ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 3, Summer 1995

SMOOTH PARTITIONS OF UNITY AND
APPROXIMATING NORMS IN BANACH SPACES

DAVID P. MCLAUGHLIN

1. Introduction. In the seminal paper [1] it is shown that C*-
smooth separable Banach spaces admit C*-smooth partitions of unity
(definitions to follow), but it is still an open question whether this result
extends to nonseparable spaces; contributions to this question appear
in [15, 10, 3, 16 and 13]. A survey of these and related results can
be found in [4, Section 8.3] and we refer the reader to the notes and
references therein.

Theorem 4 in [15] states that a reflexive Banach space X admits C*-
smooth partitions of unity whenever X admits an LUR norm which is
C*-smooth. Two observations motivate the main result of this paper:
first, a reflexive C*-smooth Banach space admits C*-smooth partitions
of unity; second, in general, a space with a C*-smooth norm and an
LUR norm will not have a norm which is both C*-smooth and LUR.
In fact, let us note that Asplund’s averaging technique (cf. [4, Section
2.2.4]) for higher order smooth norms is in general not available, e.g.,
¢o(N) has a C°°-smooth norm and its dual has an LUR norm, but
co(N) has no LUR C?-smooth norm [8]. (Note: the corresponding
averaging result for WLUR is open; because the set of C2-smooth norms
is the first category, a Baire category arguments sheds no light on this
question.)

We now present the main result of this paper.

Theorem 1. Suppose a WLUR norm on a Banach space X can
be uniformly approzimated on bounded sets by equivalent C**1-smooth
norms, where k € N U {co}. Then X admits C*-smooth partitions of
unaty.

Remarks a. Note that in this theorem we do not assume a priort
that the space in question admits a mapping into some co(T).
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b. In light of the above result from [15], it is a natural question to
ask if this result can be improved to obtain C**!-smooth partitions of
unity; the method of proof presented in this paper cannot address this
problem.

The proof of Theorem 1 will be given in Section 2. In Section 3
we present the following applications of this theorem, thus exhibiting a
fairly general class of spaces to which this theorem applies (for example,
the space JL has a C'*°-smooth norm, see [5] and [13]).

Corollary 1. If X admits a C*T'-smooth norm and if there exists a
set T and a linear, bounded map T : X — ¢y(T") with range of T* dense
in X*, then X admits C*-smooth partitions of unity.

Corollary 2. Let X have a closed subspace Y such that Y* is
separable and X/Y has a shrinking M -basis. If X has a C*+1-smooth
norm, then X admits C*-smooth partitions of unity.

Remarks a. With regards to the separability condition in Corollary
2, we note that the space constructed in [2] has a subspace isomorphic
to ¢o(T'1) such that the resulting quotient is isomorphic to ¢y(I's), yet
the original space admits no linear bounded map into co(I') for any T'.

b. If X is WCG and has a C*-smooth norm, then X has a shrinking
M-basis [12]. It then follows from the proof of Corollary 1 that X
admits a WLUR norm which is the uniform limit on bounded sets of
C*-smooth norms.

We now fix some concepts and definitions. All spaces will be real
Banach spaces and differentiability will always be in the Fréchet sense.
A partition of unity {¢q}aca,da : X — R, is called C*-smooth if
¢ is k-times continuously Fréchet differentiable for each a € A; we
say X admits C*-smooth partitions of unity if for every open covering
{Vs}pen of X, there exists a locally finite C*-smooth partition of unity
{®a }aca such that, for each o € A, the closure of {x € X : ¢ # 0} is
contained in Vj for some 5 € B. We refer to the natural and rational
numbers as N and Q, respectively, and we say a norm ||- || is (weakly)
locally uniformly convex [(W)LUR] if 2||z||? +2||zm||* = ||z +2m|[*> = 0



BANACH SPACES 1139

implies z,, converges (weakly) to . We will say that a norm || - || is
C*-smooth if it is k-times Fréchet differentiable away from 0; if || - || is
differentiable at € X, then we denote its derivative at by || - |/'(z).
A biorthogonal system (4, fo)aer C X X X* satisfies fo(zg) = 1 if
a = [ and equals 0 otherwise. Such a system is called a MarkusSevic¢
basis (M-basis) if X = Sp(za)acr and {fa}acr is total on X and an
M-basis is called shrinking if X* = 8p {fa }aer-

2. Proof of Theorem 1. By appealing to Theorem 1 in [15], it
suffices to construct a set A and a function h : X — co(A) such that
hs(+) is a C*-smooth function from X — R, h~! is continuous, and h
is one-to-one, continuous and maps into ¢y(A). Essentially, our proof
entails the construction of an index set and a corresponding set of one-
dimensional subspaces which are collectively dense. They will be used
to show the continuity of the inverse. This, however, will introduce a
large number of coordinates; to ensure that the function in fact maps
into a ¢y space, additional constructs are added. The proof will be
broken into two parts, the first dealing with the construction and the
second showing that the construction yields the desired properties.

Proof of Theorem 1.

Part A. Construction of h(z). In this part we will create a linear,
bounded, one-to-one map into a ¢g space (Lemma 1), construct a family
of projections onto one-dimensional subspaces (Lemma 2) and finally
exhibit the map h.

Let || - || be a WLUR norm on X. The space X has an equivalent
C'-smooth norm, so by [6] or [7] there exists an ordinal set I' = [w, 7]
where 7 is the first ordinal of cardinality dens X such that X* admits
a long sequence of projections {74 }oer on X* with T,, = 0 and T, the
identity operator. If, for each o € [w,7), we write 7, = Tht1 — Ta,
then

i) ||Tw]| < oo for all o € T

ii) T,Tp =TTy =Ty, for a,B € T with a < 3;

iii) f € 5P aefw,1)17a(f)} for each f € X*; and

iv) for each o < 7y, 7,(X™) is separable.
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Lemma 1. There exists a linear, bounded, one-to-one operator
T : X* = co([w,y) x N) where v is the first ordinal of cardinality
for dens (X). Furthermore, if a € [w,7) and 7o (f) # 0, then for some
n € N we have T(qn) f # 0.

Proof. Write Sx+ and Sx«~ for the dual and bidual spheres of X
with respect to this norm and choose, for each a € [w,7), a sequence
{g2}2° ; dense in Sx- N7, (X*) and a sequence {¢p2}5° , C Sx«» such
that ¢%(g%) = 1. The operator T is then defined at the coordinate

(o, m) by
¢n(Ta(f))
(1 Tasa |l + 11Tl

for each f € X*. Because {a € [w,7) : ||[7a(H)I| > e(|Tas1ll + ||Tal])}
is finite for each ¢ > 0 and each f € X* (cf. [5]), T maps into
co([w,y) x N). If 7,(f) # 0, say ||7a(f)|]| = ¢, then for some n,
[|[Ta(f) — cgnll < ¢/2 s0 ¢5[Ta(f)] > 0 and T4 n)f # 0. The operator
T is clearly linear, bounded and one-to-one.

T(a,n)f = n

Motivated by the proof of Lemma 1 in [11], we will define a family
of projections onto spaces of dimension one or zero. To this end,
enumerate U ; Q" = {p;}32; and U2 N" = {n;}32,, and let S[w,~)
denote the set of all finite subsets of [w,v). Denoting S™[w,~) as the
n-fold product of S[w, ), we will write F(n) € S™(Jw,7)) to emphasize

the length of the n-tuple F(n).

There are C**1-smooth norms which converge uniformly on bounded
sets to ||-]|, so we can suppose {||-||;}32, is a sequence of C**'-smooth
norms on X such that for all z € X we have

(%) 2(l; = M=l | < ll=[1/(27)-

Now for each F € S[w,vy) let {fF}2, be a dense sequence in
8D acFTo(X™), and for each triple F,i,j, choose a sequence {mf’;k}?zl
such that ||z, ||; = 1 and limy o f (2f,) = || f7]];- Define

S ={(F(n),a,b,c,d) € S"w,7)xQ"xN"xN"xN", 1 <n < oo}.

If s = (f(”),/)m,ﬂiaﬂjaﬁk) € S with -7:(”) = (Flv"'aFn); Pm =
(Pmaseve s Tmp)s M = (G1,0cvyin)y M = (J1y.+.,dn), and mp =
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(k1,...,kn), then we define 7; to be the projection of X onto
F . F
SP Yy Ty, Where |ms]| = 1if D00, T @5k, 7 0

Lemma 2. Ifx € X and € > 0 are given, then there exists

s = (F(n), pms>nisnjsme) € S with Fy C {a : 7,]|] - ||, (x)] # 0} for
each | < n such that ||z — ms(x)|| < €.

Proof. The statement is obvious if + = 0. Assume that ||z|| = 1
and we fix ¢ > 0. By property iii) of the PRI {T},}qcr, we choose
for each j a finite set F; C {a € [w,7) : 7|l - [|5(z)] # 0} so as to
guarantee the existence of f € sp Uacr; To(X ™) with [[f||; = 1 and

IIf =l - l5(x)]l; < j~'. Next, find i; such that Hff:’ —fll; <j !and
k; so that filjj (aci]]k]) >1—2j"1. Then
e+ 2 |+ 6571 2 o+ 277 |15 = flo+ 277, )
= £ @) — (£ = D)
+ - 15@)) @) = 111 () - fl(2)
> 127" = |If - £l

+ @@ =[] 15 (=) = £117)
>1-2j7 =i+ (157 -5
>2-5;5 L

.. F F; L F;
In addition, ||z +; 7 || < llzf[+ 1|27 /1 < 2+57 1 so | |lz+a; % |1 —

2| < 11571, Tt follows by the WLUR of || - || that mg’gkj % z, hence
there exists a sequence of convex combination of these elements which
converge in norm to z. The result now follows from a simple density
argument.

To construct h(x), we choose for each p € N a C*°-smooth function
¥, : R — R such that

1 1
t:—, t<_7
(o) = o < o
1 1 1
o < p(t) < -, 5o <t < -
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bp(t) = [t | >

SRR

We let A be the disjoint union of S x N3, Sfw,v) x N2, [w,) x N3,
and N2, and we define a function h : X — co(A) = {f : A —
R with card {6 € A : |f(6)| > €} finite for each £ > 0} coordinatewise
as follows: for each x € X and § € A

W Yol (@)l
g0 llz — s ()0
hs(z) = dmijklgp
1 (3 gt [(Tami@oe - 160) ),
acF,. n=1
1<r<ng
if 6 = (S,l,p, Q) €8x N37 s = (]:(n())apmani’njank)
(2)
1 =1 1 . 2
i) = 515, 11 (Z:; gt [ (T (0o 11/ @) )
if 6 = (F,j,p) € S[w,7) x N?
(3) .
h&(l‘) = ijT(a,n)[(wP © H ) H])l(x) if § = (avnajvp) € [OJ,")/) X N3
(4) .
hs(z) = m(% olz|l;) if 6= (j,p) € N?.

Part B. Verification of the properties of h(z).

We start with a simple lemma.

Lemma 3. Let G be a set, and let H denote the set of all finite
subsets of G. If © = (za)aca € co(G), then y = ([[ocp Ta)ren €
C()(H).

Proof. Fix € > 0 and write M = maxqeq |Za| < 00. Since z € ¢o(G)
we know there exists a finite set A C G of cardinality n such that for
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a ¢ A, |rs| < 1, thus we can find a finite set B C G such that 8 ¢ B
implies |zg| < ¢/M"™. Now if F € H and there exists 0 € F with

o ¢ B, then
Haca:m(,(Hxa) < E.

acF a€F
aF#o

Because {F € H : F C B} is finite, the proof is complete.
For each j € N, || - ||; is k + 1 times differentiable away from 0 and
1y is constant on a neighborhood of 0 so (¢, o || - ||;)(x) is k + 1-times

differentiable at all z € X. In addition, all derivatives of tan™'(z) are
bounded and T(q,n) is linear so
= 1 -1 l 2
> tan ™ [(Tam @y o1 115,)'()}) ]

n=1 m
is k-times differentiable. Since I — 7, is C*°-smooth, we conclude that
hs is a C*-smooth function for each § € A.

Next, to show that h is one-to-one, we suppose that h(z) = h(y)
and consider two cases. If @ = 0, then (¢,| - |]1)'(z) = 0 because
¥pll - [l1 = 1/(2p) on a neighborhood of 0. Now T is one-to-one so (3)
forces (¢p]| - []1)'(y) = 0 so that ||y||s < 1/p for each p € N and thus
y=0.

If z and y are not 0, then for p large enough we have ¢, (t) = [¢|
for {¢ : |¢t| > min(||z]|/2,]|y]|/2)}. By (x), we have, for large j and
P, Yp o|lzll; = ||z[lj so by (4), h(z) = h(y) implies ||z[|; = |ly|/;- In
addition, T is one-to-one so (o || - |V (z) = || - [5(z) = I - 1} (s)-
Therefore,

lz+yll; > (Il [1;@)](z +y)
= [+ 15@)1) + [ 115())(y)
= [lell; + llyll;-
Again, by (x), we have ||z +y|| = ||z|| +||y||. But WLUR implies strict
convexity so ¢ = y and h is one-to-one.

To show that h maps X into co(A), we fix e > 0 and z € X. We will
show that, for fixed j and p,

#)Y gt [(Tamito - 1/@3) ] 2
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for only finitely many « € [w,v). To prove this inequality, we let
K = ||(¢pl] - |I;)'(x)]|*, and choose N € N such that Y 77 ., 1/2" <
e/(2K?). Now T maps into co([w,7) x N), so there exists a finite set
G C [w,7) such that T(s ) (¥|| - ||;)'(z) < /e/2 for all n < N and
a ¢ G. Since ||T]| <1, for all a ¢ G we have

> (T lre -1V @))°

N1 /e =01\,

n=N+1

Since z > tan~!(z) for all positive reals, () follows immediately.

Let us now note that ¢4o||z||; < max{l,||z||;} and ||z—ms(z)||; < (1+
1/D)||xz — ms(z)|| < 4||z]|, so for each § as in (1), hs(z) < max{||z||,1}.
Therefore, if any one of m, i, 5, k, [, p, q are larger than e ~! max{||z||, 1},
then hs(z) < e. Observe that when j is fixed, 7 is also, so that if
s = (F(no), pmsMisMj> k) € S then F(ng) = (Fi,...,F,,). Appealing
to Lemma 3, we know that for each r € {1,... ,n9} and each p € N
there are only finitely many choices of F' € S|w, ) satisfying

I (Zﬁ gt (T (0o 1 1L Y@) ) 2 155

In addition, the term on the left is bounded above by 1, so that if F(ng)
contains any F' not satisfying the above inequality, then

Yg o ||z — ms()]l;
dmijklgp

I1 (i o tan™ [ (Lm0 I ||jr>'<w>})2}) <e.

acF, n=1
1<r<ng

Thus hs(x) > € for only a finite number of § as in (1). For ¢ as in (2),
(3) and (4), the fact that hs(z) > ¢ for only finitely many ¢ follows
from similar arguments and thus h maps into c¢o(A).

To see that h is continuous, let € > 0 be given. If jp is large enough,
then hs(z) < €/2 for each € X. If both j and p are small, then there
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are only finitely many terms of the form (¢, o[- ||;)'(-) and ¥p o || -1,
and these functions are continuous. Since 7 is linear and bounded, the
continuity of h follows from elementary arguments.

Finally, we must show that h~! is continuous. We will suppose
that hs(z,,) — hs(z) for each § € A and show that z,, — z. If
z = 0, then ¢p||z||; = 1/(2p) for each j € N, so for m large enough
Upllem|l; < 1/p and z,,, — 0. If  # 0, then 2 < p||z|| implies that
Up(||zll;) = ||x||; > 1/p for each j € N, and ¥y, (||z.m||;) = ||z||; forces
l|Zm||; = [|z]|;- By (%) it then follows that ||z,,|| — ||z||. To finish the
proof, we will show that {z,,}3°_; is totally bounded.

With this aim, use Lemma 2 to find s = (F(no), pm, i, mj, M) € S
with F,. C {a € [w,7) : 7al|[ - I}, (z)] # 0} such that ||z —7s(z)|| < /4,
and choose 2 < p||z||. Then (¢,||-||;,) (z) = |||/}, (z), and by (x) there
exists [ € N such that || — m4(z)|; < /2. The choice of F, ensures
that

I1 (i o [ (T @y o - |jr>'<w>})2}) >0

s0 hg(xm) — hs(z) for each § as in (2) implies there exists M € N so
that, for each m > M,

1 (3 ot (T (o 1 1Y @) ]) > 0.

Choosing q > 1/(2¢) we see that 9,||z — 75(z)||1 = ||z — 7s(z)|[1. As-
sembling this information and noting in particular that h, 1 p q)(Zm) —
h(s,1,p,q) (%) We see that

|zm = ms(zm) Il = [lz = 7s(2)[[1 < e/2.

Therefore, {1} ; is totally bounded and the proof is complete. o
3. Corollaries. The following are consequences of the main result.

Corollary 1. If X admits a C*t'-smooth norm and if there exists a
set T and a linear, bounded map T : X — ¢y(T") with range of T* dense
in X*, then X admits C*-smooth partitions of unity.
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Proof. Let T be a linear, bounded map of X into ¢o(I'). Using a
result in [14], we can find a sequence of C°°-smooth norms || - ||,, in
¢o(T") which converge uniformly on bounded sets to an LUR norm |-|. If
|| -]] is a C¥*'-smooth norm on X, then we define a sequence of norms
{ll- Nln 32y on X by [||l2]]]7 = [l=[|* + [|T][7. Since T'is bounded,
|||z|||» is an equivalent C**!-smooth norm. In addition, note that

ll[7 = [lel* + [Tl = [l]]]*.

Because ||-||, converges to |- | uniformly on bounded sets, the same can
be said of ||| - |||, with respect to |||-|||. Clearly ||| - ||| is an equivalent
norm which we claim to be WLUR.

To justify this claim, suppose 2|||z|/|* + 2|||zm]||* — |||z + zm ||| —
0. Because 2|zl + 2[zm|l” — [z + 22 > ([ell2 — [lom|?) and
2/Tz|2 42Tz >~ |T (z+2m) 2 > (|Tz|2—|T2m|?), the latter expression
must converge to 0. The LUR of the norm |- | implies that Tz, — Tz
in ¢o(T). Also, ||zm|| — ||z|| so that sup,, {||z — zm||} = C < 0.

We will show that if ¢ > 0 and f € X* are given, then there exists
M € N such that for all m > M, |f(x,, —x)| < e. Observe that because
T* : ¢o(T')* — X* has dense range, we can find an element 6 € ¢o(T')*
such that ||T*(0) — f|| < €/2C. Now there exists M such that m > M
implies |§(T(z — zm))| < €/2. For such an m,

[f (@ = 2m)| < [(f = T70) (& — &m)| + |T70(x — 2|
< =TH0) ||z — zm| + 0T (2 — zm)| < e

Thus, z,, converges weakly to z so |||-||| is WLUR. A direct application
of Theorem 1 completes the proof. a

Corollary 2. Let X have a closed subspace Y such that Y* is
separable and X/Y has a shrinking M -basis. If X has a C**1-smooth
norm, then X admits C*-smooth partitions of unity.

Proof. Clearly, from Corollary 1, it suffices to show that there exists
a linear bounded map T : X — ¢o(T") (for some I') such that T* has
dense range. Let (zq, 2%)acr, be a shrinking M-basis of Z = X/Y, let
Q be the quotient map and let h, = 2 0Q. Because Y is separable, we
can find a set {g;}$2; dense on the unit sphere of Y*, and we extend
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these to {f;}2; in X*. Now let I" be the disjoint union of N and I'y,
and we define T': X — ¢o(T") by

()fi(e) y=ieN,
T”(w)‘{hawnm y—ael.

Then T is clearly linear and bounded by one.

We now prove that 7™ has dense range. Let us denote by e, the
element in ¢o(I')* which has a one in the v coordinate and zeros
elsewhere. We show first that T%e, = h,. Indeed, if z € X, then

(T"eq — ha) () = ea[T(7)] — ha(z) = €a(ha(z)) — ha(z) =0,

and thus 7* maps onto a dense subset D of Y+ by linearity. In addition,
note that for each z € Y, (f; — T*ie;)(z) = fi(z) — ie;[T(z)] = 0, so
T*ie; = f; on Y. Thus, the element ie; is mapped by T™* to a member
of the coset f; + Y+, say, f; + h;. It is now easy to see that the linear
span of elements of the form f = f; + h; +d : i € N,d € D is in the
range of T* and is dense in X*. O

Remark. The results of this paper should be compared with the recent
result in [9] which states that if a Banach space has an equivalent
LUR norm and if every Lipschitz convex function can be uniformly
approximated on bounded sets by C*-smooth functions, then it admits
C*-smooth partitions of unity.
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