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THE SPECTRAL THEORY OF SECOND ORDER
TWO-POINT DIFFERENTIAL OPERATORS

III. THE EIGENVALUES
AND THEIR ASYMPTOTIC FORMULAS

JOHN LOCKER

ABSTRACT. In the third part of a four-part series, the
eigenvalues of a two-point differential operator L in L2[0, 1] are
calculated, along with the corresponding asymptotic formulas.
L is determined by a formal differential operator l = −D2 + q
and by independent boundary values B1, B2. The rates of
convergence in the asymptotic formulas vary with the form of
B1, B2 (Cases 1 4) and with the smoothness of q.

1. Introduction. In this paper, which is the third part in a four-
part series, we continue our development of the spectral theory for a
linear second order two-point differential operator L in the complex
Hilbert space L2[0, 1]. In Part I [14] a priori estimates for the eigen-
values of L are derived, and the generalized eigenfunctions are shown
to be complete. In Part II [15] the characteristic determinant of L is
constructed utilizing operator theory methods. Using this representa-
tion of the characteristic determinant, here in Part III we calculate the
actual eigenvalues of L, compute the corresponding algebraic multi-
plicities and ascents, and determine asymptotic formulas for the eigen-
values. We also establish the geometries and the growth rates for the
characteristic determinant, which are the key results needed for Part
IV where the L2-expansion theory is developed.

Let L be the differential operator in L2[0, 1] defined by

D(L) = {u ∈ H2[0, 1] | Bi(u) = 0, i = 1, 2}, Lu = lu,

where

l = −
(
d

dt

)2

+ q(t)
(
d

dt

)0
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is a second order formal differential operator on [0, 1] with q ∈ C[0, 1],
B1, B2 are linearly independent boundary values given by

B1(u) = a1u
′(0) + b1u

′(1) + a0u(0) + b0u(1),
B2(u) = c1u

′(0) + d1u
′(1) + c0u(0) + d0u(1),

and H2[0, 1] is the Sobolev space consisting of all functions u ∈ C1[0, 1]
with u′ absolutely continuous on [0, 1] and u′′ ∈ L2[0, 1]. Let T and S
be the differential and multiplication operators in L2[0, 1] defined by

D(T ) = {u ∈ H2[0, 1] | Bi(u) = 0, i = 1, 2}, Tu = −u′′,

and D(S) = L2[0, 1], Su = qu, so

(1.1) L = T + S.

Let

A =
[
a1 b1 a0 b0
c1 d1 c0 d0

]
be the boundary coefficient matrix, and let Aij , 1 ≤ i < j ≤ 4, denote
the determinant of the 2× 2 submatrix of A obtained by retaining the
ith and jth columns.

One of the central topics of study in Part I is the characteristic
determinant of T , which is given by equation (1.2) in Part I:

(1.2)
Δ̃(ρ) = −[A12ρ

2 − i(A14 + A23)ρ+A34]eiρ

+ [A12ρ
2 + i(A14 +A23)ρ+A34]e−iρ + 2i[A13 +A24]ρ.

The nonzero eigenvalues of T are precisely the complex numbers λ = ρ2

with the ρ �= 0 being zeros of Δ̃. By imposing various conditions on
the six boundary parameters Aij , the differential operators L and T are
classified as belonging to one of five different cases, Cases 1 5. Each
case determines the actual form of Δ̃, and leads in a natural way to
specific growth rates for Δ̃ on various regions of the ρ-plane. These
growth rates produce a priori estimates for the eigenvalues of L, viz.,
if λ = ρ2 is any eigenvalue of L with |ρ| sufficiently large, then ρ lies
in the interior of a horizontal strip Ω in Cases 1 3 and in the interior
of a logarithmic strip Ω in Case 4. See Section 8 of Part I for some
comments on Case 5.



EIGENVALUES AND THEIR ASYMPTOTIC FORMULAS 681

To actually calculate the eigenvalues of L, we replace Δ̃ by the
characteristic determinant of L, which is constructed in Part II:

(1.3) Δ(ρ) = det
[
B1(u(·; ρ)) B1(v(·; ρ))
B2(u(·; ρ)) B2(v(·; ρ))

]
,

where u(·; ρ) and v(·; ρ) are the solutions of the differential equation

(1.4) ρ2u+ u′′ − qu = 0

which satisfy the initial conditions u(1; ρ) = eiρ, u′(1; ρ) = iρeiρ and
v(0; ρ) = 1, v′(0; ρ) = −iρ for each ρ ∈ C. From equation (4.7) in Part
II the characteristic determinants Δ and Δ̃ are related by the formula

(1.5)

Δ(ρ) =Δ̃(ρ)

+A12iρe
−iρ

[ ∫ 1

0

q(s) ds+
1
2

∫ 1

0

e2iρsq(s) ds

+
1
2

∫ 1

0

e2iρ(1−s)q(s) ds+ Θ1(ρ)
]

−A14e
−iρ

[ ∫ 1

0

q(s) ds+
1
2

∫ 1

0

e2iρsq(s) ds

− 1
2

∫ 1

0

e2iρ(1−s)q(s) ds+ Θ2(ρ)
]

−A23e
−iρ

[ ∫ 1

0

q(s) ds− 1
2

∫ 1

0

e2iρsq(s) ds

+
1
2

∫ 1

0

e2iρ(1−s)q(s) ds+ Θ3(ρ)
]

−A34
e−iρ

iρ

[ ∫ 1

0

q(s) ds− 1
2

∫ 1

0

e2iρsq(s) ds

− 1
2

∫ 1

0

e2iρ(1−s)q(s) ds+ Θ4(ρ)
]

− (A13 +A24)
[ ∫ 1

0

q(s) ds+ Θ0(ρ)
]

for all ρ �= 0 in C, where the functions Θi, i = 0, 1, . . . , 4, are analytic
for ρ �= 0 and of order O(1/ρ) on a half plane Im ρ ≥ −d for fixed d > 0.
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We also have the following basic theorem from Part II (see Theorems
4.1 and 5.1).

Theorem 1.1. Let d > 0 be any real number, and let λ = ρ2 be any
complex number with Im ρ ≥ −d and |ρ| > 2e2d||q||∞. Then

(a) The functions u(·; ρ), v(·; ρ) are linearly independent and form a
basis for the solution space of the differential equation (1.4).

(b) λ = ρ2 is an eigenvalue of L if and only if Δ(ρ) = 0, in which
case the algebraic multiplicity of λ is equal to the order of ρ as a zero
of Δ.

The general strategy for calculating the eigenvalues of L is to (i) form
the “punctured strip” Ω∗ from Ω by removing the points inside two
sequences of circles Γ′

k,Γ
′′
k, (ii) use (1.5) and (1.2) to establish the

growth rates of Δ and Δ̃ on Ω∗, (iii) obtain the existence of the
eigenvalues of L as an application of Rouché’s theorem, (iv) discuss the
algebraic multiplicities and ascents corresponding to the eigenvalues,
and (v) derive asymptotic formulas for the eigenvalues. It is the
growth rate of Δ̃ on Ω∗ which will initiate our study in Part IV of the
projections associated with L and the subspace S∞(L) consisting of the
functions which have L2-expansions in the generalized eigenfunctions
of L.

The program outlined above is instituted in the following two sec-
tions, with Section 2 treating the closely related Cases 1, 2, 3 and
Section 3 treating the difficult logarithmic Case 4. In each case we
emphasize the geometry of the punctured strip Ω∗, which is needed for
the theory of Part IV. Because of the structure of Δ, it is now neces-
sary to subdivide Case 2 and Case 3 into Cases 2A, 2B and Cases 3A,
3B, respectively. The asymptotic formulas for the eigenvalues exhibit
slower rates of convergence for Cases 2B, 3B and 4. This is caused in
Case 2B by the multiple nature of the eigenvalues; in Case 3B it varies
with the smoothness of the coefficient q; and in Case 4 it results from a
combination of the inherent logarithmic geometry and the smoothness
of the coefficient q.

Our method for determining the eigenvalues of L has many similar-
ities with those used by Birkhoff [2], Tamarkin [21], Stone [20], and
Naimark [17]. It is distinguished by the highly refined representation



EIGENVALUES AND THEIR ASYMPTOTIC FORMULAS 683

of Δ given in (1.5), which is sensitive enough to permit the treatment
of all cases as parts of the same general theory, thereby achieving a
comprehensive and unified theory. It does not require the boundary
values B1, B2 to be normalized, and it treats both regular boundary
conditions (Cases 1, 2, 3A) and irregular boundary conditions (Cases
3B, 4).

The general forms for the eigenvalues in the regular Cases 1, 2, 3A
are well-known (see Theorem 4.2 in [17, p. 64]). Because of our special
delineation of the cases, we are able to explicitly evaluate the eigenvalue
parameters ξ0 and η0, which are 1 or −1 in most cases, and hence,
establish theorems which contain very explicit forms for the eigenvalues.
The eigenvalue literature for the irregular Cases 3B, 4 has only partial
results for the form of the eigenvalues (see Theorems III and IV in [20,
pp. 29 30]). This paper contains the first complete treatment of these
cases.

Remark 1.2. A very subtle feature of this four-part series is the
smoothness required of the coefficient q. Nowhere is this more apparent
than in this paper, where the asymptotic formulas for the eigenvalues
vary dramatically with the smoothness of q (see Theorem 2.4, Remark
2.5 and Theorem 3.2). To keep the presentation as simple as possible
and to minimize the technical difficulties, we have required q ∈ C[0, 1]
in general, and have increased the smoothness to q ∈ C1[0, 1] for Case
3B and Case 4 so as to achieve effective rates of convergence for the
eigenvalues. It is possible to replace the smoothness classes C[0, 1] and
C1[0, 1] by the Sobolev spaces H0[0, 1] and H1[0, 1], respectively, and
develop the spectral theory in this more general setting. Indeed, for
q ∈ H0[0, 1] = L2[0, 1] the major change needed occurs in Part I [14],
where the operator S can be defined by D(S) = H1[0, 1], Su = qu, and
then in Theorem 3.1 [14] one shows that Rλ(L) = Rλ(T )[I−SRλ(T )]−1

provided ||SRλ(T )|| ≤ 1/2. The operator SRλ(T ) is a bounded integral
operator defined on all of L2[0, 1]; by carefully estimating its norm it
follows that the generalized eigenfunctions of L are still complete in
L2[0, 1]. Parts II IV can then be modified to this more general setting.

2. The eigenvalues of L for Cases 1, 2 and 3. Assume the
differential operators L and T belong to Case 1, Case 2 or Case 3,
where the specific case is identified by the following conditions on the
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parameters Aij :

Case 1. A12 �= 0

Case 2A. A12 = 0, A14 +A23 �= 0, A14 +A23 �= ∓(A13 +A24)

Case 2B. A12 = 0, A14 +A23 �= 0, A14 +A23 = ∓(A13 +A24)

Case 3A. A12 = 0, A14 +A23 = 0, A34 �= 0, A13 +A24 = 0, A13 = A24

Case 3B. A12 = 0, A14+A23 = 0, A34 �= 0, A13+A24 = 0, A13 �= A24.

The conditions in Case 3A are equivalent to the conditions A12 =
A13 = A14 = A23 = A24 = 0, A34 �= 0, which corresponds to Dirichlet
boundary conditions (see Section 10 of [11]). In Case 3B we also have
A14 �= A23 by Theorem 2.2 in [10], so A23 = −A14 �= 0.

From (1.5) and (1.2) we can write Δ in the form

(2.1) Δ(ρ) = ρpe−iρ[f(ρ) + g(ρ)]

for all ρ �= 0, where the integer p is equal to 2, 1, 0 for Cases 1, 2, 3,
respectively, where the function f is an entire function of the form

f(ρ) = α0[eiρ − ξ0][eiρ − η0]

for ρ ∈ C, and where the function g is analytic for ρ �= 0 in C.
Specifically, for Case 1: α0 = −A12 and ξ0 = 1, η0 = −1; for Case
2: α0 = i(A14 + A23) with ξ0 and η0 being the roots of the quadratic
polynomial

Q(z) = i(A14 +A23)z2 + 2i(A13 +A24)z + i(A14 +A23),

where ξ0 �= η0 in Case 2A and ξ0 = η0 = ±1 in Case 2B; and for
Case 3: α0 = −A34 and ξ0 = 1, η0 = −1. In Case 2A we also have
ξ0η0 = 1, so let us assume that |ξ0| ≤ 1 and |η0| ≥ 1, which implies
that − ln |ξ0| ≥ 0 and − ln |η0| = ln |ξ0| ≤ 0.

Fix any real number d with 0 ≤ − ln |ξ0| < d, and form the horizontal
strip

Ω = {ρ = a+ ib ∈ C | |b| ≤ d}.
For Case 3B we make the additional assumptions that d ≥ 1 and

(2.2)
β0

d
≤ 1

2
||S||−1,
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where β0 := (2/|A34|){4|A14| + 8|A13| + 6|A34|} > 0. Using the a
priori estimates of Part I (see Theorems 4.1, 5.1 and 6.1 in [14]), we
can choose a constant r0 > 2e2d||q||∞ such that if λ = ρ2 ∈ C is any
eigenvalue of L with |ρ| ≥ r0, then ρ must lie in the interior of Ω.
Combining this result with Theorem 1.1, we have

Theorem 2.1. Let λ = ρ2 ∈ C with |ρ| ≥ r0. Then λ = ρ2 is an
eigenvalue of L if and only if −d < Im ρ < d and Δ(ρ) = 0.

In view of the theorem we proceed to determine all ρ ∈ C which are
zeros of Δ with −d < Im ρ < d and |ρ| ≥ r0. Observe that the function
g appearing in (2.1) is of order O(1/ρ) on the half plane Im ρ ≥ −d for
Cases 1, 2 and 3A, i.e., there exists a constant γ0 > 0 such that

(2.3) |g(ρ)| ≤ γ0

|ρ|
for all ρ ∈ C with Im ρ ≥ −d and |ρ| ≥ r0. In Case 3B we have

g(ρ) = −A14

∫ 1

0

e2iρsq(s) ds+A14

∫ 1

0

e2iρ(1−s)q(s) ds+ h(ρ)

for ρ �= 0 in C, where the function h is analytic for ρ �= 0 and of order
O(1/ρ) on the half plane Im ρ ≥ −d. For any function q̃ ∈ C1[0, 1] and
for any complex number ρ �= 0 with Im ρ ≥ −d, we have∫ 1

0

e2iρsq(s) ds =
∫ 1

0

e2iρs[q(s) − q̃(s)] ds

+
q̃(1)
2iρ

e2iρ − q̃(0)
2iρ

− 1
2iρ

∫ 1

0

e2iρsq̃′(s) ds,

so

(2.4)
∣∣∣∣
∫ 1

0

e2iρsq(s) ds
∣∣∣∣ ≤ e2d||q − q̃||∞ +

e2d

|ρ|
[
||q̃||∞ +

1
2
||q̃′||∞

]
.

The same argument shows that

(2.5)
∣∣∣∣
∫ 1

0

e2iρ(1−s)q(s) ds
∣∣∣∣ ≤ e2d||q − q̃||∞ +

e2d

|ρ|
[
||q̃||∞ +

1
2
||q̃′||∞

]
.
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Thus, in Case 3B we have

(2.6) |g(ρ)| ≤ 2|A14|e2d

{
||q − q̃||∞ +

1
|ρ|

[
||q̃||∞ +

1
2
||q̃′||∞

]}
+
γ1

|ρ|

for all ρ ∈ C with Im ρ ≥ −d and |ρ| ≥ r0. It should be emphasized
that the function q̃ ∈ C1[0, 1] in (2.6) is completely arbitrary, and
this method for estimating the integrals is one of the methods used
to prove the Riemann-Lebesque theorem (see [22, p. 11 12]). In the
special case q ∈ C1[0, 1] we can choose q̃ = q, and then in (2.6) we
obtain the improved estimate

(2.7) |g(ρ)| ≤ γ0

|ρ|

for all ρ ∈ C with Im ρ ≥ −d and |ρ| ≥ r0. To simplify the discussion,
in the sequel we will assume that q ∈ C1[0, 1] for Case 3B, and hence,
we can use (2.3) throughout our study of Cases 1, 2 and 3 (see Remark
2.5 below).

Next, we set up the geometry for the various cases. Clearly the zeros
of f are given by

(2.8)
μ′

k = (2kπ + Arg ξ0) − i ln |ξ0|, k = 0,±1,±2, . . . ,
μ′′

k = (2kπ + Arg η0) − i ln |η0|, k = 0,±1,±2, . . . ,

where the μ′
k, μ′′

k all lie in the interior of the horizontal strip Ω. In case
ξ0 �= η0 (Cases 1, 2A and 3) we have μ′

k �= μ′′
l for all k, l with each μ′

k

and each μ′′
k a zero of order 1 of f . In case ξ0 = η0 (Case 2B) we have

μ′
k = μ′′

k := μk for k = 0,±1,±2, . . . ,

and in this case each μk is a zero of order 2 of f . In all cases we will
show that the zeros of Δ and f + g in Ω appear as perturbations of the
μ′

k, μ
′′
k.

Since −π < Arg ξ0 ≤ π and −π < Arg η0 ≤ π, we can select a
constant ω with π ≤ ω ≤ 3π/2 such that ω − 2π < Arg ξ0 < ω and
ω−2π < Arg η0 < ω. Then for k = 1, 2, . . . we introduce the rectangles

Rk = {ρ ∈ Ω | ω − 2kπ ≤ Re ρ ≤ ω + 2(k − 1)π}.
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Clearly the points μ′
0, μ

′′
0 lie in the interior of the rectangle R1. Choose

a real number δ with 0 < δ ≤ π/4 such that the two closed disks
|ρ − μ′

0| ≤ δ and |ρ − μ′′
0 | ≤ δ both lie in the interior of R1 and

such that these two disks are disjoint in the cases where ξ0 �= η0. For
k = 0,±1,±2, . . . form the circles

Γ′
k = {ρ ∈ C | |ρ− μ′

k| = δ}, Γ′′
k = {ρ ∈ C | |ρ− μ′′

k | = δ},

where in the case ξ0 = η0 we set

Γ′
k = Γ′′

k := Γk for k = 0,±1,±2, . . . .

The following properties are obvious from these definitions: (i) the
circles Γ′

k, Γ′′
k lie in the interior of Ω, (ii) the Γ′

k,Γ
′′
l and the points

inside them do not overlap each other in the cases where ξ0 �= η0,
(iii) the Γk and the points inside them do not overlap each other in the
case ξ0 = η0, and (iv) for each positive integer k0 the circles Γ′

k,Γ
′′
k ,

|k| < k0, lie in the interior of the rectangle Rk0 , while the circles Γ′
k,Γ

′′
k ,

|k| ≥ k0, lie in the exterior of Rk0 . Let Ω∗ be the region in the ρ-plane
consisting of Ω with all the points inside the Γ′

k, Γ′′
k removed. In the

sequel we refer to Ω∗ as a punctured strip.

Turning to the growth rate of Δ, it is clear that f(ρ) �= 0 for all
ρ ∈ R1 which do not lie in the circles Γ′

0,Γ
′′
0 . Set

m0 = min{|f(ρ)| | ρ ∈ R1 with ρ not lying in Γ′
0,Γ

′′
0} > 0.

Since f(ρ+ 2π) = f(ρ) for all ρ ∈ C, it follows that

(2.9) |f(ρ)| ≥ m0

for all ρ ∈ Ω∗. Choose a positive integer k0 such that x0 := ω−2k0π ≤
−r0, y0 := ω + 2(k0 − 1)π ≥ r0, and such that in terms of (2.3)

(2.10)
γ0

|a| ≤
m0

2

for all a ∈ R with a ≤ x0 or a ≥ y0. Combining all the above pieces,
we have

(2.11) |g(ρ)| ≤ m0

2
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FIGURE 1. Punctured strip Ω∗ in Cases 1, 2, 3.

for all ρ ∈ Ω with Re ρ ≤ x0 or Re ρ ≥ y0, and hence,

(2.12) |g(ρ)| ≤ m0

2
< m0 ≤ |f(ρ)|

and

(2.13) |Δ(ρ)| = |ρ|p|e−iρ||f(ρ) + g(ρ)| ≥ m0

2
e−d|ρ|p

for all ρ ∈ Ω∗ with Re ρ ≤ x0 or Re ρ ≥ y0.

The estimate (2.13) is our principal result for the growth of Δ on the
punctured strip Ω∗. It immediately implies that Δ and f + g have no
zeros in Ω∗ when Re ρ ≤ x0 or Re ρ ≥ y0. At this point we divide the
discussion into the cases where ξ0 �= η0 and ξ0 = η0.

Cases 1, 2A and 3. ξ0 �= η0. Let us consider the circles Γ′
k,

Γ′′
k for |k| ≥ k0, which lie in the exterior of the rectangle Rk0 =

[x0, y0] × [−d, d]. From (2.12) we have |g(ρ)| < |f(ρ)| for all points
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ρ on Γ′
k, Γ′′

k for |k| ≥ k0, and hence, by Rouché’s theorem Δ and f + g
have precisely the same number of zeros as f inside Γ′

k and Γ′′
k for all

|k| ≥ k0. But f has only the single zero μ′
k of order 1 inside Γ′

k and only
the single zero μ′′

k of order 1 inside Γ′′
k, implying that Δ has exactly

one zero ρ′k inside Γ′
k with ρ′k having order 1 for |k| ≥ k0, and Δ has

exactly one zero ρ′′k inside Γ′′
k with ρ′′k having order 1 for |k| ≥ k0.

Setting
λ′k = (ρ′k)2, k = k0, k0 + 1, . . . ,
λ′′k = (ρ′′k)2, k = k0, k0 + 1, . . . ,

it follows from Theorem 2.1 that the λ′k, λ
′′
k , k = k0, k0 + 1, . . . , are

eigenvalues of L, and the corresponding algebraic multiplicities and
ascents are (see Section 5 in Part II)

(2.14)
ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . ,
ν(λ′′k) = m(λ′′k) = 1, k = k0, k0 + 1, . . . .

Now suppose that λ0 = (ρ0)2 is any eigenvalue of L which is distinct
from λ′k, λ

′′
k , k = k0, k0+1, . . . . By replacing ρ0 by −ρ0 if necessary, we

can assume that Re ρ0 ≥ 0. There are two possibilities for ρ0: ρ0 can
lie in the disk |ρ| < r0 or ρ0 can belong to the rectangle Rk0 . Clearly
only a finite number of such ρ0 are possible since they are zeros of the
entire function Δ. Thus, we conclude that λ′k, λ

′′
k , k = k0, k0 + 1, . . . ,

account for all but a finite number of the eigenvalues of L.

Finally, let us derive asymptotic formulas for the zeros ρ′k, ρ
′′
k , k =

k0, k0 + 1, . . . , of Δ. Indeed, we first introduce the entire function
G(ρ) = α0[eiρ − η0] and set

M0 = min{|G(ρ)| | ρ ∈ C with |ρ− μ′
0| ≤ δ} > 0.

Because G has period 2π, it follows that |G(ρ′k)| ≥ M0 for k =
k0, k0 + 1, . . . . If we set ζ ′k = −g(ρ′k)/ξ0G(ρ′k), k = k0, k0 + 1, . . . ,
then we can rewrite the equation f(ρ′k)+ g(ρ′k) = 0 as eiρ′

k = ξ0 + ξ0ζ
′
k,

and upon dividing by eiμ′
k = ξ0, it becomes ei(ρ′

k−μ′
k) = 1 + ζ ′k. But

|Re (ρ′k − μ′
k)| ≤ |ρ′k − μ′

k| < π/4, so

(2.15) ρ′k − μ′
k = −iLog [1 + ζ ′k], k = k0, k0 + 1, . . . .

Now fix any integer k ≥ k0, and consider ρ′k. Clearly

|ρ′k| ≥ |μ′
k| − |ρ′k − μ′

k| ≥ 2kπ + Arg ξ0 − δ ≥ 6k − 5 ≥ k
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and

(2.16) |ζ ′k| =
|g(ρ′k)|

|ξ0||G(ρ′k)| ≤
γ0

|ξ0|M0|ρ′k|
≤ γ

k
.

Since
−iLog [1 + z] = zH(z) for |z| < 1,

with H analytic on the disk |z| < 1, from (2.15) and (2.16) we obtain
the estimate

(2.17) |ρ′k − μ′
k| ≤

γ

k
, k = k0, k0 + 1, . . . ,

for an appropriate constant γ > 0. A similar argument shows that

(2.18) |ρ′′k − μ′′
k | ≤

γ

k
, k = k0, k0 + 1, . . . .

(2.17) and (2.18) are the desired asymptotic formulas.

Let us summarize these results for the eigenvalues in the following
theorems, where in each case we insert the appropriate values for the
constants ξ0 and η0.

Theorem 2.2. Let the differential operator L belong to Case 1.
Then the elements of the spectrum σ(L) can be listed as two sequences
λ′k = (ρ′k)2, k = k0, k0 +1, . . . , and λ′′k = (ρ′′k)2, k = k0, k0 +1, . . . , plus
a finite number of additional points, where

ρ′k = 2kπ + ε′k with |ε′k| ≤
γ

k
, k = k0, k0 + 1, . . . ,

ρ′′k = (2k + 1)π + ε′′k with |ε′′k | ≤
γ

k
, k = k0, k0 + 1, . . . ,

and where the corresponding algebraic multiplicities and ascents are
ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . , and ν(λ′′k) = m(λ′′k) = 1,
k = k0, k0 + 1, . . . , respectively.

Theorem 2.3. Let the differential operator L belong to Case 2A,
and let ξ0, η0 = 1/ξ0 be the distinct roots of the quadratic polynomial
Q with |ξ0| ≤ 1. Then the elements of the spectrum σ(L) can be listed
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as two sequences λ′k = (ρ′k)2, k = k0, k0 + 1, . . . , and λ′′k = (ρ′′k)2,
k = k0, k0 + 1, . . . , plus a finite number of additional points, where

ρ′k = (2kπ+Arg ξ0)−i ln |ξ0| + ε′k with |ε′k| ≤
γ

k
, k = k0, k0+1, . . . ,

ρ′′k = (2kπ+Arg η0)−i ln |η0| + ε′′k with |ε′′k | ≤
γ

k
, k = k0, k0+1, . . . ,

and where the corresponding algebraic multiplicities and ascents are
ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . , and ν(λ′′k) = m(λ′′k) = 1,
k = k0, k0 + 1, respectively.

Theorem 2.4. Let the differential operator L belong to Case 3, with
q ∈ C1[0, 1] for Case 3B. Then the elements of the spectrum σ(L) can be
listed as two sequences λ′k = (ρ′k)2, k = k0, k0 + 1, . . . , and λ′′k = (ρ′′k)2,
k = k0, k0 + 1, . . . , plus a finite number of additional points, where

ρ′k = 2kπ + ε′k with |ε′k| ≤
γ

k
, k = k0, k0 + 1, . . . ,

ρ′′k = (2k + 1)π + ε′′k with |ε′′k | ≤
γ

k
, k = k0, k0 + 1, . . . ,

and where the corresponding algebraic multiplicities and ascents are
ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . , and ν(λ′′k) = m(λ′′k) = 1,
k = k0, k0 + 1, . . . , respectively.

Remark 2.5. In Case 3B with q ∈ C[0, 1], we can proceed as follows.
In terms of (2.6) select a function q̂ ∈ C1[0, 1] such that

(2.19) 2|A14|e2d||q − q̂||∞ ≤ m0

4
,

and then for this fixed q̂ choose a positive integer k0 such that x0 :=
ω − 2k0π ≤ −r0, y0 := ω + 2(k0 − 1)π ≥ r0, and

(2.20)
2|A14|e2d

|a|
[
||q̂||∞ +

1
2
||q̂′||∞

]
+
γ1

|a| ≤
m0

4

for all a ∈ R with a ≤ x0 or a ≥ y0. These results lead immediately to
the estimates

(2.21) |g(ρ)| ≤ m0

2
< m0 ≤ |f(ρ)|
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and

(2.22) |Δ(ρ)| ≥ m0

2
e−d

for all ρ ∈ Ω∗ with Re ρ ≤ x0 or Re ρ ≥ y0. From this point on, we
can follow our earlier treatment of Case 3B verbatim, except for the
asymptotic formulas we obtain the weaker results

(2.23) |ρ′k − μ′
k| ≤ γ

{
||q − q̃||∞ +

1
k

[
||q̃||∞ +

1
2
||q̃′||∞ + 1

]}

and

(2.24) |ρ′′k − μ′′
k | ≤ γ

{
||q − q̃||∞ +

1
k

[
||q̃||∞ +

1
2
||q̃′||∞ + 1

]}

for k = k0, k0 +1, . . . , where the function q̃ ∈ C1[0, 1] is arbitrary. This
shows that

(2.25) lim
k→∞

(ρ′k − μ′
k) = lim

k→∞
(ρ′′k − μ′′

k) = 0,

but it does not give us an effective rate of convergence for Case 3B.

Case 2B. ξ0 = η0 = ±1. Let us consider the circles Γk, |k| ≥ k0, which
lie in the exterior of the rectangle Rk0 = [x0, y0, ]× [−d, d]. From (2.12)
we have |g(ρ)| < |f(ρ)| for all points ρ on Γk for |k| ≥ k0, and hence,
by Rouché’s theorem Δ and f + g have precisely the same number of
zeros as f inside Γk for all |k| ≥ k0. But f has only the single zero μk

of order 2 inside Γk, implying that Δ has two zeros ρ′k and ρ′′k inside
Γk for |k| ≥ k0, where either ρ′k �= ρ′′k with ρ′k and ρ′′k both being zeros
of order 1 or ρ′k = ρ′′k with ρ′k being a zero of order 2.

Setting
λ′k = (ρ′k)2, k = k0, k0 + 1, . . . ,
λ′′k = (ρ′′k)2, k = k0, k0 + 1, . . . ,

it follows that the λ′k, λ
′′
k , k = k0, k0 + 1, . . . , are eigenvalues of L. In

addition, if ρ′k �= ρ′′k , then λ′k �= λ′′k and the algebraic multiplicities and
ascents are

(2.26) ν(λ′k) = m(λ′k) = 1, ν(λ′′k) = m(λ′′k) = 1;
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if ρ′k = ρ′′k , then λ′k = λ′′k and the algebraic multiplicities and ascents
are

(2.27) ν(λ′k) = 2, m(λ′k) = 1 or m(λ′k) = 2.

Sections 7 and 8 of [11] have models where the eigenvalues satisfy
(2.26), while Sections 5 and 6 of [11] contain models satisfying (2.27).
Also, as in the previous cases L can have only a finite number of
eigenvalues in addition to the λ′k, λ

′′
k, k = k0, k0 + 1, . . . .

Finally, we derive asymptotic formulas for the zeros ρ′k, ρ
′′
k , k =

k0, k0 + 1, . . . , of Δ. Fix any index k ≥ k0. We know that f(ρ′k) +
g(ρ′k) = 0, so for the appropriate square root

eiρ′
k = ξ0 +

√
− 1
α0
g(ρ′k)

or

ei(ρ′
k−μk) = 1 +

1
ξ0

√
− 1
α0
g(ρ′k)︸ ︷︷ ︸

ζ′
k

.

Proceeding as in the previous cases, we get

ρ′k − μk = −iLog [1 + ζ ′k]

with |ρ′k| ≥ k and

|ζ ′k| =
1
|ξ0|

√
1

|α0| |g(ρ
′
k)| ≤ 1

|ξ0|
√

γ0

|α0||ρ′k|
≤ γ√

k
,

and hence,

(2.28) |ρ′k − μk| ≤ γ√
k
, k = k0, k0 + 1, . . . .

The same argument shows that

(2.29) |ρ′′k − μk| ≤ γ√
k
, k = k0, k0 + 1, . . . .
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We summarize the above results as a theorem, incorporating the fact
that ξ0 = η0 = ±1.

Theorem 2.6. Let the differential operator L belong to Case 2B,
and let ξ0 = η0 = ±1 be the double root of the quadratic polynomial Q.
Then the elements of the spectrum σ(L) can be listed as two sequences
λ′k = (ρ′k)2, k = k0, k0 +1, . . . , and λ′′k = (ρ′′k)2, k = k0, k0 +1, . . . , plus
a finite number of additional points, where

ρ′k = 2kπ + Arg ξ0 + ε′k with |ε′k| ≤
γ√
k
, k = k0, k0 + 1, . . . ,

ρ′′k = 2kπ + Arg ξ0 + ε′′k with |ε′′k | ≤
γ√
k
, k = k0, k0 + 1, . . . .

For each k ≥ k0 if ρ′k �= ρ′′k, then λ′k �= λ′′k and the corresponding
algebraic multiplicities and ascents are ν(λ′k) = m(λ′k) = 1 and ν(λ′′k) =
m(λ′′k) = 1, while if ρ′k = ρ′′k, then λ′k = λ′′k and the corresponding
algebraic multiplicity is ν(λ′k) = 2 and the corresponding ascent is
m(λ′k) = 1 or m(λ′k) = 2.

Remark 2.7. The results of this section are directly applicable to the
differential operator T and its characteristic determinant Δ̃, with some
obvious simplifications. Note that L and T share the same integer p,
the same function f , and the same parameters ξ0 and η0 (see equation
(2.1)). Thus, in setting up the geometry for T , we can use the same
punctured strip Ω∗ and the same circles Γ′

k,Γ
′′
k,Γk as were used for L.

From the above we have the following results:

(2.30) |Δ̃(ρ)| ≥ m0

2
e−d|ρ|p

for all ρ ∈ Ω∗ with Re ρ ≤ x0 or Re ρ ≥ y0; Δ̃ has zeros ρ̃′k, ρ̃
′′
k inside

Γ′
k,Γ

′′
k for |k| ≥ k0; and the two sequences λ̃′k = (ρ̃′k)2, k = k0, k0+1, . . . ,

and λ̃′′k = (ρ̃′′k)2, k = k0, k0 + 1, . . . , are eigenvalues for T , accounting
for all but a finite number of the eigenvalues of T . The corresponding
algebraic multiplicities, ascents and asymptotic formulas are specified
in the above theorems on a case by case basis. Many of these results
are included in Theorems 1.1 and 2.1 in [11], and they will play a key
role in Part IV.
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3. The eigenvalues of L for Case 4. We conclude this paper by
calculating the eigenvalues for the logarithmic case, which is technically
the most difficult case. Let the differential operators L and T belong
to Case 4:

Case 4. A12 = 0, A14 +A23 = 0, A34 �= 0, A13 +A24 �= 0.

Proceeding as in Section 7 of Part I [14], let μ = −2i(A13+A24)/A34;
let α and β be real numbers satisfying 0 < α ≤ 1/2, β ≥ 2, and

6β0

|A34|β ≤ 1
2
||S||−1,

where β0 := 2|A14| + 2|A13| + 2|A24| + 2|A34| > 0; and then form the
logarithmic strip

Ω =
{
ρ = a+ ib ∈ C

∣∣∣∣ α

|μ|e
|b| ≤ |a| ≤ β

|μ|e
|b|

}

=
{
ρ = a+ ib ∈ C

∣∣∣∣ |a| ≥ α

|μ| and ln
|μ||a|
β

≤ |b| ≤ ln
|μ||a|
α

}
,

where the curve |b| = ln |μ||a| runs down the “middle” of Ω. Setting
ξ = [1 + (|μ|2/α2)]1/2 and η = [(β2/|μ|2) + 1]1/2, for ρ = a+ ib ∈ Ω we
have the additional inequalities

|ρ| = [a2 + b2]1/2 ≤ [a2 + (|μ|2a2/α2)]1/2 = ξ|a|,
(3.1)

|ρ| = [a2 + b2]1/2 ≤ [(β2/|μ|2)e2|b| + e2|b|]1/2 = ηe|b|,
(3.2)

and

(3.3) ln
|ρ|
η

≤ |b|.

Fix any real number d > 0. Applying the a priori estimates of Part I
(see Theorem 7.1 in [14]), there exists a constant r0 with

(3.4) r0 > 2e2d||q||∞, r0 > ηed >
β

|μ| , r0 ≥ η2
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such that: if λ = ρ2 ∈ C is any eigenvalue of L with |ρ| ≥ r0, then ρ
must lie in the interior of Ω. Note that for any point ρ = a + ib ∈ Ω
with |ρ| ≥ r0, we have |b| > d by (3.3) and (3.4), (1/2) ln |ρ| ≥ ln η, and
from (3.3)

(3.5)
1
2

ln |ρ| ≤ |b|.

Combining these results with Theorem 1.1, we obtain the following
fundamental theorem for calculating the eigenvalues.

Theorem 3.1. Let λ = ρ2 ∈ C with ρ = a + ib, and assume that
|a| ≥ r0 and b ≥ −d. Then λ = ρ2 is an eigenvalue of L if and only if
ln(|μ||a|/β) < b < ln(|μ||a|/α) and Δ(ρ) = 0.

For the characteristic determinant in Case 4, we employ (1.5) and
(1.2) to write Δ in the form

(3.6) Δ(ρ) = A34e
−iρ{1 + g(ρ) + φ(ρ)} −A34μρ{1 + ψ(ρ)}

for all ρ �= 0, where

g(ρ) = −A14

A34

∫ 1

0

e2iρsq(s) ds+
A14

A34

∫ 1

0

e2iρ(1−s)q(s) ds for ρ ∈ C

and the functions φ and ψ are analytic for ρ �= 0 and of order O(1/ρ)
on the half plane Im ρ ≥ −d:

(3.7) |φ(ρ)| ≤ γ0

|ρ| and |ψ(ρ)| ≤ γ0

|ρ|
for all ρ ∈ C with Im ρ ≥ −d and |ρ| ≥ r0. While an estimate like
(2.6) is valid for the function g on the half plane Im ρ ≥ −d, we
can get a better result by restricting ρ to Ω. Indeed, take any point
ρ = a + ib ∈ Ω with b ≥ −d and |ρ| ≥ r0. From the above we have
b > d and b = |b| ≥ (1/2) ln |ρ|, and hence,

(3.8)

∣∣∣∣
∫ 1

0

e2iρsq(s) ds
∣∣∣∣ ≤ ||q||∞

∫ 1

0

e−2bs ds

=
1
2b

||q||∞[1 − e−2b] ≤ ||q||∞
ln |ρ| .
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The same estimate is obtained for the integral
∫ 1

0
e2iρ(1−s)q(s) ds, so

we conclude that

(3.9) |g(ρ)| ≤ 2|A14| ||q||∞
|A34| ln |ρ|

for all ρ ∈ Ω with Im ρ ≥ −d and |ρ| ≥ r0. Of course, if q ∈ C1[0, 1],
then as in the last section we obtain the improved estimate

(3.10) |g(ρ)| ≤ 2|A14|e2d

|A34| |ρ| [||q||∞ + ||q′||∞]

for all ρ ∈ C with Im ρ ≥ −d and |ρ| ≥ r0.

In view of Theorem 3.1, we proceed to determine the zeros ρ = a+ ib
of Δ satisfying |a| ≥ r0 and ln(|μ||a|/β) < b < ln(|μ||a|/α), which
obviously lie in Quadrants I and II. Let

Ω′ =
{
ρ = a+ ib ∈ C

∣∣∣ a ≥ r0, ln
|μ|a
β

≤ b ≤ ln
|μ|a
α

}
,

Ω′′ =
{
ρ = a+ ib ∈ C

∣∣∣ a ≤ −r0, ln |μ|(−a)
β

≤ b ≤ ln
|μ|(−a)
α

}
.

We will give a detailed analysis of the zeros of Δ in Ω′, and then simply
state the analogous results for the zeros in Ω′′.

Fix any real number δ with 0 < δ ≤ π/4 and 0 < δ < (ln 2)/(|μ|+1),
and then for k = 1, 2, . . . define{

α′
k = 2kπ − Argμ, β′

k = ln |μ|α′
k,

μ′
k = α′

k + iβ′
k,

and introduce the circles

Γ′
k = {ρ ∈ C | |ρ− μ′

k| = δ}.

Choose a positive integer k1 ≥ 2 such that y1 := α′
k1

− π ≥ r0. Note
that

(3.11) α′
k − π ≥ r0 >

β

|μ| and α′
k ≥ 3π
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for k = k1, k1 +1, . . . . Also, let us introduce the logarithmic rectangles

R′
k =

{
ρ = a+ ib ∈ C

∣∣∣α′
k − π ≤ a ≤ α′

k + π, ln
|μ|a
β

≤ b ≤ ln
|μ|a
α

}

for k = k1, k1 + 1, . . . . Clearly the R′
k are all contained in Ω′, and μ′

k

lies in the interior of R′
k.

Next, fix any index k ≥ k1 and any point ρ = a + ib ∈ C with
|ρ − μ′

k| ≤ δ. We assert that ρ lies in the interior of R′
k. Indeed, we

clearly have |a− α′
k| ≤ δ < π and |b− ln |μ|α′

k| ≤ δ, so

|b− ln |μ|a| ≤ |b− ln |μ|α′
k| + | ln |μ|a− ln |μ|α′

k|
≤ δ + |μ| |a− α′

k| ≤ δ(|μ| + 1) < ln 2.

It follows that ln(|μ|a/2) < b < ln(2|μ|a) and ln(|μ|a/β) < b <
ln(|μ|a/α). This establishes the assertion, and it is immediate that
the circle Γ′

k lies in the interior of the logarithmic rectangle R′
k for

k = k1, k1 + 1, . . . . To complete the setup of the geometry, for
k = k1, k1 +1, . . . let Ω′

k be the punctured logarithmic rectangle formed
from R′

k by removing all the points inside Γ′
k.

The next step is to establish the growth rate of Δ on each of
the regions Ω′

k. For the constants δ and δ0 := max{2/α, 2β} with
δ < ln 2 < ln δ0, we form the punctured rectangle

R∗ = {ρ = a+ ib ∈ C | −π ≤ a ≤ π,− ln δ0 ≤ b ≤ ln δ0, and |ρ| ≥ δ},

and set
m0 = min{|e−iρ − 1| | ρ ∈ R∗} > 0.

Let h be the function defined by

h(ρ) = −e
−iρ

μρ
g(ρ) − e−iρ

μρ
φ(ρ) + ψ(ρ) for ρ �= 0.

Clearly the function h is analytic for ρ �= 0, and Δ can be written as

(3.12) Δ(ρ) = A34{e−iρ − μρ[1 + h(ρ)]}

for all ρ �= 0.
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To estimate the function h, take any point ρ = a+ib ∈ Ω with b ≥ −d
and |ρ| ≥ r0. Then from the inequalities defining Ω,∣∣∣∣e−iρ

μρ

∣∣∣∣ =
eb

|μ||ρ| ≤
1

|μ||ρ| ·
|μ||a|
α

≤ 1
α
,

and by (3.7), (3.9) and (3.10), we obtain

(3.13) |h(ρ)| ≤ γ1

ln |ρ|
in the general case q ∈ C[0, 1], and

(3.14) |h(ρ)| ≤ γ1

|ρ|
in the special case q ∈ C1[0, 1].

To complete the setup of Δ, observe that

(3.15) e−iμ′
k = μα′

k

for k = k1, k1+1, . . . , and hence, introducing the sequences of functions
fk, gk, k = k1, k1 + 1, . . . , defined by

fk(ρ) = e−i(ρ−μ′
k) − 1 for ρ ∈ C,

gk(ρ) = −
[
iβ′

k

α′
k

+
1
α′

k

(ρ− μ′
k)

]
[1 + h(ρ)] − h(ρ) for ρ �= 0,

we can put Δ in its final form

(3.16) Δ(ρ) = A34μα
′
k[fk(ρ) + gk(ρ)]

for all ρ �= 0 and for k = k1, k1 + 1, . . . . Here we have a family of
representations for Δ depending on the integer k. We will use the kth
representation to determine the growth rate of Δ on the kth region Ω′

k.

Fix any index k ≥ k1, and take any point ρ = a + ib ∈ Ω′
k. Clearly

−π ≤ a− α′
k ≤ π and

ln
a

βα′
k

= ln
|μ|a
β

− ln |μ|α′
k ≤ b− β′

k

≤ ln
|μ|a
α

− ln |μ|α′
k = ln

a

αα′
k

.
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But α′
k ≥ 2π or π/α′

k ≤ 1/2, and

a

α′
k

≥ α′
k − π

α′
k

≥ 1
2
,

a

α′
k

≤ α′
k + π

α′
k

≤ 2,

so − ln(2β) ≤ b− β′
k ≤ ln(2/α). Thus, the point ρ− μ′

k belongs to the
punctured rectangle R∗ with |ρ− μ′

k| ≤ π + ln δ0, and

(3.17) |fk(ρ)| ≥ m0.

Since limk→∞ 1/α′
k = limk→∞ β′

k/α
′
k = 0, in terms of (3.13) we can

choose a positive integer k0 ≥ k1 such that

(3.18)
[
β′

k

α′
k

+
π + ln δ0
α′

k

][
1 +

γ1

ln r0

]
≤ m0

4

for all k ≥ k0 and such that

(3.19)
γ1

ln |a| ≤
m0

4

for all a ∈ R with a ≥ y0 := α′
k0

− π ≥ r0. Then for each index k ≥ k0

and for each point ρ = a+ ib ∈ Ω′
k, we have

|ρ| ≥ a ≥ α′
k − π ≥ y0 ≥ r0,

and hence, by (3.13), (3.18) and (3.19),

(3.20) |gk(ρ)| ≤ m0

2
< m0 ≤ |fk(ρ)|.

Also, since α′
k ≥ 3π, we have a ≥ α′

k −π ≥ 2π or a/2 ≥ π, and by (3.1)

α′
k ≥ a− π ≥ a

2
≥ |ρ|

2ξ
.

Therefore,

(3.21) |Δ(ρ)| ≥ |A34| |μ|α′
k · m0

2
≥ m0

4ξ
|A34| |μ| |ρ|.
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FIGURE 2. Punctured logarithmic strip Ω′∗ in Case 4.

The estimate (3.20) is local in character in that it depends on k it
is valid only on the region Ω′

k. In contrast, the estimate (3.21) is global
being independent of k. If we introduce the punctured logarithmic strip

Ω′
∗ =

∞⋃
k=k0

Ω′
k,

then we see that Ω′
∗ consists of all points ρ = a + ib ∈ Ω which lie in

Quadrant I with a ≥ y0 and which do not lie inside any of the circles
Γ′

k for k ≥ k0, and from the above

(3.22) |Δ(ρ)| ≥ m0

4ξ
|A34| |μ| |ρ| ≥ αm0

4ξ
|A34|e|b|

for all ρ = a+ ib ∈ Ω′
∗.

With the basic estimates (3.20) and (3.22) established, consider one
of the circles Γ′

k for k ≥ k0. Since (3.20) is valid for each point ρ on
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Γ′
k, it follows that Δ and fk + gk have the same number of zeros as
fk inside Γ′

k. But μ′
k is the only zero of fk inside Γ′

k, μ′
k being a zero

of order 1. Consequently, Δ has a unique zero ρ′k inside Γ′
k with ρ′k

having order 1 for k ≥ k0. Setting

λ′k = (ρ′k)2, k = k0, k0 + 1, . . . ,

by Theorem 3.1 the λ′k are all eigenvalues of L, and the corresponding
algebraic multiplicities and ascents are

(3.23) ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . .

It is also easy to derive asymptotic formulas for the zeros ρ′k, k =
k0, k0 + 1, . . . , of Δ. Set ζ ′k = −gk(ρ′k) for k = k0, k0 + 1, . . . . Then we
know that

e−i(ρ′
k−μ′

k) = 1 + ζ ′k

and

(3.24) ρ′k − μ′
k = iLog [1 + ζ ′k]

for k = k0, k0 + 1, . . . , where

|ζ ′k| ≤
[
β′

k

α′
k

+
δ

α′
k

][
1 +

γ1

ln r0

]
+

γ1

ln |ρ′k|
.

Now for each k ≥ k0,

α′
k ≥ 2kπ − π ≥ k,

β′
k ≤ ln |μ|(2kπ + π) ≤ γ2 ln k,

|ρ′k| ≥ |μ′
k| − |ρ′k − μ′

k| ≥ α′
k − δ ≥ 6k − 5 ≥ k,

which yields |ζ ′k| ≤ γ3/ ln k and

(3.25) |ρ′k − μ′
k| ≤

γ

ln k
, k = k0, k0 + 1, . . . .

In the special case q ∈ C1[0, 1] we can use (3.14) to obtain the improved
estimate

(3.26) |ρ′k − μ′
k| ≤

γ ln k
k

, k = k0, k0 + 1, . . . .
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Up to this point we have concentrated on the zeros of Δ in the region
Ω′. The same analysis is applicable to the region Ω′′, leading to the
following results. For k = 1, 2, . . . let{

α′′
k = −(2k + 1)π − Argμ, β′′

k = ln |μ|(−α′′
k),

μ′′
k = α′′

k + iβ′′
k ,

and then introduce the circles

Γ′′
k = {ρ ∈ C | |ρ− μ′′

k | = δ}.

Using the positive integer k0 and the constant x0 := α′′
k0

+ π ≤ −r0,
we form the punctured logarithmic strip Ω′′

∗ consisting of all points
ρ = a+ ib ∈ Ω which lie in Quadrant II with a ≤ x0 and which do not
lie inside any of the circles Γ′′

k for k ≥ k0. The circles Γ′′
k, k ≥ k0, are

all contained in Ω′′
∗ , and the characteristic determinant satisfies

(3.27) |Δ(ρ)| ≥ m0

4ξ
|A34| |μ| |ρ| ≥ αm0

4ξ
|A34|e|b|

for all ρ = a + ib ∈ Ω′′
∗ . Also, Δ has precisely one zero ρ′′k inside Γ′′

k

with ρ′′k having order 1 for k ≥ k0, and the sequence

λ′′k = (ρ′′k)2, k = k0, k0 + 1, . . . ,

consists entirely of eigenvalues of L. The algebraic multiplicities,
ascents, and asymptotic formulas for the λ′′k , ρ′′k are identical to those
for the λ′k, ρ

′
k:

(3.28) ν(λ′′k) = m(λ′′k) = 1, k = k0, k0 + 1, . . . ,

(3.29) |ρ′′k − μ′′
k | ≤

γ

ln k
, k = k0, k0 + 1, . . . ,

and

(3.30) |ρ′′k − μ′′
k | ≤

γ ln k
k

, k = k0, k0 + 1, . . . ,

in the special case q ∈ C1[0, 1].
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Finally, we claim that the λ′k, λ
′′
k , k = k0, k0 + 1, . . . , account for all

but a finite number of the eigenvalues of L. Indeed, suppose λ0 = (ρ0)2

is any eigenvalue of L distinct from the λ′k, λ
′′
k . Replacing ρ0 by −ρ0

if necessary, we can assume that Im ρ0 ≥ −d. Now there are only two
possible locations for ρ0: either ρ0 lies in the disk |ρ| < r0 or ρ0 ∈ Ω
with |ρ0| ≥ r0 and x0 < Re ρ0 < y0. Only a finite number of such
ρ0 are possible because they correspond to zeros of Δ from a bounded
region of the ρ-plane. This establishes the claim.

We summarize the results for Case 4 in the next theorem, phrasing
them in terms of the negatives of the μ′′

k , ρ
′′
k so that they are in the

same format as Theorem 9.1 of [11].

Theorem 3.2. Let the differential operator L belong to Case 4,
and let μ = −2i(A13 + A24)/A34. Then the elements of the spectrum
σ(L) can be listed as two sequences λ′k = (ρ′k)2, k = k0, k0 + 1, . . . ,
and λ′′k = (ρ′′k)2, k = k0, k0 + 1, . . . , plus a finite number of additional
points, where

ρ′k = (2kπ−Argμ)+i ln |μ|(2kπ−Arg μ) + ε′k, k = k0, k0 + 1, . . . ,

ρ′′k = [(2k + 1)π + Argμ] − i ln |μ|[(2k + 1)π + Argμ] + ε′′k ,
k = k0, k0 + 1, . . . ,

with
|ε′k| ≤

γ

ln k
, |ε′′k | ≤

γ

ln k
, k = k0, k0 + 1, . . . ,

and in particular, with

|ε′k| ≤
γ ln k
k

, |ε′′k | ≤
γ ln k
k

, k = k0, k0 + 1, . . . ,

in the special case q ∈ C1[0, 1]. Moreover, the corresponding algebraic
multiplicities and ascents are ν(λ′k) = m(λ′k) = 1, k = k0, k0 + 1, . . . ,
and ν(λ′′k) = m(λ′′k) = 1, k = k0, k0 + 1, . . . , respectively.

Remark 3.3. From the above the differential operator T in Case 4
satisfies:

(3.31) |Δ̃(ρ)| ≥ m0

4ξ
|A34| |μ| |ρ| ≥ αm0

4ξ
|A34|e|b|
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for all ρ = a + ib ∈ Ω′
∗ ∪ Ω′′

∗ ; Δ̃ has a unique zero ρ̃′k inside Γ′
k and

a unique zero ρ̃′′k inside Γ′′
k for k ≥ k0, with ρ̃′k and ρ̃′′k both being

zeros of order 1; the two sequences λ̃′k = (ρ̃′k)2, k = k0, k0 + 1, . . . , and
λ̃′′k = (ρ̃′′k)2, k = k0, k0 + 1, . . . , consist of eigenvalues of T , accounting
for all but a finite number of the points in σ(T ); and the corresponding
algebraic multiplicities and ascents are ν(λ̃′k) = m(λ̃′k) = 1, k =
k0, k0 +1, . . . , and ν(λ̃′′k) = m(λ̃′′k) = 1, k = k0, k0 +1, . . . , respectively.
Many of these results for T are contained in [11, Theorem 9.1], and
they will be needed in Part IV.

Remark 3.4. Suppose the coefficient q is an even function about the
point t = 1/2:

q(t) = q(1 − t) for all t ∈ [0, 1].

Then for the integrals which appear in the function g, we have∫ 1

0
e2iρ(1−s)q(s) ds =

∫ 1

0
e2iρsq(s) ds, and in Case 3B and Case 4 the

zeros ρ′k, ρ′′k, k = k0, k0 + 1, . . . , satisfy the improved asymptotic for-
mulas (2.17), (2.18) and (3.26), (3.30), respectively.
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