ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 24, Number 4, Fall 1994

STRICTLY CYCLIC VECTORS FOR INDUCED
REPRESENTATIONS OF LOCALLY COMPACT GROUPS

ROBERT A. BEKES

ABSTRACT. An induced representation of a locally com-
pact group has a strictly cyclic vector only if the coset space
is finite. A nonzero subrepresentation of a representation in-
duced from a compact or normal subgroup has a strictly cyclic
vector only if the coset space is compact.

Preliminaries. Throughout G is a separable locally compact group
and H is a closed subgroup. Let v be left Haar measure on G and
assume that there exists an invariant measure p on G/H, the left cosets.
Let 7 be a continuous unitary representation of H on a Hilbert space
H(m) and ¢ a function from G to H(r) such that ¢(zh) = m(h~1)¢(z)
forallz € G and all h € H. Since 7 is unitary, the function x — ||¢(x)||
is constant on the left cosets of H. Therefore the space of weakly
measurable functions ¢ : G — () satisfying

i) ¢(zh) = m(h™1)¢(z) for z € G and h € H, and
i) [g,u ll6@)]1* dp < o0

is a Hilbert space under the inner product (¢, y) = fG/H<¢(x), v(z)) du.

The induced representation 7 of G on this space, denoted by H(7),
is defined by 7% (s)¢(x) = ¢(s'x). It follows that 7€ is a continuous
unitary representation of G, see [4].

Main results. For f € L;(G) define the operator 7%(f) on
H(7%) by [, f(z)7%(x)dv, where this integral is taken in the weak
sense. Then |[7%(f)|| < ||f|l. Therefore the map ©¢ defines a
continuous representation of the Banach *-algebra L;(G) on H(n%).
Fix ¢ € H(7%) and define the map T} from Li(G) to H (%) by
Tyf = 79(f)¢. Then ||Ty|| < ||¢||. Let T denote the adjoint map.
Then T} : H(7%) = Loo(G) and || T3] < ||¢l.
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Lemma 1.
For v € H(n%) and s € G, [T37](s) = fG/H<¢(s’lac),'y(m)> du.

Proof. Let f € L1(G). Then

/ F()[T3)(s) dps = / (Lo f)(2),(2)) dv
G G/

H
-/ /H{ [ 760t ) ()

S ECH LT dvdn o

Let M be a closed 7¢ invariant subspace of H (7). A vector ¢ € M
is called strictly cyclic for M if 7%(L1(G))¢ = M. When this is the
case, Ty is an open map from L; (G) to M. It follows from [3, II, 4.18b]
that T7} is a bicontinuous isomorphism from M?, the dual of M, onto
the polar of the kernel of Ty in Lo (G), see [3]. For v € H(r%), let
[|7]/ A+ denote the norm of v as a functional on M.

Let s € G, denote by 5 the projection of s onto G/H. For B C G
denote by B the projection of B onto G/H and by X p the characteristic
function of the set B. Let 7: G/H — G be a Borel cross-section.

Lemma 2. Suppose H is open. If H(w®) has a strictly cyclic vector,
then G/H is finite.

Proof. Let ¢ € H(n%) be a strictly cyclic vector. By the open
mapping theorem there exists C' > 0 such that whenever v € H(n%)
with ||y|]| < 1 there exists f € Li(G) with ||f|| < C such that
Tyf = 7. Choose ¢g € H(n%), with support KH, K compact,
such that ||¢o — ¢|| < 1/(2C). Then with v and f as above we get
Ts0f — 4l = [ Tof — Tofll < 1o — Sl l1Flls < 1/2. This shows, by
[1, 1.2], that the map T, is surjective. Therefore, there exists A > 0
such that ||y|| < A||T}; ~[| for all v € H(r%).

Since H is open and closed, G/H is discrete. Normalize p so  that
w(3) =1 for all s € G. Now suppose that G/H is infinite. Let K be
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the projection of K on G/H. Then K is compact and hence finite. Let
M = sup ||¢o()|| and VN > AMu(K). Choose s1,...,sy € G such
that the 5; are distinct. Let o € H(m), ||o|| = 1. Then the functions
Glz) = XS,.H( )m(z717(Z))a belong to H(n) and are orthogonal.
Therefore || Zi:l Gll = VN.

For s € G,

N
{z3oa}e
=1

[{po(s™"2), Gi(2))| dn

“Jo
I,

N
D lo(s  si)llu(s:)

< J;u(K)-

IN

o (s™ @) ]G (2)|| dp

3o
i

It follows that |7}, i Gil| < Mu(K) contradicting || 337, Gl <
AHT(;0 Zi\il Cil|- Therefore, G/H must be finite. o

Theorem 3. If H(n%) has a strictly cyclic vector, then G/H is
finite.

Proof. Let ¢g be as in Lemma 2. Suppose G/H is not discrete. Then
there exists a Borel subset B C G such that 0 < u(B) < [AM]~2. Let
a € H(nm), ||a|] = 1, and let {(z) = Xpu(z)r(z7'7(Z))a. It follows

that ¢ € H(x%) and ||¢|| = 1/u(B).
Now let s € G. Then

(T, CH(s)| < /G G RICIEY
< /G L lonts el an
- / lg0(s )| Xm2r ()] dy
G/H

< Mu(B).
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Therefore ||T; ¢|| < Mu(B). But ||| < AT ¢|| implies w(B) <

AMu(B), contradicting the choice of B. Therefore, G/H is discrete
and so, by Lemma 2, is finite. o

Now we consider subrepresentations of induced representations from
compact or normal subgroups. In all that follows H will always be a
compact or normal subgroup. Let 1 denote the identity of G.

Lemma 4. Let K1 and K2 be compact subsets of G and suppose
that G/H is not compact. Then for any positive integer N there exists
$1,--- ,8SN € G such that

1) s1K1H,... ,syK1H are disjoint
ii) s1K2,H,...,syKo2H are disjoint
iii) s;KiHNs;KoH =@ fori#j
and
iv) siKiHK; Y, ... ,snKiHKS Y are disjoint.

Proof. Let K = {1} U K; U Ky. Then K is compact. If H
is compact, then so is KHK 'KHK~-'. If H is normal, then
KHK 'KHK~! = KK~'KK~'H whose projection on G/H is com-
pact. Therefore in both cases the projection of KHK 'KHK !
on G/H is compact. We choose the s; inductively: having chosen
81,...,8; so that siKHK™ !, ... ,stHK’l are disjoint pick s;11 €
G\ U_, s;KHK 'KHK ', which is nonempty since the projection
of nglsiKHK*IKHK*1 onto G/H is compact. If s; 1 KHK 1N
smKHK™' # & for some m < j, then Sj41 € smKHK 'KHK™!,
violating the choice of sji. Therefore, ssKHK™', ... s; 1 KHK™!
are disjoint. Since 1 € K, the lemma follows. O

Theorem 5. If a nonzero subrepresentation of 7€ has a strictly
cyclic vector, then G/H must be compact.

Proof. Let M be a nonzero closed G invariant subspace of H(m)
and ¢ € M such that 7¢(L;(G))¢$ = M. Then there exists A > 0 such
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that ||v||r- < A|[T57][ for all v € M*, the dual space of M.

Suppose G/H is not compact. Choose v € H(7%), ||vy|| = 1, such
that (¢,7) > 0 and ~ is supported in K;H where K; is compact in
G. By taking a scalar multiple of ¢, if necessary, we may assume that

(¢,7) =1L

Let N be a positive integer. Choose ¢ € H(7) such that ||¢—¢o|| <
1/(N+/'N) and whose support is contained in K»H where K> is compact
in G. Let K; and K> be as above and choose s1,...,sy by Lemma 4.
Then

1. 7%(s;)y are orthogonal in H(7%)

2. 7%(s;)¢o are orthogonal in H(7%)
3. (7%(s;)¢0, 7% (s1)y) = 0 for j # i

4. forany s € G, (x%(s)go, 7% (5:)7) 0 implies (x(s)go, 7(s;)7) =
0 for all j # 1.

The first three assertions follow directly from i), ii) and iii) of Lemma
4. Now suppose that (7% (s)¢o, 7%(s;)7) # 0 and (7% (s)po, 7% (s;)7) #
0 where ¢ # j. Then sKoH N s;K1H # @ and sKoH Ns; K1 H # 2.
And so siKlHKgl N stlHKgl # @, contradicting the choice of
$1,... ,8n. Therefore, assertion 4 holds.

By assertion 1, ||Zfi1ﬂ'G(si)7|| = +v/N. Now fix s € G. By
assertion 4 above, there exists & such that |(7%(s)¢pg, 7% (sx)7)| =
max; <i<n |(7%(8)¢o, 7% (si)7)|. Therefore,

7 éw%m] CHICTE ﬁ@)%éﬂc@w
+ ‘<7TG(8)¢0,§7TG(32')7>‘
(st 3w )

< % + [(7C(5)bo, 7% (sk) V)|

< & + (7 (9)60 = 7¢(5) 7 (1))
+ | (5)6,7% (1))

< l¢ — ol VN +
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= L 600 7616, e )
+ (7% (s, 8)$,7)]
1
< <+ 16— doll + T3]

1
< =+ ———+ Tl
v yvoy I

It follows that |[[T}; Zf\;l 7% (s;)7|| is uniformly bounded as a function
of N. Now

N N N N
ZWG(Si)‘ﬁHﬁ D 7% si)d =D 7 (si)do|| + || Y7 (si)eo
=1 =1 =1 i=1
< =+ Va0l
1 1
< 7w VAl o)
<2W/N l|6]] for N sufficiently large.
Therefore,
N
Zw%mH
i=1 M
]_ N N
> 6(s5)6, G<sm>‘
||zﬁlvrc<si>¢||‘<;” 2"
1 N N
> @ [ ) ¢ 7
- 2m¢||‘<;” (s:)80, 3 (s ”>‘
1 N N N
- Gla\dh _ G(.. G(..
e ¢|\<;w (36 = 37600, Yo (s

N
= m“fﬁoﬂﬂ

=1
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=

1 } 1
NVN]  2vN¢ll

v

m{«m NIl — ol VI

> \/N — !
— Aol 2v/N||g||

Andso || X, 7% (s:)7]|m+ — 0o as N — oo while [|[T;; 1% | 7% (s:)9]
remains bounded. This contradicts the choice of A. Therefore G/H
must be compact. a

Let () be one dimensional and H = {1} in Theorem 5. Then the
following is Corollary 2.1 of [2].

Corollary 6. If a nonzero subrepresentation of the left regqular
representation has a strictly cyclic vector, then G is compact.
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