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A NOTE ON SOME UNCOMPLEMENTED SUBSPACES
ZHIDONG PAN

ABSTRACT. We show that nest algebras are, in general,
not complemented as subspaces in the Banach space of all
bounded linear operators on a given Hilbert space.

1. All the subspaces in this note are closed subspaces. One of
the most useful features of Hilbert spaces is that every subspace in
a Hilbert space is complemented. For Banach spaces, the situation is
quite different. Let T be the unit circle and m the normalized Lebesgue
measure on 1. Let H = LP(T,m) and K = HP(T,m), 1 < p < oo,
be the usual Hardy spaces on the unit circle. It is known that K is
complemented in H when 1 < p < oo and not complemented when
p =1or co. If we let X be a compact Hausdorff space, C'(X) be
the set of all continuous functions on X and A C C(X) a uniform
algebra, it is not known whether or not A is always uncomplemented as
a subspace of C(X). Glicksberg [2], Pelczinsky [4] and Sidney [5] made
some significant progress in this direction, but the general question
still remains open. In this note we investigate the same problem for
nest algebras, which many believe are a noncommutative analogue of
Dirichlet algebras.

Let H be a Hilbert space and (BH) be the set of all bounded linear
operators on H. A nest N is a totally ordered set of orthogonal
projections. The corresponding nest algebra is

AlgN ={Ac B(H) | P*PAP =0, VP e N}.

If we let H = L%(T, m), where T denotes the unit circle with normalized
Lebesgue measure m, {e, | n € Z} denote the usual orthonormal
base for L2(T,m) (where e,(z) = 2", z € T, n € Z), P, denote the
orthogonal projection of H onto the subspace [en,ent1,...], n € Z,
where [-] denotes the closed linear span and N = {P,}, n € Z, then
Alg N\ is the set of bounded linear operators with lower triangular

Received by the editors on December 20, 1992.
AMS Mathematics Subject Classification. 46.

Copyright ©1995 Rocky Mountain Mathematics Consortium

733



734 Z. PAN

matrix representations with respect to {e, | n € Z}. Each function
¢ € L* corresponds to a multiplication operator on H, which we
denote Ly. Let H* be the usual Hardy space on the unit circle,
U = L., the bilateral shift and M the set of multiplication operators,
that is, M = {Ly | ¢ € L>(T,m)}.

Lemma 1.1 [1]. M is a mazimal abelian von Neumann subalgebra
of B(H) generated by U.

Remark 1. For any maximal abelian subalgebra A of an algebra B,
A’ = A. Thus M' = M.

Lemma 1.2 [3]. There is no bounded linear projection of L*°(T,m)
onto H*®(T,m).

Lemma 1.3. ||Ly|| = ||¢||cc for all ¢ € L°(T,m).

Lemma 1.4. Let N = {P,}, n € Z be the nest of H = L*(T,m)
as above and ¢ € L™°(T,m), then Ly, € AlgN if and only if ¢ €
He>(T,m).

Theorem 1.5. Let H = L*(T,m), P, = [en,ent1,---), N = {P,},
n € Z. Then there is no bounded linear projection of B(H) onto AlgN .

Proof. Suppose there existed such a projection P. Let N be the
additive group of all positive integers and A a Banach limit on N.
Then A is a state on [*°(N) with the following property: Given any
(an) € I°(N), A((an)) = A((an+1))- We now define a new projection
P in the following way:

For A € B(H) define the operator P(A) as follows: for any z,y € H,
(P(A)z,y) = A(U"P(U ™AU™U "z,y)).

Thus, we have a map P : A — P(A). It is routine to verify that P is a
well-defined bounded linear map. We assert that

(1) P(A) € Alg\ for all A € B(H).
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(2) P(A)= Aforall Ac AlgN.

(3) P(A)e M forall Ae M.

Note that A € AlgN if and only if (Ae;,ej) = 0 for all j <
i, 4,7 € Z. Hence, it is easy to see that if A € AlgAN, then
U "AU™ € AlgN for all n € Z. Since P(U ™AU™) € AlgN,
we have U"P(U "AU™)U™ "™ € AlgN for all A € B(H). Hence,
(P(A)es e;) = A(UP(UTAU™)U "eiyej)) = 0 for all j < i
i,j € Z, which implies that P(A) € Alg N forall A € B(H). Therefore,
(1) is proved.

To prove (2), note that for all A € Alg N, U "AU™ € AlgN; thus,
P(U™AU"™) =U"AU". From this, we can obtain

(P(A)z,y) = A(UPUTTAUMU "z,y))=A(U"U"AU"U "z, y))
= A((Az,y)) = (Az, y), Va,y € H.
Therefore, we have P(A) = A for all A € Alg/, as we desired.

We now prove (3). For all A € M, by Lemma 1.1 and Remark 1,
A€ M = M'. Thus A commutes with U (and therefore with U 1),
which implies U " AU"™ = A. It follows that

(P(A)z,y) = A(U™P(U"AU™)U "z,y)) = A(U"P(A)U "z,y))

= A((U™T'P(A)U"D,y)),  Va,y € H.

(The last equality follows from the property that A(a,) = A(an41), for
all ((ay,)) €1°°(N).) Note also that

AU PAU~ g, y)) = A(U"P(AUT Uz, U'y))
= (P(A)U'2,Uy)

= (UP(A)U 'z,y), Va,yeH.
We have (P(A)x,y) = (U!B(A)U_lx,y) for all z,y € H. Thus,
P(A) =UP(A)U~" and so P(A) commutes with U and U~'. Since U
and U ! generate M in the weak operator topology, P(A) € M' = M,
which completes the proof of (3).

Now we could define a bounded linear projection P of L°°(T,m) onto
H® (T, m), for all f € L>®(T,m):

Ly € M, hence P(Ly) € M NAlgN.
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By Lemma 1.4, P(L;) = Ly, for some h € H®(T,m). Let P(f) = h.
Then it is easy to see that P is a well-defined linear operator. To see
the boundedness of P, observe that

1P(f)llo = l1hlloa = ILu ]l = IPLs| < IIPIIZs1] = [1PI[]]£]]oc-

(Here || - || denotes the uniform operator norm, and the second and the
last equalities follow from Lemma 1.3.)

Hence, P would be a bounded linear operator from L™ (T, m) into
H*>(T,m). Furthermore, if h € H*(T,m), then L, € AlgN (by
Lemma 1.4). Therefore, P(Ly) = Ly, which gives us P(h) = h. Thus
P would be a bounded linear projection of L>®(T,m) onto H>(T,m),
which contradicts Lemma 1.2. o

Theorem 1.6. Let H be any Hilbert space, N an arbitrary nest
with the corresponding nest algebra Alg N', and suppose that N contains
infinitely many orthogonal projections. Then there is no bounded linear
projection of B(H) onto Alg N.

Proof. This general case can be easily reduced to the special case
above; we omit the proof. O
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