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ON AN ALTMAN TYPE FIXED POINT THEOREM
ON CONVEX CONES

G. ISAC

1. Introduction. The principal result of this paper is a fixed point
theorem on a convex cone in a Hilbert space. This result is obtained
using the complementarity theory.

This fact is not surprising, since in our paper [20] we showed that
there exist interesting implications from the fixed point theory to the
complementarity theory, and reciprocally the complementarity theory
can be used to obtain new fixed point theorems.

These relations are very interesting since the complementarity theory
is in development and it has many and important applications in
optimization, game theory, engineering, mechanics, elasticity theory,
economics, etc., 19, 13, 20].

Let (H,{(,)) be a separable Hilbert space. If r > 0 we denote
B.={zeH|||lz||<r}and S, ={z e H|||z||=r}.

In 1957 Altman proved the following fixed point theorem.

Theorem (Altman, [1]). Let f be a weakly closed operator defined
on B, with range in H. If f maps the set B, into a bounded set and
the following condition is satisfied

(A) (f(z),z) <(z,z) for every xz € S,

then f possesses a fized point in B,.

Another version of this theorem was proved by Shinbrot in 1965 [32]
without the assumption that f(B,) is bounded but supposing that f
is continuous from the weak to the weak topology.

Shinbrot’s theorem has interesting applications to partial differential
equations.
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We note that Altman proved his theorem using the topological degree
and Shinbrot using a long proof.

In this paper we use a generalization of condition (A). Our condition
is more flexible, and our principal result is a fixed point theorem on
a convex cone in a Hilbert space for an operator of the form 77 + T5,
where T3 is a compact operator and I — 77 satisfies condition (S)4. It
is well known that condition (S)4 is an important condition used in
nonlinear analysis and it was intensively studied by Browder [7, 8, 9,
10], Hess [17], Petryshyn [29], etc.

As a consequence of the principal result we obtain a fixed point
theorem on a convex cone for an operator of the form S + 7" where
S is a contraction and 7" a compact operator, similar to a classical
result proved by Krasnoselskii on bounded sets [23].

2. Preliminaries. Let (H, (,)) be Hilbert space and K C H a closed
convex cone, that is, a closed subset of H such that i) K+ K CK

ii) AK C K for every A € R

iii) KN (-K) = {0}.

We denote by K* the dual of K, that is,
K'={yeH|(z,y) >0;Vz € K}.

If C C H is a closed convex subset, we say that a continuous operator
P:H — H is a projection on C if P(H) = C and P(x) = z, for every
z e C.

We say that K is a Galerkin cone if there exists a countable family
of convex subcones {K,, }nen of K such that:

1) K, is locally compact for every n € N,

2) K, C K,, whenever n < m,

3) K =UnenKo.

If K is a Galerkin cone we denote it by K(K)neN-

In practice, a closed convex cone which has an approximation by the
finite element method, or which has a Schauder base is a Galerkin cone.

In [20] it is proved that if K(K,),en is a Galerkin cone in H, then
there exists a family { P, },en of projections such that P, is a projection
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on K,,, for every n € N and lim,,_,, P,(z) = z, for every z € K.

We denote by “(w)-lim” the limit with respect to the weak topology.
We recall now the concept of duality mapping.

Let (E,|| ||) be a Banach space and (E*|| ||«) the dual of E, where
| ||« is the dual norm of || ||. We denote by (E, E*) the natural duality
defined by E and E*.

We say that a continuous and strictly increasing function ® : Ry —
R is a weight if ®(0) =0 and lim,_,o, ®(r) = +o0.

Given a weight ®, a duality mapping on E associated to ® is a
mapping J : E — 2% such that

J(z) =A{z" € E" [ (z,2") = ||z|| - ||z"||+ and ||z"[|. = @(|]]])}.

A consequence of the Hahn-Banach theorem is the fact that for every
z € E, J(z) is nonempty.

The properties of duality mapping are well studied in [12] and [28]
where we find also many interesting examples.

If (E,|| ||) is a smooth reflexive Banach space, then every duality
mapping associated to a weight function ® is norm-weak continuous
and point to point mapping.

Our results presented here are deeply based on the condition (5)
introduced by Browder [8] and Skrypnik [33].

The condition (S); is very important in nonlinear analysis [6-10,
17, 29| and in variational calculus [2, 3, 24].

Let (H,(,)) again be a Hilbert space and D C H a weakly closed
subset.

Definition 1. A mapping 7' : D — H is said to satisfy condition
(S) if for any sequence {z, }nen C D which converges weakly to z, in
D and for which lim sup(z,, —z., T'(z,)) < 0 we have that {x,, },en has
a subsequence {z,, }xeny norm convergent to z,. (We have the same
definition when T : D — E*, where D is a weakly closed subset in a
Banach space E.)

Examples. 1) Every duality mapping associated to the weight ®
satisfies condition (S),, as a mapping from F into E*.
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2) Some nonlinear elliptic operators satisfy condition (S)4 [10].

3) If Ty satisfies condition (S)4+ and T% is a compact operator, then
T, + T, satisfies condition (S)..

4) From example 3 we have that every Fredholm operator satisfies
condition (5).

The following two results also give two important examples of oper-
ators which are not duality mapping but which satisfy condition (5).

We say that T : H — H is strongly p-monotone if there is a
continuous strictly increasing function p : Ry — R such that p(0) =0
and (z —y,T(z) — T(y)) > p(||z — y||) for every z,y € H.

Proposition 1. FEach strongly p-monotone mapping T : H — H
satisfies condition (S)+.

Proof. Let {z,}nen C H be a sequence weakly convergent to z, in
H and such that limsup,,_, . (z, — 2., T (z,)) < 0.

Since p(|[2n — 2.]1) < (20— 0y T(wn) — T(,)) = (@0 — @0y T(n)) —
(T — 24, T(z4)), we have

0 < liminf p(||z, —2«||) < limsup p(||z, —z4||)
n— oo

n—o0

< lim sup(z, — 2., T(xy,)) — 1i_{n (@ —zx, T(z)) <0,

n— oo

which implies that lim,,—, . p(||zn — 24||) = 0 and because p is strictly
increasing and continuous we obtain that lim,_,.(||z, — z«||) = 0.
o

We say that T : H — H is a @-contraction (in Boyd and Wong’s
sense [5]) if there is a mapping ¢ : Ry — R, satisfying:

i) [IT(z) =Tl < ¢(lle —yll), for all z,y € H,
i) p(t) <t, forallt € R \{0}.

This class of operators was studied in [5] where an interesting fixed
point theorem is also proved.
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Proposition 2. If T : H — H is a p-contraction with ¢ continuous,
then I — T satisfies condition (S)+.

Proof. Since T is a ¢-contraction, for every x,y € H we have

((I=-T)z)-(I-T)y),z—y)=(z—y—T(z) +T(y),z — y)
=|[lz -yl = (T(z) = T(y), = — y)
> [l = yl* = ||z = ylle(llz - ylI)
= llz = ylllllz — yll — |z - yl])].

Let {z,}nen C H be a sequence weakly convergent to =, € H and
such that lim sup,,_, o (zn — 2, (I — T)(z,)) < 0.

We have ||zn =, ||[||zn =] = ([|2n =2 |)] < (@n =24, (I-T)(2n) -
(I=T)(zs)) = (xp, — x4, (I = T)(x)) — (2 — x4, I = T)(z4)), and, as
in the proof of Proposition 1, we obtain that

1) Tim [ — zllllfen — 2ll — @(llzn — 2.]]) = 0.

Let {x,, }ren be a subsequence of {z,}n,en such that {||z,, —
Z«||}ken is convergent.

If & = limy, o0 ||2n, — 24| then @ must be equal to zero.

Indeed, if & > 0 then from (1) and using the properties of ¢ we obtain
that limy, o0 |[2n, —@.[[[|2n, — 2|l (|20, —2.]])] = ala—p(a)] >0,
which is impossible. Hence {zy, }ren is norm convergent to .. ]

Lemma 4. If a mapping T : H — H satisfies condition (S)4,
then every sequence {zp}nen C H with (w) — lim, oo &, = Zu,
(w) = limp o0 T'(zn) = u € H and limsup,,_, o (zn, T(zn)) < (@, u)
has a subsequence {xn, }reN morm convergent to ..

Proof. The lemma is obtained by elementary calculus using the
definition of condition (S)4. u]

3. Principal results. Let (H,{(,)) be a Hilbert space, and let
K C H be a closed convex cone.
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Given a mapping f : K — H we recall that the complementarity
problem associated to f and K is:

find zg € K such that
f(zo) € K* and (zo, f(zo)) = 0.

For more details on this problem we recommend [13, 19, 20].

C.P.(fK): {

We use the following classical theorem.

Theorem (Hartman-Stampacchia [18]). Let E be a locally convex
space, E* its topological dual, and let C be a compact convez set in E.

If f: C — E* is a continuous mapping, then there exists x, € C
such that (x — x., f(x«)) > 0 for every z € C.

With this theorem we prove the following result.

Proposition 3. Let K C H be a locally compact convex cone, and
let f: K — H be a continuous mapping.

If there is an element uy € K and a number r > ||ug|| such that
(M) : (x —ug, f(z)) >0, for all x € K with ||z|| = r, then the problem
C.P.(f,K) has a solution x, such that ||z.|| < r.

Proof. By theorem (Hartman-Stampacchia) there exists z, € K, =
{z € K | ||z|| < 7} such that

(2) (x — zx, f(zx)) > 0; forall z € K,.

We have two cases.

Case 1. ||z.|| < r. If z € K, then there exists A € 0, 1[ sufficiently
small such that w = Az + (1 — M)z, € K., and from (2) we have
(W=, f(T)) = Mz — 4, f(z4)) > 0, that is, (x — z., f(z«)) > 0, for
all z € K, which implies that z, is a solution of the problem C.P. (f,K).

Case 2. ||z.|| = r. In this case we have (. — uo, f(z+)) > 0, (from
(M)), and since (x — z., f(z.)) > 0 for all z € K,., we obtain

<I — Uop, f(I*» = <£E T Tyt T — anf(x*»
= (& — ., f(22)) + (T = w0, f(24)) = 0,
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that is, we have

(3) (x —ug, f(zs)) >0, forall zeK,.

If z € K, then there is a A € ]0, 1] such that v = Az + (1 — AN)ug € K,
(since ||up|| < 7).

If we put = v in (3) we have A(z — ug, f(x«)) > 0, that is,

(4) (z — uo, f(z,)) >0, forall zecK.

Since ||ug|| < r, from (2) we have
(5) (o = @, f(24)) > 0.

Now from (4) and (5) we deduce (z — z,, f(z.)) > 0, for all z € K,
that is, x, is a solution of the problem C.P. (f, K) with ||z.|| < r. u]

We know [13, 19] that if 7 : K — K then T has a fixed point in K
if and only if the problem C.P. (I — T',K) has a solution.

So, from Proposition 3 we have the following variant of Altman’s
theorem.

Corollary 1. If K C H s a locally compact conver cone, T :
K — K a continuous operator and there is a number r > 0 such that
(T(z),z) < ||z||?, for every x € K with ||z|| = r then T has a fived
point in K.

We remark that condition (M) was considered by Moré for the cone
R" [27].

We introduce now a more general condition specific for Galerkin
cones.

Definition 2. Let K(K,,),en be a Galerkin conein H and f: K —
H a mapping.
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We say that f satisfies condition (GM) if there exist a bounded
sequence of positive numbers {r, }nen and a sequence {u,}nen C K
such that for every n € N we have

1) o 2 |lunll,
i) (@ —up, f(z)) >0, for all z € K,, with ||z|| = 7.

We introduced condition (GM) to have more flexibility about condi-
tion ii) on every approximate cone K,,.

Since K, can be constructed by the finite element method it is
important to verify condition ii) independent on every K, and not
on the cone K.

The condition ii) is currently used in the complementarity theory [27,
19], etc.

Theorem 5. Let (H,(,)) be a Hilbert space and K(K,)nen @
Galerkin cone in H.

Suppose, given two continuous operators S, T : K — H such that S
is bounded, T is compact and (S + T)(K) C K.

If the following assumptions are satisfied:

1) I - S satisfies condition (S)+,

2) I — S —T satisfies condition (G.M.),
then S + T has a fixed point in K.

Proof. The theorem is proved if we show that the problem C.P (I —
S —T,K) has a solution.

Since I — S — T satisfies condition (G.M.), then from Proposition 3
we have that for every n € N the problem C.P.(I — S — T,K,) has a
solution z,, € K,, such that ||z,|| < ry.

From condition (GM) we have that {z, }nen is bounded.

Since H is a reflexive space we have that {z, },cN has a subsequence,
denoted also by {2, }nen, which is weakly convergent to z, € K.

The sequence {2, }nen being bounded and I —S a bounded operator,
we have that {(I —S)(2n)}nen is norm bounded and from reflexivity
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we obtain that {z, },cn has a subsequence, denoted again by {z,, }nen
such that {(I — S)(z,)}nen is weakly convergent to an element u € H.

Since T is a compact operator and considered a subsequence, we may
also suppose that {T(z,) }nen is norm convergent to an element v € H.

Because z,, is a solution of the problem C.P. (I —S —T,K,) we have

(6) (Xn,xn — S(zn) — T(z,)) =0; for every n € N,
that is,
(7) <xn7 Tn — S(xn» = <$n,T($n)>, for every n € N.

From (7) we deduce

(8) lim (zn, 2, — S(z,)) = lim (z,, T(2,)) = (x4, v).

n—roo n— oo

Let { P, }nen be a sequence of projections such that for every n € N,
P, is a projection on K,,, and for every z € Klim,, o, P,(z) = z. We
set &, = Pp(zy).

Since, for every n € N, z,, solves the problem C.P. (I - S -T,K,)
which is equivalent to a variational inequality [13, 19] and since
denoting z, = &, + (1 + 1/n)z,, we have that z, € K, (for every
n € N) we obtain,

0

IN

(2n — Tpy @y — S(zpn) — T(zy))
= @n + xn/n,xn - S(l‘n) - T(xn»
= (Tn,2n — S(zn) — T(zy))
+ %(xn,xn = S(zn) — T(xp))
= (Tn, Tn — S(xn) — T(zn)),
which implies
(#n, T(x)) < (&n, 70 — S(2n),)

and computing the limit in the last inequality, we deduce

(9) (s, v) < (@4, u).
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From (8) and (9), we obtain lim,,_,cc (¥n, zn, — S(zn)) < (T4, u).

Since I — S satisfies condition (S)4, from Lemma 4 we have that
{Zn}nen has a norm convergent subsequence {z,, }reN-

We denote again {z,, }ken by {zn tnen and z. = lim, o0 T

The proof is finished if we show that x, is a solution of the problem
C.P.(I-S—T,K). Indeed, let z € K be an arbitrarily element. If we
denote z, = P,(z) we have lim,_,o (2, — Zp) = 2 — 4. Since z, € K,,,
for every n € N, and z, solves the problem C.P.(I — S — T,K,,),
we obtain (using again that C.P.(I — S — T,K,,) is equivalent to a
variational inequality).

(10) (zn — Tpyxn — S(xn) — T(z,)) > 0.

Taking the limit in (10) as n tends to +o0o, we obtain (z — @, z. —
S(zx) — T(x«)) > 0 for all z € K, which implies that z, solves the
problem C.P. (I — S — T,K) and the theorem is proved. o

For the following corollaries we suppose that K(K,,),cn is a Galerkin
cone in Hilbert space (H,(,)).

Corollary 1. Let S,T : K — H be two continuous operator such
that S is a @-contraction with ¢ continuous, T is a compact operator,
and (S+T)(K) CK.

If I — S —T satisfies condition (G.M.), then S+ T has a fized point
in K.

Corollary 2. Let S,T : K — H be two operators such that S is a
contraction, T is a continuous compact operator and (S +T)(K) C K.

If I — S —T satisfies condition (G.M.), then S+ T has a fized point
n K.

Remark. A fixed point theorem for an operator of the form S + T
where S is a contraction and 7' is continuous and compact was proved
on bounded sets by Krasnoselskii in [23]. Corollary 2 is similar to
Krasnoselskii’s theorem but on a convex cone which is an unbounded
set.



ALTMAN TYPE FIXED POINT THEOREM 711

Corollary 3. If S,T: K — H are continuous (S+T)K) CK, T is
compact and S is a contraction or a p-contraction with ¢ continuous,
and there is an v > 0 such that (z,S(z) + T(z)) < ||z||?, for every
xz € K with ||z|| = r, then S+ T has a fized point in K.

A class of mappings much studied in fixed point theory is the class
of pseudo-contractive mappings [4, 11, 14, 15, 16, 21, 22, 25, 26,
30, 31, 35].

We recall that in a Hilbert space a mapping 7' is a pseudo-contractive
if and only if I — T is monotone.

In this sense we say that S : K — K is p-pseudo-contractive if I — §
is strongly p-monotone in the sense of the definition used before.

From Proposition 1 and Theorem 5 we have the following result.

Corollary 4. Let S,T : K — H be two continuous operators such
that (S+T)(K) C K, T is compact and S 1is p-pseudo-contractive and
bounded.

If I — S —T satisfies condition (G.M.), then S+ T has a fized point
in K.

The next result is a coincidence theorem on cones in Hilbert spaces.
We denote by “<” the ordering defined by K.

Corollary 5. Let (H,(,)) be a Hilbert space and K(K,)nen @
Galerkin cone in H. Suppose, given two continuous operators Sy, T :
K — H such that So is bounded, T is compact and So(z) < T'(z) + z,
for all z € K.

If the following assumptions are satisfied:
1) So satisfies condition (S),
2) So — T satisfies condition (G.M.),
then there exists an element z, € K such that So(x.) = T'(z).

Proof. We apply Theorem 5 with S =1 — Sj. O
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Remark. In the proof of Theorem 5, the assumption that {r,},en
(defined in condition (G.M.)) is used to obtain that the sequence
{Zn}nen is bounded.

We can use the condition (G.M.) without the assumption that
{rn}nen is bounded, but in this case it is necessary to suppose that
S and T satisfy some supplementary conditions, as for example to be
p-asymptotically bounded [34].

Let ¢ : Ry — R, be a mapping such that ¢(t) > 0 for every ¢t > v
where v € R

We say that a mapping Sy : K — H is p-asymptotically bounded
if there exist r,c € Ry\{0} such that r < ||z||, (z € K) implies
[1So(@)|| < ee(|lzl])-

If we suppose that S and T are asymptotically bounded, S with
respect to ¢ and T with respect to ¢, and limsup, ,, [e1(r) +
w2(r)] < 400, then the sequence {z,}nen defined in the proof of
Theorem 5 is bounded.

Indeed, if we suppose that {z,} is unbounded, then from (6) we have
(Tny ) = (@, S(xn)) + (@0, T (zp)) : YR EN
which implies
(11) lzall* < [exr([zall) + c22(l[@nl D]l 2wl

for every n € N such that max(ry,r3) < ||zn||, where ¢1,co,71,72
are the constants defined by the assumption that S and T are -
asymptotically bounded).

When {||z,||}nen tends from infinity, we obtain from (11) a contra-
diction since im supy, ||—00 ¢1(/|2Znl]) + w2(l[z.]])] < +o0.

Comments. The principal result of this paper is probably the first
fixed point theorem for a sum of two operators, on a convex cone, based
on the condition (S)4.

The connection between the complementarity theorem and the fixed
point theorem seems to be interesting.

We intend to present some applications in another paper.
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