1) asn —
(2.5) D Xa|AN,| < 00

n=1
(2.6) XnAn| =0(1) asn — oo.

Proof. Since (nX,,) is increasing, we have

nXp|A,| < ZUXU\AZ)\U| < oo,

v=n
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by (2.2). Hence nX,|A\,| = O(1) as n — oco. Also

an|A)\n| = an| i A2,
n=1

im?,\ |
:Z A IZX

vX,|A%N,| < oo,

8 HM8

Mgf

v=1

by (2.2). Finally, we have that

XnlAnl <)X [AN] <)X, |AN| < o,

v=n v=1
by (2.5). This completes the proof of the lemma. O

3. Proof of Theorem 1. Let (T,) be the (IV,p,) means of the
series Y anA,. Then, by definition, we have

(31) = 5 va Zar r = Z(P P,_ 1)011))\1)

n v=0

Then, for n > 1, we have

Tn_Tn I—PP ZP’U la'u v
n—1

Pn v—1>\v
= VAy .
PnPn 1 Zl v v

(3.2)
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Using Abel’s transformation, we get

N n—1 Pv_ )\U v
Tn *Tn—l = # ;A(%) Zrar

v r=1
P n
+ n/\n va
nPn ’Ugl ’
n—1
Dn v+1

=— A t

PnPn—l ;pv v v
n—1

P Z P, AUH

( )pnA ty
npP,

= 4dn,1 + Tn,Z + Tn,S + Tn,4-

Since
o+ Tnz + Tns + Tnal® <A (Tap P + [T ol® + T sl® + | Thal®),

to complete the proof of Theorem 1, it is sufficient to show that

o0

(3.3) > (Pa/pa)f T plF < 00, forr=1,2,3,4.

n=1

Using Holder’s inequality we have that

m+1 m+1 v+ 1 k
> (Pl Tl = 3 5 {me e}
n=2 n=2
m+1
—om Y. S {ZA e}
n=2
m+1

Pn k k
A'U 'Utv
_QPHPM{; Fpy |}
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S A

nlvl

k-1 k
B 1{ZA| ol
m m+1

Pn
=0(1) 3 Pelpeltsl* -

v=1 n=v+1

ZIA \—\t *
ZA\/\ IZ tr *
\/\m\z [t *

m—1
D) Y 1ANIXy + O(1) M| X o
v=1
=0(1) asm — oo,

m+1

= 0(1)

by virtue of the hypotheses and lemma. Using the fact that P, =
O(vpy), by (2.1) we have

m+1 m+1 v a1 k
D (Pu/pn)f HTnpl* < > o Pk {ZP |AN,| It, }
n=2 n=2
m+1
—0W) Y e {vavm I |}
ot P, P
m+1 D n—1
—ow3 5 P"ﬂ { Z(U|A)\U|)kpv|tv|k}
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n—1
X{Z (0l ANDF (ol AN ol |k}

v=1
m m+1

Pn
= O(l)21J|A)\v|pv\tv|’c p
=1 n=v+1" " n—1
1

= 0(1) Y vlan, B,

-1 v
Pr
=0(1) 3 A@lArD) Y it

1 r=1

S
Il

3

S
Il

+OWm|ANL] Y- 2t
v=1""

—

3

=0(1) 3 |A®) AN X, + O(1)m|Adm| X

S
Il
—

—

3

=0(1) V] A%\, | X,
v=1
m—1

+O0(1) ) |A 41| Xy + O()m|AN, [ X,
v=1
=0(1) asm — oo,

by virtue of the hypotheses and lemma. Again, since P,/v = O(p,),
by (2.1) we have

m+1 m+1
> (Pu/pa) MTslf <> P Pk {Z|Av+1|—|t }
n=2 n=2

m+1

=0(1) Z P Pk {ZAv+1lpvlt }
7 = {;AU+1|’“pv|tv|’“}

1 n—1 k—1
X v
{p,“ >
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Pn
o Y ﬂE]MHWHMm%u}

m+1
Z [Av+1]Poto |
n=v+1 P Pn 1
- Po
1) Z |)‘v+1|F‘tv|k
v=1 v
m—1
1)) AN 1| Xy + O() Amg 1| X,
v=1
=0(l) asm — oo,
by virtue of the hypotheses and lemma.
Finally, as in T}, 1, we have
m _ m pn
D (Pa/pa) HTual* = 0(1) Y I\ 15 It *
n=1 n=1

=0(1) asm — oo.

Therefore, we get

m

Z (Po/pn) YT |F = 0O(1) asm — o0, forr=1,234.

This completes the proof of Theorem 1. o

4. Let f(t) be a periodic function with period 27 and integrable (L)
over (—m, ). Let

1 oo ) (oo}
f(z) ~ 40 + Z(an cosnzx + b, sinnz) = Z A, (z)

n=1 n=0

8(t) = 3 {f @ + 1) + f(z - 1)

:%A}mmu

and



ABSOLUTE RIESZ SUMMABILITY FACTORS 1271

It is well known that if ¢;(t) € BV (0, ), then t,(x) = O(1), where
tn(2) is the (C,1) mean of the sequence (nA,(x)) (see [2]). Using this
fact, we get the following result for Fournier series.

Theorem 2. If ¢1(t) € BV(0,7), and the sequences (py), (An) and
(Xn) satisfy the conditions of Theorem 1, then the series ) An(z)\,
is summable |N,pu|g, k> 1.
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