A NOTE ON SOME UNCOMPLEMENTED SUBSPACES

ZHIDONG PAN

ABSTRACT. We show that nest algebras are, in general, not complemented as subspaces in the Banach space of all bounded linear operators on a given Hilbert space.

1. All the subspaces in this note are closed subspaces. One of the most useful features of Hilbert spaces is that every subspace in a Hilbert space is complemented. For Banach spaces, the situation is quite different. Let T be the unit circle and m the normalized Lebesgue measure on T. Let $H = L^p(T,m)$ and $K = H^p(T,m)$, $1 \le p \le \infty$, be the usual Hardy spaces on the unit circle. It is known that K is complemented in H when 1 and not complemented when <math>p = 1 or ∞ . If we let X be a compact Hausdorff space, C(X) be the set of all continuous functions on X and $A \subseteq C(X)$ a uniform algebra, it is not known whether or not A is always uncomplemented as a subspace of C(X). Glicksberg [2], Pelczinsky [4] and Sidney [5] made some significant progress in this direction, but the general question still remains open. In this note we investigate the same problem for nest algebras, which many believe are a noncommutative analogue of Dirichlet algebras.

Let H be a Hilbert space and (BH) be the set of all bounded linear operators on H. A nest \mathcal{N} is a totally ordered set of orthogonal projections. The corresponding nest algebra is

$$\operatorname{Alg} \mathcal{N} = \{ A \in B(H) \mid P^{\perp} A P = 0, \ \forall P \in \mathcal{N} \}.$$

If we let $H=L^2(T,m)$, where T denotes the unit circle with normalized Lebesgue measure m, $\{e_n \mid n \in Z\}$ denote the usual orthonormal base for $L^2(T,m)$ (where $e_n(z)=z^n, z\in T, n\in Z$), P_n denote the orthogonal projection of H onto the subspace $[e_n,e_{n+1},\ldots], n\in Z$, where $[\cdot]$ denotes the closed linear span and $\mathcal{N}=\{P_n\}, n\in Z$, then $A\lg \mathcal{N}$ is the set of bounded linear operators with lower triangular

Received by the editors on December 20, 1992. AMS Mathematics Subject Classification. 46.

Copyright ©1995 Rocky Mountain Mathematics Consortium

734 Z. PAN

matrix representations with respect to $\{e_n \mid n \in Z\}$. Each function $\phi \in L^{\infty}$ corresponds to a multiplication operator on H, which we denote L_{ϕ} . Let H^{∞} be the usual Hardy space on the unit circle, $U = L_{e_1}$ the bilateral shift and M the set of multiplication operators, that is, $M = \{L_{\phi} \mid \phi \in L^{\infty}(T, m)\}$.

Lemma 1.1 [1]. M is a maximal abelian von Neumann subalgebra of B(H) generated by U.

Remark 1. For any maximal abelian subalgebra A of an algebra B, A'=A. Thus M'=M.

Lemma 1.2 [3]. There is no bounded linear projection of $L^{\infty}(T,m)$ onto $H^{\infty}(T,m)$.

Lemma 1.3. $||L_{\phi}|| = ||\phi||_{\infty}$ for all $\phi \in L^{\infty}(T, m)$.

Lemma 1.4. Let $\mathcal{N} = \{P_n\}$, $n \in Z$ be the nest of $H = L^2(T, m)$ as above and $\phi \in L^{\infty}(T, m)$, then $L_{\phi} \in \text{Alg } \mathcal{N}$ if and only if $\phi \in H^{\infty}(T, m)$.

Theorem 1.5. Let $H = L^2(T, m)$, $P_n = [e_n, e_{n+1}, ...]$, $\mathcal{N} = \{P_n\}$, $n \in \mathbb{Z}$. Then there is no bounded linear projection of B(H) onto $Alg \mathcal{N}$.

Proof. Suppose there existed such a projection P. Let N be the additive group of all positive integers and Λ a Banach limit on N. Then Λ is a state on $l^{\infty}(N)$ with the following property: Given any $(a_n) \in l^{\infty}(N)$, $\Lambda((a_n)) = \Lambda((a_{n+1}))$. We now define a new projection P in the following way:

For $A \in B(H)$ define the operator $\tilde{P}(A)$ as follows: for any $x, y \in H$,

$$(\tilde{P}(A)x,y) = \Lambda((U^n P(U^{-n}AU^n)U^{-n}x,y)).$$

Thus, we have a map $\tilde{P}: A \mapsto \tilde{P}(A)$. It is routine to verify that \tilde{P} is a well-defined bounded linear map. We assert that

(1) $\tilde{P}(A) \in \text{Alg } \mathcal{N} \text{ for all } A \in B(H).$

- (2) $\tilde{P}(A) = A$ for all $A \in \text{Alg } \mathcal{N}$.
- (3) $\tilde{P}(A) \in M$ for all $A \in M$.

Note that $A \in \operatorname{Alg} \mathcal{N}$ if and only if $(Ae_i, e_j) = 0$ for all $j < i, i, j \in Z$. Hence, it is easy to see that if $A \in \operatorname{Alg} \mathcal{N}$, then $U^{-n}AU^n \in \operatorname{Alg} \mathcal{N}$ for all $n \in Z$. Since $P(U^{-n}AU^n) \in \operatorname{Alg} \mathcal{N}$, we have $U^n P(U^{-n}AU^n)U^{-n} \in \operatorname{Alg} \mathcal{N}$ for all $A \in B(H)$. Hence, $(\tilde{P}(A)e_i, e_j) = \Lambda((U^n P(U^{-n}AU^n)U^{-n}e_i, e_j)) = 0$ for all $j < i, i, j \in Z$, which implies that $\tilde{P}(A) \in \operatorname{Alg} \mathcal{N}$ for all $A \in B(H)$. Therefore, (1) is proved.

To prove (2), note that for all $A \in \operatorname{Alg} \mathcal{N}$, $U^{-n}AU^n \in \operatorname{Alg} \mathcal{N}$; thus, $P(U^{-n}AU^n) = U^{-n}AU^n$. From this, we can obtain

$$\begin{split} (\tilde{P}(A)x,y) &= \Lambda((U^n P(U^{-n}AU^n)U^{-n}x,y)) = \Lambda((U^n U^{-n}AU^n U^{-n}x,y)) \\ &= \Lambda((Ax,y)) = (Ax,y), \qquad \forall \ x,y \in H. \end{split}$$

Therefore, we have $\tilde{P}(A) = A$ for all $A \in \text{Alg } \mathcal{N}$, as we desired.

We now prove (3). For all $A \in M$, by Lemma 1.1 and Remark 1, $A \in M = M'$. Thus A commutes with U (and therefore with U^{-1}), which implies $U^{-n}AU^n = A$. It follows that

$$(\tilde{P}(A)x, y) = \Lambda((U^n P(U^{-n}AU^n)U^{-n}x, y)) = \Lambda((U^n P(A)U^{-n}x, y))$$

= $\Lambda((U^{n+1}P(A)U^{-(n+1)}x, y)), \quad \forall x, y \in H.$

(The last equality follows from the property that $\Lambda(a_n) = \Lambda(a_{n+1})$, for all $((a_n)) \in l^{\infty}(N)$.) Note also that

$$\begin{split} \Lambda((U^{n+1}P(A)U^{-(n+1)}x,y)) &= \Lambda((U^nP(A)U^{-n}U^{-1}x,U^{-1}y)) \\ &= (\tilde{P}(A)U^{-1}x,U^{-1}y) \\ &= (U\tilde{P}(A)U^{-1}x,y), \qquad \forall \, x,y \in H. \end{split}$$

We have $(\tilde{P}(A)x, y) = (U\tilde{P}(A)U^{-1}x, y)$ for all $x, y \in H$. Thus, $\tilde{P}(A) = U\tilde{P}(A)U^{-1}$ and so $\tilde{P}(A)$ commutes with U and U^{-1} . Since U and U^{-1} generate M in the weak operator topology, $\tilde{P}(A) \in M' = M$, which completes the proof of (3).

Now we could define a bounded linear projection \hat{P} of $L^{\infty}(T, m)$ onto $H^{\infty}(T, m)$, for all $f \in L^{\infty}(T, m)$:

$$L_f \in M$$
, hence $\tilde{P}(L_f) \in M \cap \operatorname{Alg} \mathcal{N}$.

736 Z. PAN

By Lemma 1.4, $\tilde{P}(L_f) = L_h$, for some $h \in H^{\infty}(T, m)$. Let $\hat{P}(f) = h$. Then it is easy to see that \hat{P} is a well-defined linear operator. To see the boundedness of \hat{P} , observe that

$$||\hat{P}(f)||_{\infty} = ||h||_{\infty} = ||L_h|| = ||\tilde{P}L_f|| \le ||\tilde{P}|| \, ||L_f|| = ||\tilde{P}|| \, ||f||_{\infty}.$$

(Here $||\cdot||$ denotes the uniform operator norm, and the second and the last equalities follow from Lemma 1.3.)

Hence, \hat{P} would be a bounded linear operator from $L^{\infty}(T,m)$ into $H^{\infty}(T,m)$. Furthermore, if $h \in H^{\infty}(T,m)$, then $L_h \in \operatorname{Alg} \mathcal{N}$ (by Lemma 1.4). Therefore, $\tilde{P}(L_h) = L_h$, which gives us $\hat{P}(h) = h$. Thus \hat{P} would be a bounded linear projection of $L^{\infty}(T,m)$ onto $H^{\infty}(T,m)$, which contradicts Lemma 1.2. \square

Theorem 1.6. Let H be any Hilbert space, \mathcal{N} an arbitrary nest with the corresponding nest algebra $\operatorname{Alg} \mathcal{N}$, and suppose that \mathcal{N} contains infinitely many orthogonal projections. Then there is no bounded linear projection of B(H) onto $\operatorname{Alg} \mathcal{N}$.

Proof. This general case can be easily reduced to the special case above; we omit the proof. \Box

Acknowledgment. The author would like to thank Prof. Stuart J. Sidney for fruitful discussions.

REFERENCES

- 1. R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- 2. I. Glicksberg, Some uncomplemented function algebras, Trans. Amer. Math. Soc. 111 (1964), 121-137.
- 3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- 4. A. Pelczynski, Banach spaces of analytic functions and absolutely summing operators, CBMS Regional Conf. Ser. Math., No. 30, Amer. Math. Soc., Providence, R.I., 1977.

 $\bf 5.~\rm S.J.~Sidney,~\it Uniform~\it algebras~\it and~\it projections, Proc.~Amer.~\it Math.~\it Soc.~\bf 91~\it (1984),~381-382.$

Department of Mathematics, Saginaw Valley State University, University Center, Michigan, $48710\,$