ON THE ABSOLUTE RIESZ SUMMABILITY FACTORS

HÜSEYIN BOR

ABSTRACT. In this paper a theorem on $|\overline{N},p_n|_k$ summability factors, which generalizes a theorem of Mazhar [6] on $|C,1|_k$ summability factors of infinite series, has been proved. We also apply it to Fourier series.

1. Introduction. Let $\sum a_n$ be a given infinite series with the partial sums (s_n) . We denote by u_n and t_n the nth (C,1) means of the sequences (s_n) and (na_n) , respectively. The series $\sum a_n$ is said to be summable $|C,1|_k$, $k \geq 1$, if (see [3])

(1.1)
$$\sum_{n=1}^{\infty} n^{k-1} |u_n - u_{n-1}|^k < \infty.$$

But since $t_n = n(u_n - u_{n-1})$ (see [5]) condition (1.1) can also be written as

$$(1.2) \sum_{n=1}^{\infty} \frac{1}{n} |t_n|^k < \infty.$$

Let (p_n) be a sequence of positive numbers such that

(1.3)
$$P_n = \sum_{v=0}^n p_v \to \infty \text{ as } n \to \infty, \qquad P_{-i} = p_{-i} = 0, \quad i \ge 1.$$

The sequence-to-sequence transformation

(1.4)
$$w_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (w_n) of the Riesz means, or simply the (\overline{N}, p_n) means, of the sequence (s_n) generated by the sequence of coefficients

Copyright ©1994 Rocky Mountain Mathematics Consortium

Received by the editors on June 14, 1993, and in revised form on September 17, 1993.

1264 H. BOR

 (p_n) (see [4]). The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k, k \geq 1$, if (see [1])

(1.5)
$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |w_n - w_{n-1}|^k < \infty.$$

In the special case when $p_n=1$ for all values of n (respectively, k=1), then $|\overline{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (respectively, $|\overline{N}, p_n|$) summability.

If we write

(1.6)
$$X_n = \sum_{v=0}^n p_v / P_v,$$

then (X_n) is a positive increasing sequence tending to infinity with n. Mazhar [6] proved the following theorem.

Theorem A. If

$$(1.7) \lambda_n \to 0 as n \to \infty$$

(1.8)
$$\sum_{n=1}^{m} n \log n |\Delta^2 \lambda_n| = \mathcal{O}(1),$$

and

(1.9)
$$\sum_{n=1}^{m} \frac{1}{n} |t_n|^k = \mathcal{O}(\log m) \quad \text{as } m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $|C, 1|_k$, $k \geq 1$.

Note.
$$\Delta^2 \lambda n = \Delta \lambda n - \Delta \lambda_{n+1}$$
 and $\Delta \lambda n = \lambda_n - \lambda_{n+1}$.

2. The aim of this paper is to generalize Theorem A for $|\overline{N}, p_n|_k$ summability in the form of the following theorem.

Theorem 1. Let (p_n) be a sequence of positive numbers such that

$$(2.1) P_n = \mathcal{O}(np_n) as n \to \infty.$$

If

(2.2)
$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = \mathcal{O}(1) \quad as \ m \to \infty$$

(2.3)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = \mathcal{O}(X_m) \quad \text{as } m \to \infty,$$

and (1.7) is satisfied, then the series $\sum a_n \lambda_n$ is summable $|\overline{N}, p_n|_k$, k > 1.

Note. It should be noted that if we take $p_n = 1$ for all $n \in N$ in Theorem 1 (in this case $X_n \sim \log n$), then we get Theorem A.

We need the following lemma for the proof of Theorem 1.

Lemma. Under the conditions of Theorem 1, we get

(2.4)
$$nX_n|\Delta\lambda_n| = \mathcal{O}(1)$$
 as $n \to \infty$

(2.5)
$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty$$

$$(2.6) X_n|\lambda_n| = O(1) as n \to \infty.$$

Proof. Since (nX_n) is increasing, we have

$$nX_n|\Delta\lambda_n| \le \sum_{v=n}^{\infty} vX_v|\Delta^2\lambda_v| < \infty,$$

1266

H. BOR

by (2.2). Hence $nX_n|\Delta\lambda_n|=\mathcal{O}(1)$ as $n\to\infty$. Also

$$\begin{split} \sum_{n=1}^{\infty} X_n |\Delta \lambda_n| &= \sum_{n=1}^{\infty} X_n |\sum_{v=n}^{\infty} \Delta^2 \lambda_v| \\ &\leq \sum_{n=1}^{\infty} X_n \sum_{v=n}^{\infty} |\Delta^2 \lambda_v| \\ &= \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| \sum_{n=1}^{v} X_n \\ &\leq \sum_{v=1}^{\infty} v X_v |\Delta^2 \lambda_v| < \infty, \end{split}$$

by (2.2). Finally, we have that

$$|X_n|\lambda_n| \le \sum_{v=n}^{\infty} X_v |\Delta \lambda_v| \le \sum_{v=1}^{\infty} X_v |\Delta \lambda_v| < \infty,$$

by (2.5). This completes the proof of the lemma.

3. Proof of Theorem 1. Let (T_n) be the (\overline{N}, p_n) means of the series $\sum a_n \lambda_n$. Then, by definition, we have

(3.1)
$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{r=0}^v a_r \lambda_r = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v.$$

Then, for $n \geq 1$, we have

(3.2)
$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n} P_{v-1}a_{v}\lambda_{v}$$
$$= \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1}\lambda_{v}}{v} v a_{v}.$$

Using Abel's transformation, we get

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} \Delta \left(\frac{P_{v-1}\lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}$$

$$+ \frac{p_{n}\lambda_{n}}{nP_{n}} \sum_{v=1}^{n} v a_{v}$$

$$= -\frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} p_{v}\lambda_{v} \frac{v+1}{v} t_{v}$$

$$+ \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}\Delta\lambda_{v} \frac{v+1}{v} t_{v}$$

$$+ \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}\lambda_{v+1} \frac{1}{v} t_{v}$$

$$+ \frac{(n+1)p_{n}\lambda_{n}t_{n}}{nP_{n}}$$

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}.$$

Since

$$|T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}|^k \le 4^k (|T_{n,1}|^k + |T_{n,2}|^k + |T_{n,3}|^k + |T_{n,4}|^k)$$

to complete the proof of Theorem 1, it is sufficient to show that

(3.3)
$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |T_{n,r}|^k < \infty, \quad \text{for } r = 1, 2, 3, 4.$$

Using Hölder's inequality we have that

$$\begin{split} \sum_{n=2}^{m+1} (P_n/p_n)^{k-1} |T_{n,1}|^k &= \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} p_v |\lambda_v| \frac{v+1}{v} |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} |\lambda_v| p_v |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \bigg\{ \sum_{v=1}^{n-1} |\lambda_v|^k p_v |t_v|^k \bigg\} \end{split}$$

1268 H. BOR

$$\begin{split} &\times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \left\{ \sum_{v=1}^{n-1} |\lambda_v|^{k-1} |\lambda_v| p_v |t_v|^k \right\} \\ &= O(1) \sum_{v=1}^{m} |\lambda_v| p_v |t_v|^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^{m} |\lambda_v| \frac{p_v}{P_v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^{v} \frac{p_r}{P_r} |t_r|^k \\ &+ O(1) |\lambda_m| \sum_{v=1}^{m} \frac{p_v}{P_v} |t_v|^k \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_m| X_m \\ &= O(1) \quad \text{as } m \to \infty, \end{split}$$

by virtue of the hypotheses and lemma. Using the fact that $P_v = O(vp_v)$, by (2.1) we have

$$\begin{split} \sum_{n=2}^{m+1} (P_n/p_n)^{k-1} |T_{n,2}|^k &\leq \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} P_v |\Delta \lambda_v| \frac{v+1}{v} |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} v p_v |\Delta \lambda_v| |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \bigg\{ \sum_{v=1}^{n-1} (v |\Delta \lambda_v|)^k p_v |t_v|^k \bigg\} \\ &\qquad \times \bigg\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \bigg\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \end{split}$$

$$\times \left\{ \sum_{v=1}^{n-1} (v|\Delta\lambda_v|)^{k-1} (v|\Delta\lambda_v|) p_v |t_v|^k \right\}$$

$$= O(1) \sum_{v=1}^m v|\Delta\lambda_v| p_v |t_v|^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}}$$

$$= O(1) \sum_{v=1}^m v|\Delta\lambda_v| \frac{p_v}{P_v} |t_v|^k$$

$$= O(1) \sum_{v=1}^{m-1} \Delta(v|\Delta\lambda_v|) \sum_{r=1}^v \frac{p_r}{P_r} |t_r|^k$$

$$+ O(1) m|\Delta\lambda_m| \sum_{v=1}^m \frac{p_v}{P_v} |t_v|^k$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v)\Delta\lambda_v|) |X_v + O(1) m|\Delta\lambda_m| X_m$$

$$= O(1) \sum_{v=1}^{m-1} v|\Delta^2\lambda_v| X_v$$

$$+ O(1) \sum_{v=1}^{m-1} |\Delta\lambda_v| |X_v + O(1) m|\Delta\lambda_m| X_m$$

$$= O(1) \text{ as } m \to \infty,$$

by virtue of the hypotheses and lemma. Again, since $P_v/v = O(p_v)$, by (2.1) we have

$$\begin{split} \sum_{n=2}^{m+1} (P_n/p_n)^{k-1} |T_{n,3}|^k &\leq \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} |\lambda_{v+1}| \frac{P_v}{v} |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}^k} \bigg\{ \sum_{v=1}^{n-1} |\lambda_{v+1}| p_v |t_v| \bigg\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{P_n}{P_n P_{n-1}} \bigg\{ \sum_{v=1}^{n-1} |\lambda_{v+1}|^k p_v |t_v|^k \bigg\} \\ &\times \bigg\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \bigg\}^{k-1} \end{split}$$

1270

$$= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \left\{ \sum_{v=1}^{n-1} |\lambda_{v+1}|^{k-1} |\lambda_{v+1}| p_v |t_v|^k \right\}$$

$$= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| p_v |t_v|^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}}$$

$$= O(1) \sum_{v=1}^{m} |\lambda_{v+1}| \frac{p_v}{P_v} |t_v|^k$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v+1}| X_v + O(1) |\lambda_{m+1}| X_m$$

$$= O(1) \quad \text{as } m \to \infty,$$

by virtue of the hypotheses and lemma.

Finally, as in $T_{n,1}$, we have

$$\sum_{n=1}^{m} (P_n/p_n)^{k-1} |T_{n,4}|^k = O(1) \sum_{n=1}^{m} |\lambda_n| \frac{p_n}{P_n} |t_n|^k$$
$$= O(1) \text{ as } m \to \infty.$$

Therefore, we get

$$\sum_{n=1}^{m} (P_n/p_n)^{k-1} |T_{n,r}|^k = O(1) \text{ as } m \to \infty, \text{ for } r = 1, 2, 3, 4.$$

This completes the proof of Theorem 1.

4. Let f(t) be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Let

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} A_n(x)$$
$$\phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \}$$

and

$$\phi_1 = \frac{1}{t} \int_0^t \phi(u) \, du.$$

It is well known that if $\phi_1(t) \in BV(0,\pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the (C,1) mean of the sequence $(nA_n(x))$ (see [2]). Using this fact, we get the following result for Fournier series.

Theorem 2. If $\phi_1(t) \in BV(0,\pi)$, and the sequences (p_n) , (λ_n) and (X_n) satisfy the conditions of Theorem 1, then the series $\sum A_n(x)\lambda_n$ is summable $|\overline{N}, p_n|_k$, $k \geq 1$.

REFERENCES

- 1. H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149.
- 2. K.K. Chen, Functions of bounded variation and the Cesaro means of Fourier series, Acad. Sinica Sc. Records 1 (1945), 283-289.
- 3. T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
 - 4. G.H. Hardy, Divergent series, Oxford University Press, 1949.
- 5. E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925), 234–256.
- **6.** S.M. Mazhar, On $|C,1|_k$ summability factors of infinite series, Indian J. Math. **14** (1972), 45–48.

DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, KAYSERI 38039, TURKEY, E-MAIL: BOR @ TRERUN.BITNET