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SMOOTH PARTITIONS OF UNITY
IN BANACH SPACES

JULIEN FRONTISI

ABSTRACT. We show that if a Banach space X has an
LUR norm, and if every Lipschitz convex function on X can
be approximated by C*-smooth functions, then X admits C*-
smooth partitions of unity, and thus every continuous function
on X is a uniform limit of C*-smooth functions.

1. Introduction and notation. Partitions of unity and smooth
approximation on Banach spaces have been studied since the 1950’s.
For early references on the subject, the reader may refer to the bibli-
ography in [1] or [2, Chapter 8].

In [1], Bonic and Frampton obtained results for classical separable
spaces. The nonseparable cases were settled by Toruriczyk [12] who
used homeomorphic coordinatewise smooth embeddings into spaces
¢o(T'). A refinement of this method, in [4], was used to extend Bonic and
Frampton’s results to weakly compactly generated spaces. Building on
the idea, McLaughlin [7] proved similar results to those we obtain here.
In fact, he proved that if a w-LUR norm on a Banach space X can be
uniformly approximated on bounded sets by equivalent C**!-norms,
then X admits C*-smooth partitions of unity.

The more geometrical approach we are following here originates in a
paper of Milman [8]. It has already provided first-order smoothness
results as in Theorem 2.1 in [14] (see also [2, Theorem 8.3.12]),
Theorem 2.2 in [10] and in [11]. Milman’s ideas have also been used
in [9] to obtain smooth partitions with Lipschitz derivative.

Let us finally mention that our Proposition 2.5 extends Proposition
8.3.10 of [2] and provides a result of transfer for smooth partitions of
unity.

We recall that a Banach space X admits C*-smooth partitions of
unity if for any open covering {U,}aca of X there exists a family of
C*-smooth functions {¥, }4ea with the following properties:
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i) The family {supp ¥, }aca is locally finite and supp ¥, C U, for
all & in A.

i) > ¥, =1on X.

aEN T
We say that a norm || || on a Banach space X is locally uniformly
rotund (LUR) if for all 2 in X, lim ||z, —z¢|| = 0 whenever {zy}n>1 C
X satisfies lim ||z,|| = ||zo|| and lim ||z, + zo|| = 2||z0||. A norm is

said to have the Kadec¢-Klee property if the norm and weak topologies
on the unit ball coincide at each point of the unit sphere of X. A norm
is average locally uniformly rotund (ALUR) if and only if every point
of Sx is a point of dentability. This condition is equivalent to the fact
that the norm has the Kadec¢-Klee property and is strictly convex.

The ALUR property is weaker than LUR but we know by Troyanski’s
theorem [13] that the existence of an ALUR norm implies the existence
of an LUR norm (see also [2, Section 4.2]). So this doesn’t actually
weaken the hypothesis of LUR in our theorem.

In the following, X denotes a Banach space, Sx, Bx and By are its
unit sphere, open and closed unit balls; ¥ € N or k = oo, and U* is the
collection of sets:

Ut = {f71(0,+00)), f € C*(X)}
where C*(X) is the collection of all real valued C*-smooth functions
defined on X. We refer to [2, Chapter 8] for further details.

2. The main result. We are going to show the following:

Theorem 2.1. Suppose that X has an LUR norm, and that every
Lipschitz convez function on X is the uniform limit on bounded sets of
C*-smooth functions. Then X admits C*-smooth partitions of unity.

The result relies on the lemma:

Lemma 2.2. If the norm on X is ALUR, then the norm topology
on Sx has a o-locally finite basis (Oy)aca such that for all « € A,
On = Cy N Sx where Cy is a bounded convex open set in X.

Proof. We follow the proof in [6, p. 234] for the existence of a o-
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locally finite basis of the topology in a metric space. If || || is ALUR,
every x in Sx admits a basis of neighborhoods in Sx consisting of the
sets:

Ser={yeX,fly) >1—¢} wheree >0 and f € Bx-.

If {Sa}a<a, is any covering of Sx with such slices, let S = {z €
X,d(z,85) > 27P}, we have S, = Up>0SE, each set S? is open, and

d(SE, (S57)7) = 2777

Then the set 72 = Sg\(Ug<aSg+1) is a convex open set (since all S?
are half spaces, hence so are (S?)¢, thus 77 = SE N [ﬁg<a(S§+1)C]" is
convex).

For a1 # ag, d(T?,T2) > 27771 so the family {7 }o<q, is discrete
and {7P}ap is o-discrete. It is not difficult to show that this family
covers the sphere again. So we constructed a o-discrete refinement for
{Soc }a<a0 .

Now, considering for each n the family H,, = {S. s;f € Bx~+,e <
1/n}, we construct as above a o-discrete refinement F,, of H,,, and the
base Up>oF), gives the result.

If we want to obtain bounded sets, we just need to consider their
intersection with 2Bx. ]

Let us proceed with the proof of Theorem 2.1. By a result of
Toruniczyk [12] (see [2, Lemma 8.3.6]) it is known that the following
statements are equivalent:

i) The space X admits C*-smooth partitions of unity.

ii) If A C W C X, A closed, W open, then there exists U € U* such
that ACU C W.

iii) The family &* contains a o-locally finite basis for the topology of
X.

Hence, all we need to show is the existence of such a basis for X.
Now let || |/x be an LUR norm on X. By assumption, || ||x
can be approximated by C*-smooth functions. As in [14], consider
Y = X @ R with the norm ||(z,t)||2 = ||z||% +t%,]] ||y is an LUR
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norm. Moreover, if || ||x is a limit of C*-smooth functions uniformly
on bounded sets, || ||y clearly has the same property.

For n > 1, let f, : Y — R be a C*-smooth function such that
|Fn(y) = [lylly] < 1/(16n) for all y in nBy. For y € X x {1}, if
y € nBy, then f,(y) > 1/2. Let p, : (X x {1}) NnBy — Y, be
defined by p,(y) = y/fn(y). The map p, is C*-smooth. Denote by
p : X x {1} — Sy the projection on the sphere p(y) = y/||ylly.
The map p is a homeomorphism from X x {1} to its image. For
y € (X x {1}) N nBy,

1 1
Hpn(y) _p(y)HY = Hy”Y fn—(y) — m
- A0 1
fn(y) ~ 8n’

From Lemma 2.2, we have a o-locally finite basis (O4)qca of the
topology of Sy with O, = C, N Sy, where C, is a bounded convex
open set. So (p71(O4))acn is a o-locally finite basis of the topology of
X x {1}.

Now let us fix a, and let O = O, and C' = C,. We want to write C'
as a union of elements of U*(Y), C' = U, g;,*((0, +o0)), and then, for =

in p~(0), approximate g,(p(z)) by gn(pn(z)).

Lemma 2.3. If C s a bounded convex open set of Y, then C =
g 1((0,+00)) where g: Y — R is a one-lipschitzian concave function.

Proof. We may assume that C # @. For all y € Y, let F(y) =
d(y,C°) =inf{|ly—=z|| : 2 ¢ C}. For z € C, let A(x) be the set of affine
continuous functions a defined on Y such that (a — F') is nonnegative
on C and a(z) = F(z). Let A = UzecA(z).

The function F is concave continuous on C, so for all z in C,
A(z) # @. Define g(y) = inf{a(y) : a € A}. The mapping F is
one-lipschitzian on C, hence so is every a in A. Since C' is bounded
and g(z) = F(z) for all z in C, g is well defined and one-lipschitzian
on the whole space Y. The function is clearly concave, and, for all x
in C, g(z) > 0.
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Ify ¢ C,let z € C. We can write [z,y] N C = [z,2) with z € Y. If
zy, € [z, z) with &, — 2z, we have F(z,,) — 0so if (a,,) C A is such that
an(z,) = 0 we have liminf,, , o a,(z) > F(z) > 0 = liminf,_, a,(2),
but z € [z,y] and a, is affine, so g(y) < liminfa,(y) < 0 and
C = g71((0,+00)), which concludes the proof of Lemma 2.3. o

So for the set C' defined above, we take g as in Lemma 2.3.

Claim. The function g can be approzimated by C*-smooth functions
uniformly on bounded sets of Y.

Proof. The map g : X xR — R is concave and one-lipschitzian, hence
so is g(-,t) : X — R for all real numbers. By hypothesis, g(-,t) can
be approximated uniformly on bounded sets by C*-smooth functions.
Let n € N, p € Z with |p| < n?. We can find a C*-smooth function
fP: X — R such that |fE(z) — g(z,p/n)| < 1/n for all z € nBx.

Let (¢p)pez be a C*°-smooth partition of unity on R subordinated
to the covering (J(p —1)/n,(p+1)/n[)pez, the function g,(z,t) =
2
> o2 Gu(t) fE(z) is C*-smooth, and since g is one-lipschitzian, we
get |gn(z,t) — g(z,t)| < 2/n for z € nBx, t € [-n,n].
We now come back to the proof of Theorem 2.1. We may and do
assume that p~(O,) = p~1(0) is included in some ball ngBy. Let g

be as in Lemma 2.3. By the claim, there exist C*-smooth functions g,,
such that

l9n(y) —9(y)| < 1/(8n) for all y € (no + 1)By.

Let z € X x {1} be in the ball (ng + 1)By. If p(z) € O, there exists
n € N such that d(p(z),0°) > 1/n so that g(p(z)) > 1/n. Assuming
that n > ng, we have ||p(z)—p,(x)||y < 1/(8n) and g is one-lipschitzian
so g(pn(z)) > 7/(8n) and g, (pn(x)) > 3/(4n).

On the other hand, if p(z) ¢ O, then if n > ng,

gn(on(®)) < 9on(e)) + 5= < 9(pl@) + 1 < oo
- 8n dn ~ 4n

Let r, be a C"*°-smooth function defined on the real numbers, such
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that
1 1
o .
ra(t) =0 ift < o ro(t) >0 ift> o

then define

¢n($) = Tngnpn(w) for z € (nO + ]-)BY
Yn(z) =0 for x ¢ noBy.

The map v, is C*-smooth, and we can write

p 1(0)=U2, 0, where O, =v,((0,+00)) isinU".

n=ngo
Now considering for every a the set p~1(0,) = UnZ,2Or, we obtain
that {O2},,,« is a o-locally finite basis of the topology of X which is
contained in U*. Now the aforementioned argument in [12] concludes
the proof of Theorem 2.1. ]

Note that this result extends Vanderwerfl’s Theorem 2.1 in [14].
Indeed, if the dual norm on X* is LUR, then it is not difficult to show,
using infimal convolutions, that every continuous convex function f
bounded on bounded sets can be approximated uniformly on bounded
sets by C'-smooth convex functions:

fn(x) = inf {f(z—y) + nllyll*}-

The next proposition is to ensure that the assumption of approximating
convex functions does not yield trivially the approximation of all
continuous functions.

Proposition 2.4. For any infinite dimensional Banach space X,
there exists a continuous function defined on the unit ball of X that is
not in the closed span of convexr continuous functions for the topology
of uniform convergence on Bx.

Although the result is probably well-known, we have been unable to
find a reference for Proposition 2.4.
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Proof. If X is infinite-dimensional, then Bx is not compact, so there
exists a bounded continuous function F' defined on E x which is not
3-uniformly continuous, that is, we can find z,,¥y, € Bx with

|z, —ynll = 0 but |F(z,)— F(yn)| > 3.

We can also find a sequence (u) C (1/2)Sx and § > 0 such that for all
n # m, ||Uun — Up|| > 20. Hence the balls B, = B(uyp, §/2P) are disjoint
balls all centered on the sphere (1/2)Sx.

Let us define E;, = B(uy, (1/2)(6/27)) and f(u, + (1/2)(5/2P)z) =

F(z), the map f is defined on UE;, continuous and bounded. Let us
still denote by f a bounded continuous extension of f to Bx.

Suppose that f is in the closed span of continuous convex functions for
the topology of uniform convergence. There exist g, h convex functions
such that for all z in By, |f(z) — (¢ — h)(z)| < 1/2.

Fix p and write Z8, = u, + (§/2°P™ )z, §2 = u, + (6/2PT )y,

l9(2}) — 9(gn)| + |h(ZF) — h(77)]
> |(g = h)(@}) — (9 — h)(@7p)]
= |f(@h) = fgn) = £ (@) — (g — h)(7)]|
— £ (@) — (g = h) (7))
1 1

>3—-—-—-=2.

- 2 2
So for all n, |g(zZ2) — g(gE)| > 1 or |h(Z2) — h(yE)| > 1. So at least
one of the functions g and h, say g, has to verify this for an infinite
sequence (ny)ken. As g is convex and ZE, gE € F;, (Z2 —gP) — 0, it
is not difficult to see that g is unbounded on B,

Therefore, at least one of g and A is unbounded on Fp for an
infinite sequence of p, s. Without loss of generality, we can assume
that g is unbounded on B, for all p € N. The function g being
continuous convex, g is bounded below on By, so if p € N, there exists
zp € Bx such that g(u, + (6/2P)z,) > g(2u,)/2 + p. By convexity,
2g(up + (6/27)2p) < g(2(6/2P)zp) + g(2u,) hence g((6/2P71)z,) > 2p.
But |[(§/2P1)2,||x < 6/2P71 — 0 as p — oo so g cannot be continuous
at zero. Hence, f is not approximable by differences of continuous
convex functions. o
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Differences of continuous convex functions are called delta-convex
functions and have been studied by Vesely and Zajicek in [15]. In par-
ticular, they prove that C!-functions (i.e., differentiable with Lips-
chitz derivative) defined on Hilbert spaces are delta-convex. Note that,
by the work of Torunczyk, the approximation of Lipschitz functions
suffices to obtain smooth partitions of unity.

The next result extends Proposition 8.3.10 in [2] and relates transfer
technique (see [2, Section 2.2]) to smooth partitions of unity.

Proposition 2.5. Suppose T : X — Y is a bounded operator between
two Banach spaces X andY such that T** is one-to-one. Assume

1) Y admits C*-smooth partitions of unity.

2) X has a Kadeé-Klee norm which is limit of C*-smooth functions
uniformly on bounded sets.

Then X admits C*-smooth partitions of unity.

Note. The class of Y's satisfying the assumptions of Proposition 2.5
is much more general than the class of spaces ¢¢(I'). For instance,
Haydon proved in [5] that it contains the spaces Cy(L) for certain
locally compact sets, such as trees. We may also take Y = C(K),
where K is a scattered compact such that K(“o) = & [3].

Proof. We follow the proof of Proposition 8.3.10 in [2]. By a result
of Toruticzyk ([12], see [2, Theorem 8.3.2]), the space ¥ admits C*-
smooth partitions if and only if there exists a set I', a homeomorphic
embedding ¢ : Y < ¢o(T) such that for all v in T, ¢, is a C*-smooth
function, where ¢ = (¢)cr-

We want to show that there exists a similar embedding for X.
Let ¢ : Y — ¢o(T') be such a function. The mapping ¢ x Id
Y @ co(N) — co(T') @ co(N) is a homeomorphic embedding with C*-
smooth components.

Let (fn)n>1 be a seqeunce of bounded C*-smooth functions defined
on X such that, for all n € N, for all z € nBx, |fn(z) — ||z|]|| < 1/n.
We can also assume that f,,(z) = 2n for ||z|| > 2n.

Define S : X — Y @ ¢(N) by Sz = (Tz, (27" fn(2))nen)- The
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map 7T is one-to-one, hence so is S. If the sequence xj converges
to x, then {zy} is bounded. Moreover, Tz; — Tz and for all n,
fn(zg) — fo(z). Since f, is uniformly bounded on bounded sets,
27" fa(zk))n>1 = (27" fn(x))n>1 in the ¢o(N) norm. Hence, S is
continuous.

To prove that S~ is continuous, let 3,z be in X such that Sz; —
Sz. We have, for all n in N, f,,(zx) = fn(x). Suppose ng > ||z||. For
n > ng, fn(z) < no+1/n, so for k large enough, fr,(zx) < nop+1/n+1 <
2n. Hence {zx} C 2nBx. As f, — || || uniformly on bounded sets,
we have ||zg|| — ||z||- On the other hand, T'z; — Tz implies that
zr — x. Indeed, if f € Y*, T*f(x1) = f(Txx) — f(Tz) = T* f(x) and
T*Y™* is dense in X* for T** is one-to-one. So we have ||zg|| — ||z||
and zj, — x. So if || || has the Kadec-Klee property, 2 — x in the
norm topology. Hence, S~! is continuous.

Now (¢ x Id)S is a homeomorphic embedding from X to ¢o(T") &
co(N), and it is easy to check that its components are C*-smooth.
And this concludes the proof since ¢g(I") B0 co(N) = ¢o(T' UN). O

Let us mention that the method in the proof of Theorem 2.1 can
still be used here, but we have to assume the existence of Lipschitz
C*-smooth partitions on Y. This supplementary assumption is not
needed in the present approach. Note that it is not known whether it
is actually stronger than the existence of C*-smooth partitions of unity
(see [2, p. 89]).
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