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ON THE UNIQUENESS OF THE
POSITIVE SOLUTION OF A
SINGULARLY PERTURBED PROBLEM

E.N. DANCER

0. Introduction. A number of authors have considered the
existence of multiple positive solutions of

(1) —eAu=u? —u in D,
u=0 on dD
if € is small, D is suitably complicated in R™ and

l<p<(n—2)tn+2).

See [1, 20, 24 and 25]. (Some of these consider the Neumann problem.)
Here we consider the opposite situation and show that, if D has n
distinct symmetries and some other properties (for example some form
of generalized ellipsoid) and if 1 < p < (n—2)~!(n+2), then the positive
solution is unique for small positive €. This provides an interesting
contrast with the results above. Note that the results in [3] suggest that
some strong geometric conditions on D are necessary for this result to
be true. We actually discuss rather more general nonlinearities. Note
that the behavior of the positive solutions for small ¢ is quite different
from the cases in [5].

We also make some remarks on the case of large ¢ and the very dif-
ferent behavior of the Neumann problem. The very different behavior
of the problem under different boundary conditions is another source
of interest in the problem.

1. The main result. In this section we prove the main result.
We consider a domain D C R™ such that 0 € D, D has C® boundary,
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D is invariant under the n reflections in the coordinate planes and
such that, in addition, if 1 < 4 < n and if 0 < t < s < {;, then
(I —P;)D;; 2 (I — P;)D; 5. Here P; is the orthogonal projection onto
span e;, D; s = {z € D : z; = s}, {; = sup{z; : * € D}, and {e;}
denotes the usual basis for R™. We say that such a domain is of type
R,.

Theorem 1. Assume that1l <p < (n—2)"*(n+2) (p > 1 ifn=1,2)
and D is of type R,,. Then (1) has a unique nontrivial positive solution
for small positive €.

The key to the above proof is to establish the possible asymptotic
behavior of positive solutions as € — 0. Here we consider a more
general problem. We assume that g : R — R is C1, g(0) =0, ¢'(0) <0
and there exists a > 0 such that g(y) < 0 on (0,a), g(y) > 0 on (a, 00),
g(y) ~yPasy — oo where 1 <p < (n—2)"Y(n+2) (p>1lifn=1,2).
In addition, if n > 3, we assume that there is a 7 < n/(n — 2) such
that g(y) > Ki(y — a)” if y is near a and y > a (where K; > 0).
Alternatively, one could replace this last conldition to assume that g is
increasing on [a,00) and (y — a)~("+t2 (=27 g(y) is strictly decreasing
on (a,00).

We consider the equation
@) —eAu=g(u) inD
u=0 on JdD.

Proposition 1. Assume that the above conditions on g hold, that
D is of type R, and u; are positive solutions of (2) for e = ¢; where
g; = 0 as i = 0co. By choosing a subsequence, if necessary, there is a
positive radial solution v of

(3) —Au = g(u)
on R" such that v(z) — 0 as ||z]| — oo and u; — v(e~%x) converges

uniformly to zero on D as i — oo.

This is the key result for the proof of the theorem. Note that there
can be essentially different behavior in other types of domains. (For
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example, consider radially symmetric solutions on annuli.) We could
prove related results by various other growth conditions at infinity
by combining the ideas here with those in [5] and the weak Harnack
inequality. We discuss this later. We will prove the proposition by a
series of lemmas. Define p € (a,00) by fé‘g =0.

Lemma 1. Assume that u; are as in the statement of Proposition 1.
Then there is a K > 0 such that p < ||u;||eo < K for large i.

Proof. The first inequality follows from Theorem 2 in [10]. The
second inequality will be proved by blowing up. Suppose the second
inequality is false. Then, by choosing a subsequence, if necessary,
we can assume that ||u;|l.c — 00 as i — oo. Note that, by the
Gidas-Ni-Nirenberg theorem, w; has its maximum at zero. We write
u; = ||uilloow; and rescale the coordinates by a change of variable
X; = mzj for 1 < j < n where 72 = ¢ '(||ui]|o)P'. By a simple

calculation, ||w;||eco = 1, w; is defined on 7D and
(4) —Aw; = (JJuilloo) Pg(luillecwi) on 7:D.

Here the Laplacian is in the new variables. By our assumption on g,
and the definition of 7;, we easily see that

(uilloo) Pg(l[uillcowi(2)) — e(wi(x))”

tends to zero umiformly on any set 7" where w;(z) has a positive
lower bound (or more generally on any set T' such that ||u;||cow;(z)
tends to infinity uniformly on T as 7 tends to infinity). Here
we use that y Pg(y) — ¢ as y — o0o. On the other hand, if
{||u;||cowi(z)} is bounded, {g(||ui|lccw;(x))} is bounded and hence
(l|willoo) Pg(||u||oowi(x)) is small for large i. Hence we see that
(Nuilloo) "Pg(||wil|cowi(z)) — cw;i(x)P tends to zero uniformly as i — oo.
Since u; has its maximum at 0, so does w; (where w;(0) = 1) and since
the distance of 0 from the boundary of 7; D tends to infinity as i — oo,
we can use a standard limiting argument (cf. page 441 of [5]) to deduce
that a subsequence of the w; converges uniformly on compact subsets
of R™ to a solution w of —Aw = cwP in R"™ such that ||w||e < 1,
w(0) =1, w > 0. By a result of Gidas and Spruck [13], this is impossi-
ble and hence our original assumption is false and {||u;||« } is bounded.
This completes the proof of the lemma. o
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Remark. By a more careful proof (using boundary blow ups) this
result is true for any smooth bounded domain D in R". Moreover, if
K > 0 the bound holds for all positive solutions u corresponding to &
with 0 < e < K.

Lemma 2. There exist | € (0,a) and Ko > 0 such that u;(z) <1 if
z €D and |z;| > KZE';/Z for all 5.

Proof. Suppose not. We can choose a subsequence of the u; and
x' € D such that u;(z) — a as i — oo and 5;1/23:;. >F,for1<j<n
;- are the components of z¢. (We use

t > 0.) We use a blow up argument again.

J
This time we rescale X; = 5;1/2%- for 1 < j < n and use @%; to denote

u; after the rescaling of z. Note that @;(0) > p by Lemma 1. Much as
in Lemma 1, we find that a subsequence of u4; converges uniformly on
compact subsets of R" to a solution w of —Au = g(u) in R™ such that
w is bounded and nonnegative and w(0) > u. We prove that w < a
somewhere in R™. If not, w > a in R™ and z = w — a is a nonnegative
bounded solution of —Az = g(a + z) in R". Since g(a +t) > ¢;t" for
small positive ¢ if n > 3 and g(a + z)(x) > 0 on R™, this is impossible
by Proposition 3 in [5]. (Note that z is nontrivial since z(0) > u —a
and that, since z is superharmonic, it follows that z is positive on R".)
Hence there exists & € R™ such that w(#) < a. Since w is even in each
variable (because each u; is) we can assume # > 0. Hence, for large i,
@;(%) <1 < a (where w(Z) <l < a). Now, if i is large, 5;1/2mi >z (by
our choice of * at the beginning of the proof). Thus, by the Gidas-
Ni-Nirenberg theorem, @;(e; Y %2") < @;(%) < I. This contradicts our
choice of z* at the beginning of the proof. O

where 7; — oo as ¢ — oco. Here x
the evenness to ensure x

The main difficulty of the remainder of the proof is to show that u;
must be less than a on most of S = {& € D : x; = 0 for some 3}. Let
S’ be the set of points in D on the coordinate axes e;, 1 = 1,... ,n. We
call this the spine. We can easily deduce from Lemma 2 by multiplying
(1) by the first eigenfunction of the Laplacian that u must be small on
most of D.
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Lemma 3. There exists K > 0 and l; < a such that u;(x) < Iy if
z €D and |z| > Kel?.

Remark. This is the key lemma.

Proof. This is proved by a series of blowing ups and by the consider-
ation of full space and half space problems.

Suppose that the result is false. By the various decreasing properties
of the u;’s, we see that there exists ' € S’ such that u;(2') — a and
€; 1/ ?|lzi| — 0o as i — co. Without loss of generality, we can assume
that z* lies on the e; axis. There are two cases to consider. Either

(after taking a subsequence if necessary) {e; 1/ %d(«*,0D)} is bounded
or 6;1/2d(xi,3D) — 00 as { — oo.

Case (i). 61-_1/2d(xi,8D) — 00 as i — 0o. In this case we shift the
origin to x* and then rescale X = s;l/z(x —zt) for 1 <k < n. Note
that, in the new variables, zero is a large distance from the boundary.

Z1/2; .
/x’-—>ooasz—>oo(after

Note also that we may assume that ¢, b

a further choice of subsequence if necessary and using the evenness).
Then, since w;(z) is decreasing in x; for x; > 0, we see that, in the
new variables, u; is decreasing in X; on any compact subset of R"
for ¢ large. Note that in the new variables u;(0) — a as i — 0.
Thus, by a now standard blowing up argument, we obtain a bounded
nonnegative solution @ of —Au = g(u) in R™ such that @(0) = a and
@ is decreasing in X; on R™ (not necessarily strictly). In addition, @
is even in Xy, for k # j and @ is decreasing in X for X} > 0 (again
not necessarily strictly). By Lemma 2, @ cannot be constant (because
after the rescaling, there must be points at a bounded distance K from
zero where 4; is less than or equal to [, and hence the limit 4 must
have the same property). It follows that @ cannot be independent of
X;. Otherwise, & < a in R™ (by our various decreasing properties) and
@(0) = a. Thus, since g(a) = 0, we easily see that ¢ —@ is a nonnegative
nontrivial solution of a homogeneous linear elliptic equation on R™ and
vanishes at 0. This is impossible by the maximum principle. Hence
@ depends on X;. Now 04/0X; satisfies a linear elliptic equation by
differentiating (3) in X;. Since 0a/0X; < 0 by our construction and
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does not vanish identically (by above), it follows from the maximum
principle that 0ua/0X; < 0 in R™. Hence @(z) > a at some points in
R™ and @(z) < a at some points on the part of the spine X} = 0 if
k # j. Moreover, @ < a if | Xj| > Ks for 1 < k < n, k # j. This follows
because, by Lemma 2, @;(X, X]) < [ if all the components of Xj have
absolute value greater than or equal to K, provided X; is not large.
Here Xj is the set of components of X other than X;. Thus we see in
the limit that @(X;, X;) <1 for all X if all the components of X; have
absolute value greater than or equal to K5. This contradicts Lemma
4(i) below (provided we replace X; by —X;). This proves case (i).

Case (ii). This is similar, except when we blow up we possibly obtain
a solution @ on a half space T' (vanishing on the boundary) rather than
the whole space. The rest of the argument is similar except we use
Lemma 4(ii) rather than Lemma 4(i). Note that because & = 0 on 0T
it is easier to see more directly in this case that « must depend on X;.
]

Lemma 4. (i) There is no nonnegative bounded solution u of
—Au = g(u) on R"™ such that u is increasing in x1, even in x; for
Jj > 2 and decreasing in x; for x; > 0 for j > 2, such that u > a
at some point and u < | < a whenever |z;j| > 7 >0 for2 < j <n
and such that u < a at some point on the part of the spine x; = 0 for
1<i<n.

(ii) There is no nonnegative bounded solution u of —Au = g(u) in
T, ={z € R™ : z1; > 0} such that u =0 on 0T, u is increasing in xy.
u > a at some point, u is even in x; for j > 2, u is decreasing in x;
forz; >0andj>2, andu<Il<aifzy >0 and if |z;] > 7 >0 for
2<j<n.

Remark. Clearly a similar result holds if we interchange the role of
the coordinates. In part (ii) it can be shown that the nonnegativity
forces u to be increasing in .

Proof. (i) It is convenient to prove a more general result on u where:

(8) u is positive and u > a somewhere,
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(b) w is increasing in z; for i = 1,... ,m,
(€) even in z; for m < j < n,
(d) decreasing in x; for ; > 0 and m < j < n and

(€) if m < n, u <! < a whenever |z;| > 7 > 0 for m < j <n, and
u < a somewhere on the set ; = 0 whenever i > m.

It is easy to prove the result if n = 1 by using the first integral.

To prove the result, we assume that there is a counterexample with
minimal n and with m maximal (among those with minimal n). We
reduce to the case where u(z) — 0 if |Zp11] - - + |2n]| = 00 uniformly
in z; for ¢ < m. To do this, note that, since u is decreasing in
ZTm41, Wwe see as in part of the proof of Theorem 1 in [6], that
W(Zmy1) = limg,, ., oo u(z) is a solution of —Au = g(u) on R"*
such that & < a somewhere on the set x; = 0 whenever i > m (since
u has this property and since u is decreasing in Z,,4+1 for 2,41 > 0)
and 4(zo,...,2,) < Uif |z;) > 7 for m +2 < j < n. Thus we have
reduced n by 1 if & > a somewhere. If ||i||cc = a and 4(zg) = a for
some g € R™, we can argue as in the proof of Lemma 3 and deduce
that & = @ in R™ . This is impossible since we know that 4 < a at
some points of the spine. The next possibility is that ||i||.c = a but the
maximum is never achieved. There are two cases here. Firstly, there is
the possibility that m +1 = n. Thus 4 is increasing in all its variables.
Now since ||@||o = a, @ is subharmonic and thus, by Proposition 3 in
[5], it will approach its supremum ds,, = a as * — co along most rays
through the origin. However, since & < a at some points (as noted
above), @ is not constant. It is easy to see the conditions that @ is
nonconstant, 4 is increasing in all the variables and lim,_,, i(re) = a
for almost all directions e is impossible. Thus, we have a contradiction
ifm+1=n.

If m+1<mnand ||| = a, we let & = lim,, oo @(z). Since 4 is
increasing in x1, we see as before that 4 is a solution of —Au = g(u)
on R"~2. Moreover, ii(z) < [ if |z;| > Ky for M +1 < i < n and
[|t||cc = a. Once again, it is easy to obtain a contradiction if the
maximum is achieved. By successively taking limits to remove the
increasing variables, we would eventually end up with a solution @ of
—Au = g(u) on R* ™! which is decreasing in all the z; for z; > 0,
even in x;, 4(x) < lif |z;| > Kz for 1 <i<m —n and ||i||c = a. In
this case it is easy to see that the maximum is achieved and hence as
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before u = a, which is impossible. Thus, we have shown in all cases,
[|i]|co = a does not occur. If 0 < ||é||cc < a, we can use Proposition
3 in [5] to obtain a contradiction. Thus, the only remaining possibility
is that 4 = 0, that is,

(5) im u=0

Tm41—+00

for all &,,41.

We prove that there is a counterexample with the same n and a larger
m, unless limg,, , soo v = 0 uniformly in &,,,1. By our decreasing
properties, it suffices to consider the case where the limit is not uniform
for &1 in T = {x; : z; = 0if i > m + 1}. Hence, if the limit is not
uniform, there exist z}},,, large, ), ., € T and c in (0,a) such that
u(xy, 1,2y 1) > c for all n. Since u — 0 as ,,41 — 00, we can, by
replacing xj,, ., by a larger value, assume that w(z}, ,,,27,,,) = c.
By shifting the origin to (z},,,,Z]%,,) and passing to the limit as
n — oo much as before, we obtain a bounded nonnegative solution
of —Au = g(u) on R™ such that u(0) = ¢, u is increasing in z; for
1 < i < m, decreasing in z,,+1 (since u is decreasing in z; for z; > 0
and z7}, ., — 0o as m — 00) u is even in x; for i > m+2, u is decreasing
in z; for i >m+2and z; > 0 and u(z) <1 if |z;] > K5 for i > m + 2.
By replacing x,,+1 by —%,,+1, we can assume u is also increasing in
Zm+1- If ||u]|oo < a, we can use the argument of the previous paragraph
to obtain a contradiction. Thus, ||u||o > a. Hence we have an example
with the same n and a larger m if the limit in (5) is nonuniform.

We can use a similar argument to prove that, if we have a coun-
terexample with minimal n (and then maximal m), we must have
limg, o0 u(x;, &) = 0 uniformly in &; for every i > m + 1. By the
evenness and monotonicity properties of u;, it follows that u(z) — 0 as
||Pz|| — oo uniformly in (I — P)a where Pz = (0,...0,Zpt1 ... Tn)-
Now, by the monotonicity, one sees as before that limg, oo ,1<i<m u(z)
exists and is a solution w of —Awu = g(u) on R"~™ such that w is even
in z; for m < i < n, decreasing in z; for z; > 0 and m < i < n and
w(z) — 0 as ||z|| — oo, x € R"™™. By the monotonicity and since
w — 0 as ||z]] — oo, x € R" ™, one easily sees that u(Z) — w(Z)
uniformly in P% as z; — oo for 1 < i < m. Since ¢’(0) < 0, we can
apply a result of Gidas Ni and Nirenberg [12] to deduce that w is radial
and w decays exponentially.
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By an earlier argument, we find that either u is independent of z;
(where 7 is fixed with 1 < ¢ < m) or Ju/dz; > 0 in R™. The former
case cannot occur by the minimality of n. Thus we can assume that u
is strictly increasing in z; for 1 < i < m. We will prove a little later
that there exists an o < 0 such that the problem —Ah = ¢'(w)h + ah
on R™™™ has a nontrivial exponentially decaying positive solution ¢
(and its first and second derivatives also decay exponentially). Define

A0) = [ (wl@) - u(e+ £)6(@) ds

for £ € R™ and £ € R"~™. Note that z > 0 on R™ since ¢ > 0 and u
is strictly increasing in & (to w). By using the exponential decay of ¢,
by the equations satisfied by w, u and ¢ and integrating by parts, we
eventually find that

A= [ fgw) - g(w) - ¢ (w)(w - w) - a(w - w)é dz
— [ @O - -z

where 0(%, %) is between u(z) and w(Z) (by the mean-value theorem).
Here A’ is the Laplacian on R™. (Note that in deriving the first
formula, we have used the identity

| aw)s = ulg/(w) + ajo =0.

This is obtained by multiplying the equation —Aw = g(w) by ¢,
integrating twice by parts and by then using the equation satisfied
by ¢.) Since u converges uniformly to w as z; — oo for 1 < i < m, it
follows that there is a K > 0 such that ¢'(0) — ¢'(w) > a/2 if z; > K
for 1 <i < m. Hence, we eventually find that

1
(6) —A'z 4+ 502 >0

if x; > K for 1 < i < m. Choose a ball B in R™ such that the first
eigenvalue of —A’ on B with Dirichlet boundary conditions is —a/2.
We can translate B such that B C {z : z; > K for 1 < i < m}. Let
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¢1 be the corresponding first eigenfunction. If we multiply (6) by ¢
and integrate by parts, we find that 0 < faB 20¢1/0n where n is the
outward normal and we use that ¢; = 0 on 0B. This is impossible since
z >0 on 0B and 0¢;/0n < 0 on OB. Hence, we have a contradiction
and this case does not occur.

The only remaining case is where m = n, that is, u is increasing in
all variables. If ||u||oc < a, we covered this case earlier in the proof. If
||ulloo > a, we prove the result without the additional assumption that
u < a somewhere. As before, we find that @(zg) = lim,, . u(z) is a
solution of the same equation on R"~! and ||i||e = ||u/|ec > a. Thus,
if we have such an example, we can reduce dimensions until we have an
increasing positive solution @ of —u” = g(u) on R with |||/ > a. It
is easy to use the first integral to show that this case does not occur.

It remains to construct ¢ in the second case. This is a variant
of an argument in [6]. By differentiating the equation for w in z1,
z = Ow/0z; is a solution of the eigenvalue problem

Az + g (w)z = Az

on R™ ™ corresponding to the eigenvalue zero. Note that, since w
decays rapidly at infinity, it follows easily from the equations that
Ow/0Ox; and its derivatives also decay rapidly at infinity. Thus, z €
WL2(R*=™). Since w — 0 as 1 — +00, we easily see that z changes
sign in R™"™ ™. We can then argue much as in part of the proof of
Theorem 1 in [6] to deduce that z (or more strictly a multiple of z)
does not minimize the functional E(d) = [, . [V®|?/2 — ¢/ (w)d? /2
on T = {w € WHLZ2(R"™) : ||w|]ls = 1} while E(z) = 0 (by
a simple calculation). Thus, F must take negative values. Hence,
a = inf,er E(W) exists, & < 0 and « is achieved. (To see that « is
achieved, it suffices to show that the corresponding self-adjoint operator
H(v) = —Av — ¢’(w)v on L*(R" ™) with domain W2?2(R™" ™) has
the property that H — Al is Fredholm for A < 0 and is invertible for
A large negative. The second property follows easily from the Lax-
Milgram lemma while the first follows since our condition that w — 0
as |z1| — oo ensures that H — AI is a relatively compact perturbation
of —Av — (¢'(0) + A)I and since ¢'(0) + A < ¢'(0) < 0 for A < 0).
If ¢ minimizes E on T, we can, by replacing ¢ by |¢|, assume that
¢ > 0. Then ¢ is a weak solution in L?(R"™™) of —Av — ¢'(w)v = av
on R" ™. Standard regularity theory ensures that ¢ is a strong and
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smooth solution. Since ¢'(w) +« — a < 0 as |Z| — oo, a result of
Kato [17] ensures that ¢ decays exponentially. Standard local W?2?
estimates ensure that the derivatives of ¢ decay rapidly as || — oo.
This completes the proof in the full space case.

(ii) The half space case. This is very similar. Once again, we make
our inductive step the case where u is increasing in z1,... ,Z, (and
decreasing in z; for z; > 0 if j < m + 1) and we require that v < [ if
z1 > 0and |z;| > 7 for m < j < n. As before, if m > 2 we can decrease
n or increase m by letting x,,41 tend to infinity (and keep a half space
problem). If u is increasing in all variables, we can reduce as before
to a half space problem with n = 1. This can be easily studied by
using the first integral. In the case where we have nonuniform decay as
some of the z; (for j > m + 1) tend to infinity when we use a blowing
up argument as in part (i), we may end up with a problem on R".
However, this can be handled by the result of part (i). This completes
the proof of Lemma 4. ]

Proof of Proposition 1. We first improve Lemma 3 by showing that,
if Io > 0 there exist K3 > 0 such that |u;(z)| < I if x € D and
1/2

l[z']] — oo as i — oo and w;(x') > l». If we use a change

K3 and i is large. Suppose not. Then there exists ' with
€

3
of variable X = ¢, 1 *(z — #') and note that in the new variables
T, ={z:||z|]| < 62/21(2} is at a distance from the origin which tends
to infinity as ¢ — 00, we see by a now familiar blowing up argument
that we have a nonnegative solution U of —Awu = g(u) on R™ such that
U(0) > Iy and U(z) < Iy on R". (Here we have used Lemma 3 to
ensure that u; <1I; of R"\T;.) As before, this contradicts Proposition

3 in [5]. Thus, our original claim holds.

Next, if we use the change of variable X = ¢, Y zac, we see much as
before that a subsequence of u;(X) converges uniformly on compact
sets to a solution v of —Av = g(v) on R". However, by what we have
proved above, u;(X) is uniformly small off compact sets. Thus, v must
have the same property. Hence, u;(X) —v(X) must be uniformly small
oneg; 12p, Thus, we need only prove that v is radial. By our comments
above, v — 0 as || X|| — oo. Since ¢'(0) < 0, as result of Gidas, Ni
and Nirenberg [12] implies that v is radial (possibly after a change of
origin). However, v has the same symmetries as u; and hence v is even
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in z; for 1 < j < n and strictly decreasing in X; for z; > 0. Hence v
must be radial about the original origin. This completes the proof of
Proposition 1. ]

Remark. A variant of Proposition 1 holds for many other types of
behavior at infinity. For example, it still holds if g(y) ~ y as y — oo.
(The proof uses that —Awu = u has no bounded positive solution on
R™.) As another example, assume that there is a b > a such that
g(b) =0, ¢'(y) < 0 on (b—7,b) where 7 > 0, g(y) > 0 on (a,b)
and g satisfies similar assumptions as before on [0,a) and at a and
fob g > 0. (If the last condition fails there are no positive solutions.) In
this case, results of Clement and Sweers [4] and [22] show that there
is a 71 > 0 such that, if X is large, (2) has a unique positive solution
uy with b — 71 < [|ux|loo < b. Moreover, ||ux|| = b as A — oo and u),
is close to its maximum on compact subsets of 2. This is proved by
constructing families of subsolutions. On the other hand, if 75 > 0, our
proof shows that the conclusion of Proposition 1 holds for solutions u;
with ||u;]|coc < b— 72 for all ¢ (with the same proof). Since it is easy to
prove that there are no positive radial solutions of —Au = g(u) in R™
with ||u||oo close to but less than b (by sweeping families of subsolutions
or by continuous dependence), it follows that we have a rather complete
answer in this case as well. Note that the results in [1] and the remark
after Lemma 1 imply that for some domains we may have more than
two positive solutions for all large A. Thus, this case is not as simple
as some of the cases in [5]. Analogous results hold if g(y) > 0 for y > a
and if either (i) g(y) = M as y — oo (where M > 0) and yg'(y) — 0 as
y — oo or if (ii) there isa p € (0,1) and i > 0 such that y'"P¢'(y) — &
as y — oo. In each of these two cases, one proves that, if X is large
there is a unique positive solution uy with ||uy||e large, and other
positive solutions have ||u) || uniformly bounded; then the conclusion
of Proposition 1 holds for these other positive solutions. The idea here
is to apply a Harnack inequality to (||u||,) "*u and barriers (where u is
a solution of (2)) to deduce that if ||u||~ is large, then u(z) is large for a
relatively large set of  and then use a sweeping family of subsolutions
to deduce that u is large on nearly all of 2 (much as in [4] or [5]). Note
that we can use similar arguments to bound the positive solutions of
—Au = g(u) in R™ (with [|u||oc < b when g(b) = 0). It seems likely
that the condition ¢'(0) < 0 can be weakened. (Most of our arguments



SINGULARLY PERTURBED PROBLEM 969

are still valid if ¢’(0) = 0.) In particular, if n = 2, Proposition 1 is still
valid except that it is unclear if v has to be radial. Our methods can
be generalized to cover cases where g > 0 on (0,a;), g < 0 on (a1, az)
and g > 0 on (az,a3) where [*g > 0 and provided either g(0) > 0
or both g(0) = 0 and ¢’(0) > 0. In this case positive solutions u with
u(0) € (ag,as) and u(0) not close to az have a sharp peak much as in
the proposition and are close to a; except near 0 and 0€2. Thus, they
have two distinct layers of rapid change.

Proof of Theorem 1. Firstly, it is well known (cf. [18]) that —Au =
uP —u has a unique positive radial solution ug in R™ such that ug(r) — 0
as 7 — 0o. Thus, if the u; are positive solutions of (1) for i large, then

l/ 2:1:) — ug converges uniformly to zero as ¢ — co. The existence of
at least one positive solution of (1) for all ¢ follows by a simple and
standard degree argument combined with the apriori bound in Lemma
1. (Alternatively, one could use the mountain pass theorem.) Thus, it

suffices to establish the uniqueness. Suppose that u; and w; are both
—1/2

%

u(el

positive solutions of (1) for ¢ = ¢;. Then after the rescaling X = ¢, 'z,
u; and w; are both positive solutions of —Au = uP — u on si_l/QD and
hence z; = (||@; — Wi||oo) 1 (@; — ;) is a solution of

. BN (OB (N

ui—f;i

on Ei_l/zD such that |[zi||oc = 1 and 2; is even in z; for 1 < j < n
(where f(y) = y? — y). By a now standard argument we can pass to
the limit and obtain a solution zg of

(8) Az = f'(up)z

on R™ such that ||zp|/cc < 1 and z is even in z; for 1 < j < n. In the
following paragraph we will prove this implies that zp = 0. Assuming
this, it follows easily that z; converges uniformly to zero on compact
sets. Hence, if z° is such that z;(z%) = 1 then ||z|| — oo as i — oo.
Hence, i;(z") and ¥;(z*) are both small (by Proposition 1) and hence
we easily see that (f(@, (z?)) — f(9:(2%)))/(@;(z*) — ¥;(x*)) < 0 (since
f'(0) < 0). Hence, by the equation for z;, —Az(z') < 0. This is
impossible at a local maximum and hence we have a contradiction.
(Note that z* must be in the interior of 6;1/2D.)
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Thus it remains to prove that (8) has no nontrivial bounded solution
2o which is even in z; for 1 < j < n. Since f'(0) < 0, once again we
can use Kato’s result to deduce that zy decays exponentially. If R > 0
such that zy does not vanish on the sphere of radius R, choose an n-
dimensional spherical harmonic Z such that [ 20(Rw) X (w) dw # 0
where S is the unit sphere in R™. (This exists by completeness.) By a
simple computation, h(r) = [ 2o (rw) X (w) dw is a solution of

_rlfni(r"*h’(r)) + 7 %a@h = f'(uo)h on (0,00)

dr
0)=0 ifa=0

(9) B
h(0)=0 ifa > 0.

(
(
Here & is the eigenvalue of the Laplacian on the sphere corresponding to
the eigenfunction X. (Thus @ = 0if X =1 and & > n — 1, otherwise as
in [22].) Note that the boundary condition at zero is forced because 2
must be smooth at zero (because zq is a solution of an elliptic equation).
Since h(R) # 0 by our choice of X, h is nontrivial. Note also that h
decays exponentially since zy does. We use different arguments for the
case @ = 0 and & > 0. If @ = 0, h(r) is a radial solution of (8).
This is impossible by Lemma 19 in Kwong [18]. (Note that he assumes
a > 0 in his notation but, as he comments later, his arguments are
still valid if a = 0. Here a is defined in [18].) If & > 0, we see by
differentiating (1) that Oug/dx; is a solution of (8), that is, uf(r)r 1z
is a solution of (8). By a simple calculation, this implies that wu{(r)
is a solution of (9) for @ = n — 1. Since uy is radial and C? at zero,
we easily see that uf,(0) = 0. Since u decays exponentially at infinity,
it follows from the equation that uf does as well. It follows easily
that v = —uy is the only solution of (9) for @ = n — 1 which decays
rapidly at infinity (because if w were a linearly independent solution
(o' (r)w(r) — w'(r)v(r)) would be a nonzero constant). If h were
a nontrivial solution of (9) for @ > n — 1 with h(0) = 0 such that A
decays exponentially, then we could use the Sturm comparison theorem
to prove that & has at most one positive zero (since Gidas-Ni-Nirenberg
implies that ug(r) < 0 for » > 0). Let ¢ be this first zero if one exists
and let ¢ = oo otherwise. We may assume A > 0 on (0,¢). One easily
finds that Z(r) = v 1(v'h — vh') has the properties that Z(r) — 0
as r — 0 and Z is strictly decreasing on (0,¢). Thus Z(c) < 0 if
¢ < co. Hence —h'(c)v(c) < 0 which is impossible since v(c) > 0 and
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W (c) < 0. Thus ¢ = oo and 7" (v (r)h(r) — v(r)h'(r)) has a negative
limit (possibly —c0) as r — oo. This is impossible since h and v decay
exponentially. Hence (8) has no nontrivial solution z with z decaying
exponentially at infinity other than r~*u{(r)z; (or linear combinations
of these). Hence zero is the only solution of (8) which is even in the

x;, as required. This completes the proof. ]

Remark 1. In the last paragraph we only use the particular structure
of the nonlinearity to exclude radial solutions of (8). In fact, the main
part of the argument for nonradial solutions is a variant of the proof
of the Sturm comparison theorem. A similar argument shows that any
bounded solution of (8) which corresponds to a negative eigenvalue
must be a radial solution.

Remark 2. Note that it is unclear if the positive solution in Theorem
1 is unique for large positive . It is possible to use the ideas in [5]
to show that for any domain D, the number of positive solutions for
large € is ‘usually’ determined by the number of positive solutions of
—Au=u? in D, u =0 on dD. Unfortunately, if n > 2, it is not known
if this problem has a unique positive solution for D as in Theorem 1.
(It is unique if n = 2 by Theorem 5 in [8] and one can deduce that (1)
has a unique positive solution for large ¢ if n = 2.)

Remark 3. There is an alternative method of proving the existence
of the positive solution in Theorem 1. One works in {u € C(D) :
u is even in z; for 1 < i < n}, one uses v(e~/2z) as an approximate
solution, and one uses a contraction mapping argument rather similar
to (but easier than) the proof of Theorem 3 in [8]. (One has to check
positivity directly.) This method works in other situations. Note that
it is important that ¢’(0) < 0 to ensure that 0 is not in the essential
spectrum of the limits of the linearizations as ¢ tends to zero. On
the other hand, the arguments in the proof above are often valid if

4(0) = 0.

Remark 4. Unfortunately, it seems that the multiplicity of positive
solutions for general g (for g as in the proposition) is quite complicated
if n > 2. Some sufficient conditions for uniqueness can be found
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in Kwong and Zhang [19]. We sketch briefly why there may be
nonuniqueness. The methods for constructing counterexamples in Ni
and Nussbaum [20] (which is based on an idea of Hempel [15] when
n = 2) implies that we can find a positive g such that g(0) = ¢’(0) =0
and the equation —Au = g(u) has a positive radial solution ug on
R™ which decays at infinity and the radial solution h of the linearized
equation satisfying h(0) = 1 has at least two positive zeros. We can
always change g so that g behaves asymptotically like y? for large y.
Moreover, with care, we can modify g for small y (by a small amount)
and ug for large r such that g satisfies the assumptions of Proposition
1 and wug still exists. Since we only modify g for small y and ug for
large r, the radial solution of the linearized equation will still have at
least two positive zeros (by continuous dependence). By a variant of a
theorem of Dunford and Schwartz [11], it follows that the linearization
of (3) at up has at least two negative eigenvalues corresponding to
radial eigenfunctions. On the other hand, if ¢ > 0, it is not difficult
to use the strong form of the mountain pass theorem to show that
(2) has a solution u. on D such that the linearization of (3) at u.
on D has at most one negative eigenvalue. It follows easily from
consideration of the continuity of the spectrum under perturbations
that if a subsequence of u.(¢7'/%z) converges to v as ¢ — 0 then the
linearization of —Au = g(u) on R™ at v has at most one negative
eigenvalue. (Similar arguments appear in [6, Section 2].) Hence, in
any example where we find a solution w of —Au = g(u) on R™ such
that the linearization at w has at least two negative eigenvalues, there
will be nonuniqueness. By deforming the nonlinearity in the example
of nonuniqueness to uP? — u such that the assumptions of Proposition 1
are always satisfied, we obtain an example where there must be a radial
solution such that the linearization at this solution of —Au = g(u) has
a nontrivial radial solution decaying at infinity. On the other hand,
if every positive solution decaying to zero of —Au = g(u) on R" is
nondegenerate, one can show by using the previous remark that the
number of nontrivial positive solutions of (2) for small ¢ is equal to the
number of nontrivial positive radial solutions of —Au = g(u) on R"
which decay to zero at infinity. It seems likely that this nondegeneracy
assumption holds for ‘generic’ g. If g is real analytic, one can use the
ideas in the proof of Theorem 5 in [9] to prove that (3) has only a finite
(up to translations) number of positive solutions on R™ which decay to
zero at infinity.
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Remark 5. If n = 2 and g is as in Proposition 1, one can generalize
the results in [16] slightly to prove that each component 7" of the set of
positive solutions (u, A) of —eAu = g(u) on D with Dirichlet boundary
conditions is a smooth one-manifold parameterized by u(0). Moreover,
there is a unique component 77 such that {u(0) : w € T} } is not bounded
and if {u(0) : v € T} = (o, B), then the equation —Au = g(u) on R?
has bounded positive radial solutions wy,ws on R? tending to zero
at infinity such that w1(0) = «, w2(0) = B. (The last result uses
Proposition 1 here.) Results of this type hold for rather more general
nonlinearities.

Note that the corresponding Neumann problem behaves somewhat
differently. We only consider (1) but with Neumann boundary condi-
tions. In this case u = 1 is a solution for all £ and nonconstant positive
solutions bifurcate off this whenever e~!(p — 1) is a positive eigenvalue
of —A (for Neumann boundary conditions). (This follows by a rather
standard bifurcation argument for equations with a variational struc-
ture.) Thus, there is bifurcation of positive solutions for arbitrarily
small € and a uniqueness theorem like Theorem 1 cannot be true. In-
deed, we might expect there to be many solutions (since there are many
bifurcations).

A variant of our ideas has other uses. Let v be the radial decaying
positive solution of —Au = u? —u on R™. We can then use v(e 1/?(z —
xp)) as an approximate solution of (1) for small ¢ if zp € Q where
we now use Neumann boundary conditions. One can show that the
linearization about this approximate solution has exactly n — 1 small
eigenvalues for small ¢ and the kernel is close to the tangent space
Ty, (09). Using this and an implicit function argument, one can reduce
the problem of the existence of solutions of (1) close to {v(e 1/2(x —
x0)) : g € ON} to the zeros of a tangent vector field on I (where the
tangent vector field is a bifurcation equation). One then uses standard
multiplicity results to deduce that, for small e, (1) with Neumann
boundary conditions has at least cat (9€2) positive solutions where cat
denotes the Lysternik-Schnirelmann category. This gives an alternative
proof of a result in [23]. (One needs a little extra work to check that
these solutions are positive.)
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