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A CHARACTERIZATION OF INNER PRODUCT SPACES
BASED ON ORTHOGONAL RELATIONS
RELATED TO HEIGHT’S THEOREM

C. ALSINA, P. GUIJARRO AND M.S. TOMAS

ABSTRACT. We study two orthogonal relations in a real
normed space related to the height’s theorem and some char-
acterizations of inner product spaces are obtained.

Orthogonal relations in real normed spaces have been studied with
some detail (see [2]) in relation with characterizations of inner product
spaces and the study of orthogonal additive mappings (see [1, 6, 7]).
The most classical orthogonal relation in a normed space (E,|| ||) is
the Pythagorean relation 1* defined through Pythagora’s theorem:

(1) e 1Py it o+ yl? = |zl + [yl

Let us note that in inner product spaces Pythagoras theorem is
equivalent to the height’s theorem: the height over the hypotenuse is
the geometric mean of the two divisions of the hypotenuse determined
by the foot of the height (i.e., the height divides the triangle into two
homothetic pieces). This observation has motivated the formulation of
another orthogonal relation L alternative to (1), i.e., if z and y are
the legs, @ — y the hypotenuse and 1/(|[z|[? + [lyl2)(|lyl % + [lz[*y)
the foot of the height, we define

e lfy it wwww+nﬂ2%‘
21+ 1yl
1/2
:H|mmxw w|wvmy>]/
IR R TREAR
or, equivalently,
@ a LTy it eyl [yl = [yl + 2] Pyl
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For inner product spaces, (1) and (2) are equivalent to the usual
orthogonality (z,y) = 0, but in general in real normed spaces (1) and
(2) have no connection. This is shown in the following

Example 1. Consider the real linear space E = {f | f: [0,1] = R, f
is continuous} endowed with the norm ||f||s = sup{|f(z)|| = € [0, 1]}.
If we take f(z) = z and g(z) = 2z — (v/65/4)2?, then f L¥ g but
f L g,ie., (2) does not hold when (1) is true. On the other hand,
taking f(x) = 1 and g(x) = —2kx +k we have that f 17 gbut f /T g,
i.e., (1) does not follow from (2).

This situation allows us to study relation (2) in some detail, and this
is precisely the aim of the present note (made after the authors realized
that (2) has not been analyzed previously). In what follows, (E,|| ||)
will always be a real normed space and dim E > 2.

Note that, for z,y # 0, relation (2) may be reformulated in the form

o Lz =yl z y
(3) x 1™y if =
(gl Il Tyl
and, obviously, on the spheres, i.e., when ||z|| = ||y|| then (3) reduces to
the well-known James orthogonality: z#y whenever ||z —y|| = ||z +y|

(following example 1, the consideration of f(z) = = and g(z) = = — z?
yields f#g but (2) does not hold; if we consider f(z) = 1 and
g(z) = (=14 — 8v/3)x? + (12 + 8/3)x, then f L g but f#g is not
true).

The next lemma contains some elementary facts concerning the
relation 1 ¥ which can be proved easily.

Lemma 1. In a real normed space (E,|| ||) with dim E > 2, the
relation L7 defined by (2) satisfies the following conditions for all z,y
in E and for all a in R:

(i) 0L"y;

(i) = L¥ y if and only if y LH x;

(iii) Ifx L2y, then ax L7 ay;

(iv) Ifz LH y and z,y # 0, then = and y are linearly independent;
)

(v) If the norm derives from an inner product (,) then the relation
x 1 y is equivalent to the usual orthogonality (x,y) = 0;
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(vi) @ L —y, 2,y #0, if and only if x/||z[|* L7 y/||y|1*.

Theorem 1. For all x in E and for all t > 0, there ezists y in E
such that ||y|| =t and z L7 y.

Proof. Fixed z in E and t > 0 define f: {z € E | ||z|]| =t} — R by

Nz ==
||z[[¢

T z
2

f(z):HW*t_

Then f is a continuous function satisfying the property

mer) =~ 17r)

and therefore it is immediate to show that there must exist y in £ such
that ||y|| =t and f(y) =0, ie,z L7 y. o

This result says, in particular, that the relation L is not trivial in
the sense that there are (always!) nonzero orthogonal elements.

Theorem 2. For all z,y in E\{0} which are linearly independent,
there exists a ty > 0 such that  + toy LH z — toy.

Proof. Define g : [0,00] — R to be the function:

g(t) = 2t|[y[[ ||z + ty|| [|= — ty]
= [Hle + ty|*(z — ty) + llz = tyl[*(z + ty)].

Then g is continuous and g(0) = —2||z||> < 0. If we consider the
function G : (0,00) — R given by

G(t)

)

:le+ty||w—ty|H z —ty T +ty
t lz —tyl[* ||z + tyl?

then G is continuous, lim; ¢ G(t) = 400 and

lim G(¢)

t——+o0

t
=0 < 2[[yll-

A ‘EHyH.H%xyHH|(1/t)xy Ut

(/D) —yll* ~ [I(1/D)x +y|]?

:lim'



846 C. ALSINA, P. GUIJARRO AND M.S. TOMAS

Thus there exists a ¢t; > 0 such that G(¢1) < 2||y||, and for such t; we
also have g(¢1) > 0. Therefore, there exists ¢y > 0 such that g(¢9) = 0,
ie., z+toy L z—toy. ]

Using the above result, we can exhibit an interesting characterization
of inner product spaces.

Theorem 3. Let (E,|| ||) be a real normed space with dim E > 2.
If, for all x,y € E\{0} the following implication holds:

T Y
_= | P ,
||| Iyl

(4) x 1"y implies = 1"y and
then E is an inner product space.

Proof. Let x and y be two linearly independent vectors in E such
that ||z|| = ||ly|| = 1. By Theorem 2, we know that there exists to > 0
such that x +toy L x —toy. Thus, by (4) we have = +toy LT x —toy
and (z + toy)/||z + toy||> LT (z —toy)/||z — toyl|?, i-e.,

[l + toyl|* + [z — toyl|* = |z + toy + = — toy||*

(5)
= 4||z||” = 4,

and

1 N 1 _H x +toy H T — toy 2
|z +toyll® ~ [lz —toyl* [/ ll= + toyl|? ||z — toyl|?

H z + toy z — toy
H$+%MP |z — toyl|?
Az + toy — (= — toy)|)®
2+ toyl Pl — toyl]?

whence

4 = [z + toyl|> + ||z — toyl* = 465 ly||* = 43,
i.e., top = 1 and therefore, by (5),

(6) le +yll* + |z — y|* =
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Since it is well known (see [2]) that this version of the parallelogram law
implies that || - || comes from an inner product, the proof is complete.
[}

Let us turn our attention to another orthogonal relation related to
the heights theorem.

Define h(z,y) := y+ (py (v —2,y))(z —y)/||z - y||*, where pl, (a,b) =
im0+ (|| + tb][* — [la[*)/2¢.

When the norms come from an inner product, (, ), then p/, = (,) and
h is the usual height. Thus, we now define

eluy i |Ih(zy)|* =z - )l lly - bz, )l

or equivalently,

p;(y—w,y)( 2

—y)
|z — yl|?

zlpy if Hy+

Py —z,y)
||z — y|[?

\|p'+<y—x,y>|-

In a real normed space (E,|| ||) with dim E > 2, the relation Lg
satisfies the following conditions for all ,y in E and for all ¢ in R

(i) 0 Lyyandz Ly 0.
(ii) If z Ly y, then az Ly ay.
(i) Ifz Ly y and z,y # 0, then z and y are linearly independent.

(iv) For all z,y in E\{0} which are linearly independent, there exists
to > 0 such that x + tgy Ly = — toy.

Concerning this last condition, note that a positive number ¢, verifies
x +toy Ly = — toy if and only if
2

P (y,x)?
=|lyl? :

llyll*

P (y,z)

T— Y
|yl I?

t2 —

Thus, we can take

o

P (y,x)

1
lyll? '

Iyl

’ p'(y,m?)“
.

+
[lylI?
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Theorem 4. Let (E,|| ||) be a real normed space with dim E > 2.
If, for all z,y in E\{0}

T T
<m+ My) L1y (ac — My),
[yl 1yl
then E is an inner product space.

Proof. 1t is immediate from the assumptions that

T — p,_(yaw)y 2: ||yH2 ||£EH2 _ pl—(yam)Q
|ly[[? |lyl[? lyll*
e A(y)?
=zl = %
[yl

for all z,y in E\{0}.

If we substitute = by x + ty where ¢ is in R™, we obtain
||z + tyl|* = [2l1* = 2||y|* + 2tp"_(y, )

and ) ) )
|z + tyl® —[l=[I* _ ¢yl

2t 2
When ¢ tends to 0, we have the equality p’, (z,y) = p"_(y, z).

Therefore, o, (z,y) < p', (y, z) for all z,y in £\{0}. This fact implies
that o, (z,y) = p/,(y,z) and (see [2]) E is an inner product space.
O

+ 0" (y, ).
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