ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 26, Number 2, Spring 1996

FACTORIZATION IN COMMUTATIVE RINGS
WITH ZERO DIVISORS

D.D. ANDERSON AND SILVIA VALDES-LEON

ABSTRACT. The purpose of this paper is to study factor-
ization in commutative rings with zero divisors with partic-
ular emphasis on how the theory of factorization in integral
domains is similar to and different from the theory for com-
mutative rings. Various notions of “associate” are considered.
Each form of “associate” leads to a type of “irreducible” ele-
ment, and each type of “irreducible” element leads to a form of
atomicity (elements being products of that type of irreducible
element) and unique factorization. Numerous examples are
given, including an example of an atomic LCM ring which does
not satisfy ACCP or have unique factorization. Factorization
in polynomial rings and power series rings is considered.

1. Introduction. A fundamental theme in algebra is the factor-
ization of elements into irreducible elements. The setting is usually
a commutative integral domain R with identity. A nonzero, nonunit
element a of R is said to be irreducible if for any factorization a = bc,
either b or ¢ is a unit. There are then two natural questions: (1) What
integral domains have the property that every nonzero, nonunit element
has a factorization into irreducible elements? and (2) What uniqueness
properties, if any, do factorizations into irreducible elements have? As
to the first question, usually some chain condition, such as the as-
cending chain condition on principal ideals, is used to show that every
element has a factorization into irreducible elements. The second ques-
tion is more complicated. Factorizations can be highly nonunique. The
class group of a Dedekind domain (or more generally, the divisor class
group of a Krull domain) in some sense measures the deviation from
having unique factorization. For a discussion of the possible lengths of
factorizations, see Anderson and Anderson [5].

Much of the theory of factorization in an integral domain can be
generalized to commutative rings with zero divisors, often in several
ways. Some of this has already been done in a series of papers by
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Bouvier (see references). And several authors, including Anderson and
Markanda [10] and [11], Billis [13], Bouvier, Fletcher [28] and [29],
and Galovich [31] have considered unique factorization in commutative
rings with zero divisors.

Section 2 investigates the notion of two elements being associates.
Let R be a commutative ring with identity. Elements a and b of R
are said to be associated (respectively, strongly associated) if (a) = (b)
(respectively, a = ub for some unit u). A nonunit element a of R is
irreducible (respectively, strongly irreducible) if a = be implies b or c is
associated (respectively, strongly associated) with a. A third stronger
notion of associate, called very strong associate, and the related notion
of very strongly irreducible are considered along with m-irreducible
elements, that is, elements that generate maximal principal ideals. It is
shown that an element is irreducible if and only if the ideal it generates
is maximal among the principal ideals contained in some prime ideal.

Each type of irreducibility leads to a form of atomicity and this is
covered in Section 3. As expected, if R satisfies the ascending chain
condition on principal ideals (ACCP) every nonunit of R is a product
of irreducibles. Each type of associate and irreducible element leads to
a form of unique factorization ring. These are investigated in Section
4. The previous work of Bouvier, Fletcher, and Galovich is compared
and unified.

Section 5 consists of examples. An easy method to construct atomic
rings without ACCP is given. An example of a one-dimensional quasi-
local atomic LCM ring not satisfying ACCP and which is not a unique
factorization ring is given. Section 6 studies factorization in the
polynomial ring R[X] and the power series ring R[[X]]. It is shown
that a € R is irreducible in R if and only if a is irreducible in R[X],
but that the other forms of irreducible do not behave so nicely.

2. Associates and irreducibles. For a commutative integral
domain D with identity, the terminology concerning divisibility and
factorization is more or less standard. Two elements a,b € D are
associates if a | b and b | a, and this is equivalent to aD = bD or to
a = ub for some u € U(D) where U(D) is the group of units of D. A
nonzero, nonunit element a € D is irreducible (or an atom) if a = be
implies b or ¢ is a unit, or, equivalently, if a = bc implies b or c¢ is an
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associate of a. In terms of ideals, a is irreducible if and only if aD is a
maximal element of the set of proper principal ideals of D. The domain
D is atomic if every nonzero, nonunit element of D can be written as
a finite product of atoms. If D satisfies the ascending chain condition
on principal ideals (ACCP), then D is atomic. But Grams [33] showed
that the converse is false. Further such examples were given by Zaks
[47]. For a survey of factorization in an integral domain, the reader is
referred to Anderson, Anderson and Zafrullah [7] and [8].

In the case where D is an integral domain, there is really no difference
between studying factorization of elements or of principal ideals. Let
K be the quotient field of D and K* = (K — {0},-). Then G(D) =
K*/U(D) is called the group of dwisibility of D. The group G(D) is
partially ordered by aU(D) < bU(D) < a|bin D < bD C aD. Thus,
the map G(D) — P(D) given by aU(D) — aD, where P(D) is the
group of nonzero principal fractional ideals of D under multiplication
ordered by reverse inclusion, is an order isomorphism. Here G (D), the
positive cone of G(D), is naturally (order) isomorphic to the monoid
P, (D) of nonzero principal integral ideals of D or to the congruence
monoid D*/ ~ where D* = (D — {0},-) and a ~ b < aD = bD.

Suppose now we decide to look at factorization and divisibility in
the context of commutative rings with zero divisors. Before we can
even consider what parts of the theory of factorization for integral
domains carry over to commutative rings with zero divisors, we need to
decide what our definitions will be. Surprisingly, even the definitions
of “associate” and “irreducible” are not obvious.

So, let R be a commutative ring (always with identity) having total
quotient ring T'(R), R* = R — {0}, and group of units U(R). As usual,
a | b means b = ac for some ¢ € R, or equivalently, bR C aR. A nonunit
a € R is a prime element or is prime if aR is a prime ideal, that is,
a|bc=a|bora|c Wefirst give three different definitions for
“associate.”

Definition 2.1. Let R be a commutative ring, and let a,b € R.
Then a and b are associates if a | b and b | a, that is, aR = bR. If
a = ub for some u € U(R), we say that a and b are strong associates.
Finally, we say that a and b are very strong associates if (i) a and b are
associates and (ii) either a=b=0or a # 0 and a = rb=r € U(R).
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We write a ~ b, respectively a ~ b, a =2 b, if a and b are associates
respectively, strong associates, very strong associates. Certainly, a =
b= a ~b = a ~ band ~ and ~ are equivalence relations,
even congruences on the monoid (R,-). However, > need not be an
equivalence relation on R. For if e € R is an idempotent with e # 0, 1,
then e = e? shows that e 2 e. Note that a = a says that a =0 or a # 0
and @ = ra = r € U(R). Thus, = is reflexive on R if and only if for
z,y€E Rz =zy=x=0o0r y € U(R). A commutative ring satisfying
this last condition has been called présimplifiable by Bouvier [18]. It
is not hard to prove that R is présimplifiable < Z(R) C 1 - U(R) =
{l1-u|ueU(R)} = Z(R) C rad (R) where Z(R) and rad (R) are the
set of zero divisors of R and the Jacobson radical of R, respectively.
For results on présimplifiable rings, the reader is referred to Bouvier
[18, 20, 22, 23 and 24]. Fletcher [29] considered commutative rings
satisfying a property equivalent to being présimplifiable. For r € R,
he defined U(r) = {8 € R | Byr = r, there exists a v € R}, so
U(r) = {8 € R| B(r) = (r)}. We always have U(R) C U(r) and
Fletcher called R a pseudo-domain if U(R) = U(r) for each 0 # r € R.
Note that for r # 0, r 2 r < U(r) = U(R). Thus, R is a pseudo-
domain if and only if R is présimplifiable. Our first theorem shows that
2 is an equivalence relation if and only if 2 is reflexive, or equivalently,
if R is présimplifiable.

Theorem 2.2. Let R be a commutative ring.
(1) Fora,be R, a>b=b>a, so ™ is symmetric.

(2) Fora,bc€ R, a=bandb~ c= a=c. Hence, = is transitive.
Ifa~2a and a ~ b, then a = b.
(3) The following conditions are equivalent:
= 4s a congruence on (R,-),
2 s an equivalence relation on R,
2 is reflexive on R,
~, &, and = coincide on R,

(v) R is présimplifiable.
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Proof. (1) Suppose that a = b. Then a and b are associates. Suppose
a # 0. Let b = sa; we need s € U(R). Since a and b are associates,
a = tb. Thus, a = tb = t(sa) = (ts)a = (ts)tb = (tst)b. Since a = b,
tst € U(R) and hence s € U(R). Thus, b = a.

(2) Suppose a =2 b and b ~ ¢. Then a ~ ¢. We may assume a # 0.
Suppose a = rc. Now ¢ = sb so a = rsb. Thus, rs € U(R) and hence
r € U(R). Hence, a = c.

(3) Certainly (i) = (ii) = (iii). The third statement of (2) shows that
if 22 is reflexive, then ~ and = coincide. Hence, ~,~ and = coincide.
And certainly, if ~, ~ and = coincide, then = is reflexive. Thus (iii)
< (iv). We have already remarked that (iii) < (v). It remains to show
that (iii) = (i). Suppose that 22 is reflexive. Then by (1) and (2), = is
actually an equivalence relation. We must show that a = b = ca = cb.
Now certainly ca ~ c¢b. We may assume that ca # 0. Suppose that
ca = r(cb). Now a = b gives that a = ub for some u € U(R). Then
ca =r(cb) = r(cu ta) = (ru~')ca. Hence ru~! is a unit and thus 7 is
also a unit. o

If R is an integral domain or quasi-local, then R is présimplifiable and
hence ~, ~ and = all coincide. If a € R is regular (that is, a ¢ Z(R)),
then a 2 asoa~ b= a=bfor any b € R. As earlier remarked, if
e # 0, 1 is idempotent, then e ~ e, but e 2 e. It is also possible to
have a ~ b but a % b. The following example is given without proof in

Fletcher [28]. A second example is given in Example 6.1.

Example 2.3. Let R = F[X,Y,Z]/(X — XY Z) where F is a field.
Denoting the images of X,Y,Z in R by x,y, 2z, we have z = zyz, so
r ~ zy. But = % zy. For suppose that fz = zy where f € F[X,Y, Z].
Then fX —YX € X(1-YZ),s0o f—Y € (1 —YZ) and hence
f =Y +h(l -Y2Z) for some h € F[X,Y,Z]. To show that f is
not a unit, it suffices to show that (Y + h(1 — Y Z2),X) # F[X,Y, Z].
Setting Y = Z and X = 0, we see that this is indeed the case.

Different authors have taken different definitions for “associate” and
“irreducible.” For a discussion of this, see Anderson and Markanda
[10]. Using the three different definitions for “associate,” we get three
different definitions for “irreducible.”
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Definition 2.4. Let R be a commutative ring, and let a € R be a
nonunit. Then a is #rreducible, respectively, strongly irreducible, very
strongly irreducible, if a = bc = b or c is associated, respectively,
strongly associated, very strongly associated, with a.

In the preceding definition, we do allow a = 0. It is easily seen
that the following are equivalent: (1) R is an integral domain, (2) 0
is very strongly irreducible, (3) 0 is strongly irreducible, and (4) 0
is irreducible. Clearly, a very strongly irreducible = a is strongly
irreducible = @ is irreducible, but we will give examples at the end of
this section to show that none of these implications can be reversed.
Also, if R is présimplifiable (for example, if R is an integral domain or is
quasi-local), then ~, ~, and 2 concide, and hence so do the notions of
irreducible, strongly irreducible, and very strongly irreducible. We next
give alternative characterizations of our various forms of irreducibility.

Theorem 2.5. Let R be a commutative ring. For a nonzero, nonunit
a € R, the following conditions are equivalent.

(1) a is very strongly irreducible, that is, a = bc = a = b or a = c.

(2) a=ay - a, = a=a; for somei.

(3) a=be= b orcisa unit.

(4) a=ay---a, = every a; except one is a unit.
(5) a=aanda=bc=a=boraZec.

(6) a>aand a>ay---a, = a2 a; for somei.

Proof. (1) = (3). Suppose a = be. By (1), say a = b. But then a =2 b
and a = bc forces ¢ to be a unit.

(3) = (5). We first show a = a. Certainly a ~ ¢ and a = ra = r
or a is a unit. But by hypothesis a is not a unit, so r must be a
unit. Suppose a 2 be. Then a = u(bc) = (ub)c for some unit u. By
hypothesis ub or c is a unit and hence a ~ c or a ~ b. But then a = a
and Theorem 2.2(2) gives a = c or a = b.

~

(6) = (1). Suppose that a = be. Now a = a gives a = be. Hence,
a=boraZc.
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The proof that (2) = (4) = (6) = (2) is similar. It is clear that
(6) = (5) and (5) = (6) follows by induction on n. o

~

Note that if a is very strongly irreducible and a ~ b, then a = b
and b is also very strongly irreducible. For if ¢ = 0, then b = 0 while
if a # 0, then a = a. Thus, a ~ b forces a = b by Theorem 2.2(2).
Then Theorem 2.5(5) shows that b is very strongly irreducible. In
Theorem 2.5 we cannot add the condition @ = bc = a Z bor a = ¢
or even the condition that a = a; ---a,, = a = a; for some ¢. Indeed,
e = (1,0) € Zy x Zy satisfies these two conditions vacuously, but e is
not very strongly irreducible. The statement that a = a in conditions
(5) and (6) of Theorem 2.5 is essential.

Galovich [31] used the notion of very strongly irreducible (condition
(3) of Theorem 2.5) in his study of unique factorization rings. In
studying unique factorization, Fletcher [28] defined “irreducible” in yet
another way as follows. A refinement of a factorization a = ay - - a, is
obtained by factoring one or more of the a;’s. A nonunit a was said to
be “irreducible” if each factorization of a has a refinement containing
a. Thus a is “irreducible” if whenever a = ay ---a,, then for some
i, a; = aa}. In this case a;R = aR. So Fletcher’s “irreducible” is
equivalent to the condition: ¢ = ay ---a, implies a ~ a; for some 1.
Our definition of irreducible is just the case for n = 2. We next show
that these two definitions are equivalent.

Theorem 2.6. Let R be a commutative ring. For a nonunit a € R,
the following conditions are equivalent.

(1) a is irreducible, that is, a =bc=a ~b ora~ c.

(2) a is irreducible in the sense of Fletcher, that is, a = a1+ a, =
a ~ a; for some i.

3) (a) = (b)(c) = (a) = (b) or (a) = (c).

(4) (a) =(a1)---(an) = (a) = (a;) for some i.
(5) a~bc=a~boran~c.

(6)

an~ai--an = a~ a; for some i.

Proof. Clearly, (2) = (1), (4) = (3), and (6) = (5). Also, (3) = (4)
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and (5) = (6) easily follow by induction. It is easily proved that
(4) = (2) and (3) < (5). So it suffices to prove that (1) = (3). Suppose
that (a) = (b)(c). Then a = rbe for some r € R. Now a = (rb)c = b(rc)
gives that (a) = (rb) or (a) = (¢) and (a) = (b) or (a) = (rc). We
may assume that (a) = (rb) and (a) = (rc) for otherwise we are
done. Now (a) = (rb) gives (ac) = (rbc) = (a) and (a) = (rc) gives
(ab) = (rcb) = (a). Hence (a) = (a)(b) = (ac)(b) = (a)(bc) = (a)?. So
a = sa? for some s € R. Thus e = sa is idempotent and (e) = (a).
Write R = Ry X Ry where Ry = eR and Ry = (1 — e)R with e = (1,0)
and a = (o, (). Then aR = eR gives a € U(R;) and 8 = 0. (Hence
a = ue for some u € U(R).) Now a irreducible forces 5 = 0 to be
irreducible in R, that is, R, must be a domain. Thus, aR is prime
and hence aR = bRcR gives aR = bR or aR = cR. u]

Corollary 2.7. If a € R is irreducible and a ~ da', then a’ is also
irreducible. For e € R idempotent, e is irreducible < e is strongly
irreducible < e 1s prime. However, e is very strongly trreducible
& e =0 15 prime.

Proof. The proof of the first statement follows from (1) = (5) of
the theorem. The proof of (1) = (3) of the theorem shows that if e is
idempotent, then e must be prime, and it is easily seen that if e = (1,0)
is prime, then it is actually strongly irreducible. ]

Theorem 2.8. Let R be a commutative ring, and let a be a nonunit
of R. Then the following statements are equivalent.

) a is irreducible.

(1

(2) (a) € (1), (¢) = (a) C (b)(c)-

(3) The set S ={b€ R| (a) C (b)} is a saturated multiplicatively
closed subset of R.

Proof. (1) = (2). Suppose that a is irreducible and (a) C (b) and
(a) (¢). Now (a) C (b), so (a) = (d)(b) for some d € R. Since
(a)

(b)

is irreducible and (a) C (b), we must have (a) = (d) and hence

=(a )( ). Similarly, (a) = (a)(c). Hence, (a) = (a)(c) = (a)(b)(c) €
(c). If (a) = (b)(c), then (a) = (b) or ( ) = (c¢), a contradiction.
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Hence, (a) C (b)(c).
)-

(2) = (3). Clearly S is multiplicatively closed by (2). Also, since
zy € S = () 2 (zy) D (a), we see that z € S, and hence S is
saturated.

(3) = (1). Suppose (a) = ( )(¢) where (a) # (b) and (a) # (c).
Then St) C (b) and (a) C (¢). By (3), bc € S and hence (a) C (be), a
contradiction. O

While Corollary 2.7 shows that an idempotent principal ideal (z) is
irreducible if and only if it is prime, the next result shows that the
conditions that (z) = (z)? and that z is irreducible are closely related.

Theorem 2.9. Let R be a commutative ring, and let x € R.

(1) (z) = (z)? if and only if (x) C (y) = (z) = (z)(y).

(2) If z is irreducible, then (z) C (y) = (x) = (z)(y).
( ()3) (If)( z) C (y) = () = (z)(y), then either x is irreducible or

Proof. (1) («)(x) C (z) gives (z) = (z)(z). (=)(z) = (z)* =C
(z)(y) C (), so (z) = (2)(y)-

(2) Suppose (z) C (y). Now (z) = (y)(z) for some z, and since z is
irreducible, (z) = (z). Hence, (z) = (y)(z) = (z)(y).

(3) Suppose that (z) C (y) and (z) C (2). By hypothesis, (z) =
(z)(y) and (z) = (z)(z). Hence, (z) = (zy)(z) C (yz). If z is not
irreducible, then by Theorem 2.8, we get () = (y)(z) for some such
y, 2. But then (z)? = (z)((y)(2)) = ((z)())(2) = (z)(2) = (z). O

We next give some conditions equivalent to an element being strongly
irreducible.

Theorem 2.10. Let R be a commutative ring. For a nonunit a € R,
the following conditions are equivalent.

(1) a is strongly irreducible, that is, a =bc = a=~b ora ~c.

(2) a=ay - a, = a=a; for some i.
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() ambc=a=bora=c.
(4) amay --ap, = a = a; for some i.

If a is strongly irreducible and b ~ a, then b ~ a, and hence b is
strongly irreducible.

Proof. 1t is clear that (2) = (1) and (4) = (3) and (3) = (4) is easily
proved by induction. Certainly (3) = (1). If (1) holds and a ~ bc,
then a = (ub)c for some unit u. Then a =~ ub, and hence also a ~ b, or
arc.

Suppose that a is strongly irreducible and a ~ b. Then (a) = (b)
and so a = be for some c. If a =~ b, we are done; so suppose a ~ c.
Then (a) = (c), so (a) = (b)(c) = (a)?. Then in the notation of the
proof of (1) = (3) of Theorem 2.6, a = ue where u is a unit and e is
idempotent. But then bR = aR = eR gives that b = ve for some unit
v. Hence, b = u~lva, so b ~ a. Thus, b is strongly irreducible. u]

If a is a nonzero element of an integral domain R, then q is irreducible
if and only if (a) is a maximal element in the set of proper principal
ideals of R. This leads to another form of irreducibility, the form which
was used by Bouvier (see references).

Definition 2.11. Let R be a commutative ring. A nonunit a € R is
m-irreducible if (a) is a maximal element in the set of proper principal
ideals of R.

Theorem 2.12. Let R be a commutative ring, and let a € R be a
nonunit.

(1) a is m-irreducible if and only if a = bc = b € U(R) or a ~ b.
(2) If a # 0 is very strongly irreducible, then a is m-irreducible.

(3) If a is m-irreducible, then a is strongly irreducible.

(4) If a is m-irreducible and a ~ b, then a = b and b is m-irreducible.

(56) Let a be irreducible so S = {b | (a) C (b)} is multiplicatively
closed. Then a/1 is m-irreducible in Rg.



FACTORIZATION IN COMMUTATIVE RINGS 449

Proof. (1) (=). Here a = bc gives (a) C (b). If (b) # R, (a) = (b) by
the maximality of (a).

(«<). Suppose (a) C (b). Then a = be for some c¢. By hypothesis,
(b) = R or (a) = (b). So (a) is maximal in the set of proper principal
ideals.

(2) Suppose a # 0 is very strongly irreducible. Let (a) C (b), so
a = be for some ¢ € R. If a = b, then (a) = (b). If a = ¢, then ¢ = ua
for some unit w. Then a = bc = bua. Thus, a # 0 gives bu € U(R) and
hence b € U(R). So (b) = R. Thus a is m-irreducible.

(3) Suppose a is m-irreducible. Let a = bc. Then (a) C (b), (¢). If
either (b) or (¢) = R, then a ~ ¢ or a ~ b. So suppose (a) = (b) = (c).
Thus (a) is idempotent. Therefore (a) is a maximal ideal. Then
Corollary 2.7 gives that a is strongly irreducible.

(4) Suppose that a is m-irreducible. Then by (3), a is strongly
irreducible and hence by Theorem 2.10, b ~ a gives that b ~ a. Clearly,
b is m-irreducible.

(5) By Theorem 2.8, S is multiplicatively closed. Now (a)NS = ¢, so
(a)s is a proper principal ideal of Rg. Suppose that (a)s C (¢)s. Then
a/l = (r/s)(c/1) where r € R and s € S. So there exists t € S with
tsa = tre. Now ts € S, so (a) C (¢s). Since a is irreducible, (tsa) = (a).
Thus, (a) = (tsa) = (tre) C (¢). If (a) = (¢), then (a)s = (¢)s, while if
(a) C (¢), then c € S, so (¢)s = Rs. o

We have seen that for a = 0, a is irreducible < a is strongly
irreducible < a is very strongly irreducible < a is prime. But a =0 is
m-irreducible < 0 is a maximal ideal, that is, R is a field. Suppose that
a # 0. Then a very strongly irreducible = a is m-irreducible = qa is
strongly irreducible = a is irreducible. But none of these implications
can be reversed. Even in an integral domain, an irreducible element
(and hence very strongly irreducible element) need not be prime. The
element x in Example 2.3 is prime and hence irreducible, but is not
strongly irreducible. For z = (zy)z, but % zy, as we have already
seen, and = % 2 since this gives (z) = (z)? which is also false. (For
(z) = (x)? gives (X) + (X)(1-YZ) = (X)? + (X)(1 — YZ) which
implies F[X,Y,Z] = (X,1 — YZ), a contradiction.) The element
(1,0) € Z x Z is strongly irreducible but not me-irreducible, and
the element (1,0) € Zs x Zg is m-irreducible but not very strongly
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irreducible. In Section 5 we give an example (Example 5.7) of an
irreducible element that is neither prime nor strongly irreducible. We
summarize these implications in the next theorem.

Theorem 2.13. Let a be a nonzero element of a commutative ring R.
Then a very strongly irreducible = a is m-irreducible = a s strongly
1rreducible = a is trreducible and a prime = a is trreducible. Moreover,
none of these implications can be reversed. For a commutative ring R, 0
1s very strongly irreducible < 0 s strongly irreducible < 0 s trreducible
< 0 is prime. However, 0 is m-irreducible < R is a field.

The next theorem gives the exact relationship between irreducible and
m-irreducible elements. An m-irreducible element is an element that
generates an ideal that is maximal in the set of all proper principal
ideals while an irreducible element is one that generates an ideal that
is maximal in the set of principal ideals contained in some fixed prime

ideal.

Theorem 2.14. Let R be a commutative ring. Let P be a prime ideal
of R. Suppose that a € P is such that (a) C (b) C P implies (a) = (b).
Then a is irreducible. Conversely, suppose that a € R is irreducible.
Then there is a prime ideal P with a € P such that (a) C (b) C P
implies (a) = (b).

Proof. Suppose that (a) is maximal in the set of principal ideals
contained in P. Let a = bc. Now bc = a € P, so say b € P. Then
(a) C (b) C P, so (a) = (b). Thus, a is irreducible.

Conversely, suppose that a is irreducible. Then by Theorem 2.8 the
set S ={be R| (b) D(a)} is a saturated multiplicatively closed set.
Since a ¢ S, there is a prime ideal P with a € P and PN S = ¢. If
(a) C (b) C P, then b € PN S, a contradiction. o

We end this section by showing how the various forms of “associate”
and “irreducible” behave in direct products of commutative rings.
This result may be used to give further examples showing that the
implications given in Theorem 2.13 cannot be reversed.
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Theorem 2.15. Let {R,}aca be a family of commutative rings, and
let R=1IR,. Let a = (an), b= (ba) € R.

(1) a~b<s ay ~ by for each a € A, a b & aq = b, for each
a€l, anda=b<& ay by for each a € A and if some ay, =0, then
all a, = 0.

(2) a is irreducible, respectively, strongly irreducible, m-irreducible
prime < each a, € U(Ry) except for one oy € A and that aq, s
wrreductble, respectively, strongly irreducible, m-irreducible, prime in
Ry, .

(3) a is very strongly irreducible < each an € U(R,) except for one
oy € A and that ao, ts very strongly irreducible in R, but is not 0
unless |[A| =1 and Ry, is a domain.

Proof. The proofs of (1) and (2) are left to the reader.

(3) (=). Now a very strongly irreducible implies that a is irreducible
and hence by (2) all a, except one, say a,, are units. Clearly, aq,
must be very strongly irreducible. Suppose that a,, = 0. Then R, is
a domain and since a = a (Theorem 2.5) by (1) each a, = 0, which is
only possible if |A| = 1.

(<). The case where |A| = 1 is clear so we assume that |A| > 1.
Thus a, # 0 is very strongly irreducible and for a # g, ay € U(Ry).
Then a = be where b = (by,), ¢ = (¢o) € IR, gives by, cq € U(R,,) for
a # ap and Gy, = bayCags SO Aay = bay OF gy = Co,- Hence, a = b or
a=c. u]

3. Atomicity. Each form of irreducibility leads to a form of
atomicity.

Definition 3.1. A commutative ring R is atomic, respectively,
strongly atomic, very strongly atomic, m-atomic, p-atomic if every
nonzero, nonunit element of R is a finite product of irreducible, re-
spectively, strongly irreducible, very strongly irreducible, m-irreducible,
prime elements.

Notice that in our definitions of atomicity we have only required
nonzero, nonunit elements to be finite products of irreducibles of the
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appropriate type. If R is not an integral domain, then 0 = ab where
a and b are nonzero, nonunit elements. Writing a and b as finite
products of irreducibles of the appropriate type shows that 0 is also
such a product. Next suppose that R is an integral domain. Then
since 0 is very strongly irreducible and prime, in the definitions of
atomic, strongly atomic, very strongly atomic, and p-atomic we could
equivalently require every nonunit to be a product of irreducibles of
the appropriate type. But for m-atomic the situation is different as 0
is m-irreducible < 0 is a maximal ideal of R < R is a field.

Note that for a commutative ring R, R very strongly atomic = R
is m-atomic = R is strongly atomic = R is atomic and R p-atomic
= R is atomic. As in the domain case, if R satisfies ACCP, then R is
atomic.

Theorem 3.2. Let R be a commutative ring. If R satisfies ACCP,
then R is atomic.

Proof. Suppose that some (nonzero) nonunit of R is not a product
of irreducibles. Let S = {(a) | 0 # a is a nonunit of R that is not a
product of irreducibles}. (So (z) € S means that some associate of x
is not a product of irreducibles.) Let (a) be a maximal element of S.
Then a is not irreducible. (Note that we have used the fact that an
associate of an irreducible is irreducible.) So a = be where (a) # (b)
and (a) # (¢). So (a) C (b), (¢). By maximality, b and ¢ are products
of ireducibles, and hence so is a. This contradiction shows that R is
atomic. O

We next investigate how the various forms of atomicity behave with
respect to direct products.

Theorem 3.3. Let R be a commutative ring. Suppose that 0 is a
finite product of irreducible elements. Then R is a finite direct product
of indecomposable Tings.

Proof. Suppose that 0 = a; ---a, where each a; is irreducible. If
n = 1, then R is an integral domain and is itself indecomposable. So
assume that n > 1. Suppose that R = R; X --- X R,, where R; is a
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not necessarily indecomposable commutative ring. Since by Theorem
2.15(2) an irreducible element of R = Ry X - -+ X R, is a unit in all but
one of its coordinates, we see that 0 cannot be expressed as a product
of fewer than m irreducible elements. Thus m < n. Hence R is a direct
product of at most n indecomposable rings. O

Theorem 3.4. Let {Ry}aca be a family of commutative rings, and
let R =TIR,. If R satisfies ACCP or any of the forms of atomicity,
then A is finite.

Let Ry,...,R, be commutative rings and R = Ry X -+ X R,,.

(1) R satisfies ACCP, respectively, is atomic, strongly atomic, p-
atomic, if and only if each R; satisfies ACCP, respectively, is atomic,
strongly atomic, p-atomic.

(2) R is m-atomic if and only if each R; is m-atomic and if n > 1
and some R; is a domain, then R; must be a field.

(3) R is very strongly atomic if and only if each R; is very strongly
atomic and if some R; is a domain we must have n = 1.

Proof. Suppose that R = [IR,. If R satisfies ACCP or any of the
forms of atomicity, then 0 is a finite product of, say, n irreducible
elements. But then the proof of Theorem 3.3 shows that [A| < n.

Suppose R =Ry X --- X R,,.

(1) That R satisfies ACCP if and only if each R; satisfies ACCP
follows from the fact that every principal ideal of R; X --- X R,, has the
form Iy x --- x I, where I; is a principal ideal of R;. The remaining
statements of (1) easily follow from Theorem 2.15(2).

(2) We may assume n > 1. Suppose that R is m-atomic. Let a
be a nonunit of R;. Then (1,...,1,a,1,...,1) € Ry X --- X R, is
a product of m-irreducible elements of R. This yields a factorization
a = ay ---ap where each a; € R; is m-irreducible (Theorem 2.15(2)).
Thus, each nonunit of R; is a product of m-irreducibles. If R; is
a domain, then 0 must be m-irreducible and hence R; is a field.
Conversely, the hypothesis shows that each element of R of the form
(1,...,1,a,1,...,1) where a is a nonunit of R; is a product of m-
irreducibles. Since each nonunit of R is a product of elements of this
type (for various i), R is m-atomic.
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(3) Suppose that R is very strongly atomic. As in (2), we see that
each R; is very strongly atomic. Suppose that some R; is a domain. If
n > 1, then (1,...,1,0,1,...,1) (where the ith slot is 0) is irreducible,
but not very strongly irreducible. Hence, if some R; is a domain, we
must have n = 1. Conversely, suppose that each R; is very strongly
atomic. If some R; is a domain and n = 1, the result is trivial, so
suppose that each R; is not a domain. Then for a € R; very strongly
irreducible, a # 0 and hence (1,...,1,a,1,...,1) is very strongly
irreducible (Theorem 2.15(3)). Since every nonunit of R is a product of
elements of this type (for various i), R is very strongly atomic. o

Corollary 3.5. Let R be a commutative ring. If R satisfies ACCP,
respectively, is atomic, strongly atomic, m-atomic, very strongly atomic,
p-atomic, then R is a finite direct product of indecomposable rings satis-
fying ACCP, respectively, which are atomic, strongly atomic, m-atomic,
very strongly atomic, p-atomic.

Proof. Just combine Theorems 3.3 and 3.4. ]

Mori in a series of four papers [41, 42, 43 and 44| characterized
the rings, called w-rings, with the property that every proper principal
ideal is a product of prime ideals. A commutative ring R is a 7-ring if
and only if R is a finite direct product of special principal ideal rings
(SPIRs) and m-domains, that is, domains which are 7-rings. There are
many characterizations of m-domains; for example, R is a m-domain if
and only if R is a locally factorial Krull domain [4]. The next theorem
characterizes p-atomic rings. It shows that an indecomposable p-atomic
ring is either an SPIR or a UFD and that a p-atomic ring satisfies ACCP
and is strongly atomic.

Theorem 3.6. For a commutative ring R, the following statements
are equivalent.

(1) R is p-atomic, that is, every (nonzero) element of R is a product
of prime elements.

(2) R is a finite direct product of SPIRs and UFDs.
(3) Ewvery (nonzero) proper principal ideal of R is a product of
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principal prime ideals.

Proof. Clearly (1) = (3) and (2) = (1) and (3) = (2) follow from
the previously mentioned result of Mori. ]

Let R be a commutative ring. Then R very strongly atomic = R is
m-atomic = R is strongly atomic = R is atomic, R p-atomic = R is
strongly atomic, and R p-atomic = R satisfies ACCP = R is atomic.
However, none of these implications can be reversed. We have already
remarked that even an atomic domain need not satisfy ACCP. Any
Noetherian domain that is not a UFD is strongly atomic and satisfies
ACCP, but is not p-atomic. The ring R = F[X,Y,Z]/(X — XY 2Z)
given in Example 2.3 is Noetherian and hence satisfies ACCP, but is
not strongly atomic. For, as we have already seen, x is a principal
prime that is not strongly irreducible and hence = cannot be written as
a product of strongly irreducible elements. It is interesting to note that
R is indecomposable, but is not présimplifiable. Theorem 3.4 shows
that Z x Z is strongly atomic but not m-atomic, and that Zs x Zs is
m-~atomic but not very strongly atomic. We summarize these results in
the next theorem.

Theorem 3.7. Let R be a commutative ring. Then R is very strongly
atomic = R is m-atomic = R 1is strongly atomic = R is atomic; R p-
atomic = R is strongly atomic and R satisfies ACCP; and R satisfies
ACCP = R is atomic. However, none of these implications can be
reversed.

Anderson, Anderson and Zafrullah [7] defined an integral domain R to
be a bounded factorization domain (BFD) if for each nonzero, nonunit
element a € R, there exists a natural number N(a) such that for any
factorization a = ay - - - a,, where each a; is a nonunit we have n < N(a).
They showed that a BFD satisfies ACCP and that a Noetherian domain
or Krull domain is a BFD.

Definition 3.8. A commutative ring R is called a bounded factor-
ization ring (BFR) if for each nonzero nonunit a € R, there exists a
natural number N(a) so that for any factorization a = a; ---a, of a
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where each a; is a nonunit we have n < N(a).

As in the domain case, if R is a BFR, then R satisfies ACCP. Also,
a BFR R is présimplifiable. For suppose that in R, 0 # = = ay
with ¥ a nonunit. Then z = zy = zy? = ---, so & has arbitrarily
long factorizations. Note that since a BFR is présimplifiable, each
irreducible is very strongly irreducible. Thus a BFR is very strongly
atomic.

Theorem 3.9. For a Noetherian ring R, the following conditions
are equivalent.

(1) R is a BFR.

(2) R is présimplifiable.

(3) N%2,(y™) =0 for each nonunit y € R.
(4) N 1I" = 0 for each proper ideal I of R.

Proof. We have already observed that (1) = (2). Certainly (4) =
(3) = (2). By the Krull intersection theorem, N, I" = 0;_5r = {z €
R | zi = z for some i € I}. If R is présimplifiable, then 0;_; = 0,
so (2) = (4). We show that (4) = (1). Let 0 # = € R be a nonunit
and let Z(R/(z)) = P, U---U P, where each P, is a prime ideal of R.
Suppose that z = ab where a is a nonunit. Note that b ¢ (z), for b € ()
gives z € a(z) and hence (z) = (a)(z) so that z € N2 ;(a"™) =0, a
contradiction. Hence a € P; for some i. Suppose that x has arbitrarily
long factorizations. If x = ay---a,, where m > kn and each a; is
a nonunit, then each a; is in some P; and hence z € PF for some
1 <4 < n. So for each k, there exists a 1 < i(k) < n with Pi’?k). Thus,
for some 1 <! < n, there are infinitely many k with ¢(k) = I. Then
x € Nye_1P™ =0, a contradiction. O

Note that, in Theorem 3.9, the Noetherian hypothesis was used in
only two places. First, in (2) = (4) we used a form of the Krull
intersection theorem and in (4) = (1) we used the fact that Z(R/(z))
is a finite union of prime ideals. The form of the Krull intersection
theorem used, that N2 ,I" = {# € R | * = a7 for some i € I}
holds for locally Noetherian rings, or more generally, for rings in which
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Np M7, = 0 for each maximal ideal M of R. For a discussion of the
Krull intersection theorem, see Anderson [2]. We isolate this portion
of the previous theorem.

Theorem 3.10. Let R be a commutative ring with the property that
for each ideal I of R, N32I" = {& € R | x = =i for somei € I}.
Then the following statements are equivalent.

(1) N2, I™ =0 for each proper ideal I of R.

(2) N2, (y™) =0 for each nonunit y € R.

(3) Z(R) Crad(R).

(4) R is présimplifiable.

Proof. (1) = (2). This is always true.

(2) = (1). Let z € Ng2,I". Then z = zi for some i € I, so
z €N, (i") = 0.

(2) = (4). Suppose that zy = zand y ¢ U(R). Thenz € NS, (y") =
0.

(4) = (2). Let y ¢ U(R) and = € N4 (y™). Then x = z(ry™) for
some r € R and n > 1. Then ry" ¢ U(R) forces x = 0 and hence

n=1(y") = 0.

(1) & (3). [2, Proposition 1]. O

The proof of (4) = (1) of Theorem 3.9 can be modified to show
that in a Krull ring there is a bound on the lengths of factorizations
of regular elements. For results on Krull rings the reader is referred to
Huckaba [35], Kennedy [37], or Matsuda [39] and [40].

Theorem 3.11. Let R be a Krull ring. For each regular element a
of R, there ezists a natural number N(a) so that if a = a1 - - - a,, where
each a; is a nonunit then n < N(a).

Proof. We maintain the notation of (4) = (1) of Theorem 3.9. Let
x be a regular nonunit of R, and suppose that x = ab where a is a
nonunit. Note that b ¢ (z), for otherwise € N2, (a™) C Z(R) since
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R is completely integrally closed. Hence a € P; for some i. As the
proof of (4) = (1) shows, if z has arbitrarily long factorizations, then
x € N_P" for some 1 <! < n. But this is a contradiction since
nX_,P™ C Z(R). o

We remark that Theorem 3.11 may also be proved by observing that
n < V(a) where V =Y vp and {vp} is the defining family of rank one
discrete valuations for R.

Theorem 3.6 shows that a ring R is p-atomic if and only if every
proper (nonzero) principal ideal is a product of principal prime ideals.
This raises the question of whether the other types of atomicity can
be defined using principal ideals rather than elements. For example,
let us call R i-atomic if every proper nonzero principal ideal of R is a
product of principal ideals generated by irreducible elements. Clearly,
R atomic implies R is ¢-atomic. In a similar manner we can also define
t-strongly atomic, i-very strongly atomic and ¢-m-atomic. In each case
the form of atomicity implies the form of i-atomicity.

The notion of i-atomicity and factorization in general can be viewed
in the context of a commutative monoid (5, -), possibly with 0. In S
we can define ~, ~ and = just as we did for rings (the monoid (R, -))
in Definition 2.1. This leads to the notions of irreducible, strongly
irreducible, and very strongly irreducible. The notions of prime element
and m-irreducible may also be defined in S as for rings. Here a principal
ideal in S is aS = {as | s € S}. Note that a principal ring ideal of
(R,+,-) is the same thing as a principal ideal of (R,-). Instead of
working in the monoid (R, -) we could work in the monoid R/ ~, that
is, we could work with principal ideals rather than elements. Now
a € R is irreducible < (a) is irreducible in R/ ~j; this is the essence
of Theorem 2.6. Thus if R is atomic, so is R/ ~. In fact, R/ ~ is
atomic < R is i-atomic. To say that R/ ~ is atomic says that, given a
nonzero nonunit a € R, there exist irreducible elements a1,... ,a, € R
with (a) = (a1)---(an) or a ~ ay - - - a,, that is, each nonzero nonunit
of R is associated with a product of irreducible elements.

Question 3.12. Let R be a commutative ring. Does R/ ~ atomic,
respectively, strongly atomic, very strongly atomic, m-atomic, imply
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that R is atomic, respectively, strongly atomic, very strongly atomic,
m-atomic?

Question 3.12 does have an affirmative answer for atomic rings with
only finitely many nonassociate atoms as may be seen from (1) < (5) of
the next theorem. Such rings were characterized by Anderson [3] and
the integral domains with this property were thoroughly investigated
in Anderson and Mott [12].

Theorem 3.13. For a commutative ring R, the following statements
are equivalent.

(1) R is an atomic ring with only finitely many nonassociate irre-
ducibles.

(2) (P+(RU{0},") is finitely generated as a monoid.
(3) R/ ~ is finitely generated as a monoid.

(4) The monoid of all ideals of R under multiplication is finitely
generated.

(5) R is a finite direct product of finite local rings, SPIRs, and
one-dimensional semi-local domains D; with the property that for each
nonprincipal mazimal ideal M of D;, D;/M is fnite and D;p is
analytically irreducible (that is, the Myr-adic completion of D;pr is an
integral domain).

We can consider the monoid R/ ~. It is easy to see that R satisfies
any of the various forms of atomicity if and only if R/ &~ does.

The relations ~, ~ and = could have been defined on T'(R) instead
of R. To avoid confusion as to whether for a,b € T(R) a ~ b means
aR = bR or aT'(R) = bT'(R), we define a ~g b to mean aR =bR. In a
similar way a ~g b means that a = ub for some u € U(R) and a =g b
means a ~g b and either a = b =0 or a = rb(r € R) = r € U(R).
Here T(R)/ ~ is a monoid partially ordered by @ < b < a | b in R.
So T(R)/ ~ is order isomorphic to the monoid of principal fractional
ideals of R ordered by reverse inclusion. The positive cone of T(R)/ ~
is R/ ~. For R an integral domain, T'(R)/ ~ is (isomorphic to) the
group of divisibility of R. For R a domain, factorization or divisibility
questions in R are faithfully translated to factorization or divisibility
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questions in G(R) = T(R)/ ~. The question of whether R i-atomic
implies R is atomic is part of the general question of whether for R not
a domain, does T'(R)/ ~ (or R/ ~) faithfully reflect the factorization
or divisibility properties of R.

4. Unique factorization. Of course an integral domain D is a
unique factorization domain if (1) every nonzero nonunit of D is a
product of irreducibles, and (2) this factorization into irreducibles is
unique up to order and associates. In the nondomain case we have a
number of ways to define “associate” and “irreducible.” The following
definition extends a definition given by Allard [1].

Definition 4.1. Let R be a commutative ring and a € R a nonunit.
Two factorizations of a into nonunits ¢ = a;---a, = bi---b,, are
said to be isomorphic, respectively, strongly isomorphic, very strongly
isomorphic if n = m and there exists a permutation o € S,, such that
a; ~ by(i), respectively, a; & by(;), a;i = b,;). Two factorizations of
a into nonunits @ = ay ---a, = by - - - b,, are said to be homomorphic,
respectively, strongly homomorphic, very strongly homomorphic, if for

each ¢ € {1,...,n} there exists a j € {1,...,m} with a; ~ bj,
respectively, a; ~ b;, a; = b;, and for each i € {1,...,m}, there
exists a j € {1,... ,n} with b; ~ a;, respectively, b; ~ a;, b; = a;.

Each form of atomicity and “isomorphic” leads to a type of unique
factorization ring as given by our next definition.

Definition 4.2. Let R be a commutative ring. Let a € {atomic,
strongly atomic, very strongly atomic, m-atomic, p-atomic} and g8 €
{isomorphic, strongly isomorphic, very strongly isomorphic}. Then R
is an («, B)-unique factorization ring if (1) R is o and (2) any two
factorizations of a nonzero, nonunit element into irreducible elements
of the type used to define « are 3.

Note that for any choice of a and 8, an («, 8)-unique factorization
ring R is présimplifiable. Indeed, suppose that xy = z where = # 0
and y is not a unit. Then x is not a unit. Factor z and y into
irreducibles of the appropriate type, * = a1+ apn, Yy = C1**+Cm; SO
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a1 Qp =T = TY = a1 ---ApCy - - Cyy are two factorizations of x into
irreducibles of the appropriate type that cannot be 3, a contradiction.
So R is présimplifiable. Alternatively, note that R is certainly a BFR
and any BFR is présimplifiable.

Thus, in an (a, 8)-unique factorization ring, the notions of associate,
strongly associate, and very strongly associate coincide. Hence, the
notions of irreducible, strongly irreducible, m-irreducible, and very
strongly irreducible coincide as do the notions of isomorphic, strongly
isomorphic, and very strongly isomorphic. Thus, with the exception
of a = p-atomic, the notions of (a,3)-unique factorization rings all
coincide. Thus, we will use the term unique factorization ring for any
of these rings.

Definition 4.3. Let R be a commutative ring. R is called a unique
factorization ring if R is an (o, 8)-unique factorization ring for some
(and hence all) («, 8) (except a@ = p-atomic).

Bouvier [25] proved that a commutative ring R is (in our terminology)
an (m-atomic, isomorphic)-unique factorization ring if and only if R
is either (1) a UFD, (2) an SPIR, or (3) quasi-local with M? = 0
where M is the unique maximal ideal of R. Galovich [31] gave a
similar characterization of (very strongly atomic, strongly isomorphic)
unique factorization rings. When reading the papers by Allard and
Bouvier, notice that they used the term “associate” as we do, but
they used “irreducible” to mean what we have called m-irreducible
and “atomic” to mean what we have called m-atomic. Galovich used
the term “associate” to mean what we have called strongly associate
and the term “irreducible” to mean what we have called very strongly
irreducible. We summarize these results in our next theorem.

Theorem 4.4. For a commutative ring R the following conditions
are equivalent.

(1) R is atomic and any two factorizations of a monzero, nonunit
element into irreducibles are isomorphic (that is, R is an (atomic,
isomorphic)-unique factorization ring).

(2) R is a unique factorization ring in the sense of Bouvier (that is,
R is an (m-atomic, isomorphic)-unique factorization ring).
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(3) R is a unique factorization ring in the sense of Galovich (that is,
R is a (very strongly atomic, strongly isomorphic)-unique factorization
ring).

(4) R is very strongly atomic and any two factorizations of a nonzero,
nonunit element into (very strong) irreducibles are isomorphic.

(56) R is either (a) a UFD, (b) an SPIR or (c) a quasi-local ring with
M? = 0 where M is the unique mazimal ideal of R.

Bouvier [18] defined a commutative ring R to be a D-atomic if R is
m-atomic and each m-irreducible is prime. Clearly R D-atomic implies
R is p-atomic. The converse is false since Z X Z is p-atomic, but not
D-atomic. In fact, combining Theorem 3.4 and Theorem 3.6 shows
that R is D-atomic if and only if R is either a UFD or a finite direct
product of SPIRs and fields. Bouvier [19] called R a Gaussian ring if
R is a D-atomic unique factorization ring. Thus, we have the following
theorem, the proof of which is left to the reader.

Theorem 4.5. For a commutative ring R, the following conditions
are equivalent.

(1) R is a Gaussian ring.
(2) R is a UFD or SPIR.

(3) R is a (p-atomic, B)-unique factorization ring where B €
{isomorphic, stronglyisomorphic, verystronglyisomorphic}.

If, in the definition of a unique factorization ring, we replace the
condition that factorizations be isomorphic by the condition that they
be homomorphic, we get the following theorem. (This theorem could be
stated with any of the forms of atomicity except very strongly atomic
or p-atomic and with either homomorphic or strongly homomorphic.)

Theorem 4.6. For a commutative ring, R, the following conditions
are equivalent.

(1) R is either (a) a UFD, (b) a quasi-local ring (R, M) with M? =0,
or (c) a finite direct product of SPIRs and fields.

(2) R is atomic and any two factorizations of a monzero, nonunit
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element into irreducibles are homomorphic.

(3) R is m-atomic and any two factorizations of a nonzero, nonunit
element into m-irreducibles are strongly homomorphic.

Proof. Clearly (1) = (2), (3) and (3) = (2). So it suffices to show that
(2) = (1). Write R = Ry X --- x R, where each R; is indecomposable
(Theorem 3.3). Clearly, each R; also satisfies (2). So we may assume
that R is indecomposable. Suppose that R is not a domain. So there
is a nonzero irreducible element r that is a zero divisor. Hence, there
isa 0 #t € R with rt = 0. Factor t =t - - - t,, into irreducibles where
we can assume that no ¢; is regular. Suppose that there is a regular
irreducible element s. Then 0 # sr = (s + ¢)r. Factoring s + ¢ into
irreducibles yields (since factorizations are homomorphic) that some
irreducible factor of s + ¢, and hence s + ¢ itself, is in (s), so t € (s).
But this gives a factorization of ¢ which contains the regular element s
and hence is not homomorphic to the factorization ¢t = ¢y ---t,. This
contradiction shows that every irreducible is a zero divisor and hence
every nonunit of R is a zero divisor. Let r € R be irreducible and let
rz = 0 for some x # 0. Letting r = ry and factoring x into irreducibles,
r=ry---T,, we have ryry - - -7, = 0 which can be rewritten in the form
rit---r&m = 0 where the r;’s are nonassociate irreducibles and each
a; > 1. If m =1, r; is nilpotent. If m > 1, put z = r{* +r3>-.-rgm.
As in the proof of Galovich [31, Lemma 3], we have r{'z = r}**. If
r7% £ 0, then z must be a unit. But then (') is idempotent and
hence must be 0 since R is indecomposable. Hence, every nonunit of R
is nilpotent. Let M be the set of nilpotents of R, so (R, M) is a quasi-
local ring. If R has only one nonassociate irreducible element r, then
M = (r) and R is an SPIR. Suppose that r and s are nonassociate
irreducibles of R. A careful reading of the proof of Galovich [31,
Proposition 6] shows that r? = s = rs = 0. So M2 = 0.

Thus, R = R; X --- X R, where each R; is a UFD, quasi-local
with M? = 0, or an SPIR. Suppose that n > 1. Assume that
some R; is quasi-local with M? = 0, but not an SPIR or field. Let
r,s be nonassociate irreducibles of R;. Then r2 = s = 0 and
(1L,...,1,r1,...,1), (1,...,1,s,1,...,1) are irreducible in R with
0,...,0)=#(1,...,1,0,1,...,1) =(1,...,L,r,1,... , )(1,...,L,n1,

L) =(1,...,1,s1,...,1)(1,...,1,s,1,...,1), but the two factor-
izations are not homomorphic. So in this case n=1. Suppose that some
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R; is a domain but not a field. Let 0 # r € R; be irreducible. Then
a,...,1,0,1,...,1) = (1,...,1,0,1,...,1) (1,...,1,m1,...,1) are
two non-homomorphic factorizations of (1,...,1,0,1,...,1). Hence
again n = 1. Thus, if n > 1, each R; must be a field or SPIR. a

Fletcher [28] defined a “unique factorization ring” in yet another
way. He took as his definition of “irreducible” a form which we have
seen (Theorem 2.6) to be equivalent to our definition of irreducible.
He then defined what he called a U-decomposition of an element: a =
(a1 ---ag)(by---b,) where each a;,b; is irreducible, a; € U(by---b,)
for each i = 1,...,k and b; ¢ U(by---b;---by) for j = 1,... ,n. He
defined R to be a “unique factorization ring” (which we will call a
Fletcher unique factorization ring) if (1) every nonunit of R has a U-
decomposition, and (2) If (ag---ag)(by---by) = (af---af,)(® ---b,)
are two U-decompositions of a nonunit element, then n = n’ and after
reordering, if necessary, b; ~ b; for i« = 1,...,n. Notice in (2) we
require 0 to have a “unique” U-decomposition. As any factorization of
an element into irreducibles can be “refined” into a U-decomposition, it
is (2) that is essential. Fletcher [29] showed that R is a Fletcher unique
factorization ring if and only if R is a finite direct product of UFDs and
SPIRs, that is, R is p-atomic. See Anderson and Markanda [10] for an
alternative discussion of Fletcher unique factorization rings. Fletcher’s
definition of a unique factorization ring may seem somewhat artificial.
A more natural formulation may be given in terms of principal ideals
as follows.

Definition 4.7. Let R be a commutative ring and let ¢ € R be a
nonunit. The representation of (a) = (a1)---(ay) is called a reduced
product representation for (a) if (1) each a; is irreducible and (2) (a) C
(a1)---(a3)- - (ap) for each i. Two reduced product representations
for (a), (a) = (a1)---(an) = (b1)---(by) are isomorphic if n = m
and after reordering, if necessary, (a;) = (b;) for each i and they are
homomorphic if {(a1),...,(an)} = {(b1),..., (bm)}-

Lemma 4.8. Let R be an atomic ring in which any two reduced
product representations of a proper principal ideal are homomorphic.
Then every irreducible element of R is prime.
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Proof. Let r € R be irreducible. We may suppose r # 0. First
suppose that r is not regular. Then there is an a # 0 with ar = 0.
Let (a) = (a1)---(an) be a reduced product representation for (a).
Now 0 = (a1)---(an)(r) and (r) cannot be deleted for then (a) = 0.
Thus, (r) must appear in any reduced product representation for 0.
Suppose ef € (r), say ef = cr. Let (¢) = (c1)---(¢;) be a reduced
product representation for (¢). If (r) is a factor in a reduced product
representation for (cr), then taking representations for (e) and (f),
multiplying them together, and reducing, shows that (r) is a factor
in the reduced product representation for e or f; so e € (r) or
f € (r). Thus we can assume (r) is not a factor in a reduced product
representation for (cr). But then (cr) = (c¢) since if (r) is deleted from
(cr) = (c1) - -+ (e1)(r) we have a reduced product representation for (c),
namely, (¢1) -+ - (¢;) and we cannot have (¢) 2 (r¢) = (¢1)--- (&) -+ - (¢
Hence, (cr) = (c). Now (a1) -~ (an)(c1) -~ (&) = (a)(c) = (a)(er) =
Then reducing (a1) - - (an)(c1) - - (¢;) we see we can delete any (a;)
(r). But then we get a reduced product representation of 0 without an
(r), a contradiction.

1)
0.

Since each zero divisor must have an irreducible factor r which is a
zero divisor and since as we have observed that (r) is a prime and is
one of the factors in a reduced product representation for 0, we must
have Z(R) = (p1) U--- U (pn), a finite union of principal primes. So R
has few zero divisors.

Let r be a regular irreducible element of R, and suppose that ab € (r).
Since R has few zero divisors, there exist s,t € R with a + sr
and b + ¢r regular (see Gilmer [32, p. 78] or Huckaba [35, Theorem
7.2]. Then (a + sr)(b+tr) € (r) and a + sr € (r), respectively,
b+tr € (r) & a € (r), respectively, b € (r). Thus, we can assume
that a and b are regular. Then ab = cr for some ¢ € R. Since ¢
is regular, r must occur in a reduced product representation for (cr)
which we get by factoring c¢ into irreducibles, multiplying by r and
then reducing. Taking reduced product representations for (a) and (b),
multiplying them together, and reducing, shows that (r) must occur in
a reduced product representation for (a) or (b). So a € (r) or b € (7).
Thus (r) is prime. O

Theorem 4.9. For a commutative ring R, the following conditions
are equivalent.



466 D.D. ANDERSON AND S. VALDES-LEON

(1) R is a Fletcher unique factorization ring.
(2) R is a finite direct product of UFDs and SPIRs.

(3) R is atomic, and any two reduced product representations of a
proper principal ideal are isomorphic.

(4) R is atomic and any two reduced product representations of a
proper principal ideal are homomorphic.

(5) R is p-atomic.

Proof. Fletcher [29] has proved that (1) < (2), but our proof will be
independent of this.

It is easily seen that (1) = (3) and clearly (3) = (4). By Lemma 4.8,
(4) = (5) and Theorem 3.6 gives (5) = (2). But it is easily checked
that (2) = (1). O

A fundamental result for integral domains is that R a Euclidean
domain = R is a PID = R is a UFD. Let us look at the situation
where R is a commutative ring. If R is a principal ideal ring (PIR),
then it is well known that R is a finite direct product of PIDs and SPIRs
and hence is a Fletcher unique factorization ring. (For a nice survey
of results on PIRs, see Bouvier [26].) Suppose that R is a Euclidean
ring as defined by Samuel [46]: there is a map ¢ : R — W, (W, <) a
well-ordered set, such that for a,b € R with b # 0, there exist g, € R
with a = bg + r and ¢(r) < ¢(b). The usual proof that a Euclidean
domain is a PID shows that a Euclidean ring is a PIR. Samuel shows
that an SPIR is Euclidean and that a product of Euclidean rings is
Euclidean (it is obvious that a direct factor of a Euclidean ring is again
Euclidean). Thus, a PIR is Euclidean if and only if its PID factors are
Euclidean. Samuel points out that it is necessary to allow the algorithm
¢ to take on values in a well-ordered set larger than N; for Z x Z has
no algorithm ¢ : Z x Z — N. Indeed, Fletcher [30] has shown that
a commutative ring R is Euclidean with algorithm ¢ : R — N if and
only if R is a domain or a finite direct product of SPIRs.

5. Examples. In this section we give a number of examples. These
examples use Nagata’s method of idealization, which is explained briefly
in the next paragraph. For readers wishing more details about this
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construction, see Huckaba [35]. For the idealization Ry = R & N
in Proposition 5.1 and Theorem 5.2 we assume for simplicity that R
is an integral domain although parts of these results hold for R any
commutative ring.

Let R be an integral domain and N an R-module. Put Ry = R® N,
the idealization of R and N, so (71, n1)+(r2, ne) = (r1+7r2,n1+n2) and
(r1,n1)(re,ng) = (rire,rine + rong). It is easily seen that Z(R;) =
{(ry,n) € Ry | r € Z(N)} and nil(Ry) = 0® N. Note that 0 @ N
is the unique minimal prime ideal of R; (so R; is indecomposable)
and (0 ® N)? = 0. It is easily checked that R; is Noetherian < R is
Noetherian and N is finitely generated. Note that (c,n) € U(R;) <
¢ € U(R). We first find some irreducible elements of R;.

Proposition 5.1. Let R be an integral domain, N an R-module,
and Ry = R® N.

) If0+# a € R is irreducible, (a, m) is very strongly irreducible.
2) For 0 # a € R, the following are equivalent:

) a is irreducible,

) (a,0) is irreducible,

(a,0) is very strongly irreducible.

For0#n €N,

a) (0,n) is irreducible < n = am = Rn = Rm < Rn is a mazimal
cyclic submodule of N,

(b) (0,n) is strongly irreducible < n = am = n = um where
u e U(R), and

(c) (0,n) is very strongly irreducible < n =am = a € U(R).

Proof. (1) Suppose that (a,m) = (b,1)(c, k). Then a = be. Now a is
irreducible and R is a domain; so say ¢ € U(R). Then (¢, k) € U(Ry).
So (a,m) is very strongly irreducible.

(2) Now (1) gives (a) = (c) and certainly (c¢) = (b), so it suffices to
prove (b) = (a). Suppose that (a,0) is irreducible and a = be. Then
(a,0) = (b,0)(c,0) so Ry(a,0) = Ry(b,0) or Ry(a,0) = Ry(c,0), hence
Ra = Rb or Ra = Rc, so a is irreducible.
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(3) (a) Suppose that (0,7) is irreducible and n = am. Then (0,n) =
(a,0)(0,m) so R;(0,n) = R;1(0,m) and hence Rn = Rm. Conversely,
suppose that (0,n) = (a,l)(b,m). Now ab = 0, so say b = 0. Then
n = am, so by hypothesis Rn = Rm. Hence, R;(0,n) = R;(0,m). So
(0,n) is irreducible. The second implication is obvious. The proofs of
(b) and (c) are similar. O

Theorem 5.2. Let R be an integral domain, N an R-module, and
Ri=R&®N.

(1) If R satisfies ACCP, then every ascending chain of principal
ideals of Ry containing a principal ideal of the form Ry(a,n) where
a # 0 stops.

(2) R; satisfies ACCP < R satisfies ACCP and N satisfies ACCC
(ascending chain condition on cyclic submodules).

(3) Ry is a BFR & R is a BFD and N is a BF-module, i.e.,
for 0 # n € N, there exists a natural number N(n) so that n =
ay---as_1ns = s < N(n).

(4) Ry is atomic if R satisfies ACCP and N satisfies MCC (every
cyclic submodule of N is contained in a mazimal (not necessarily
proper) cyclic submodule).

(5) Ry is présimplifiable < N 1is présimplifiable, i.e., n = an = n =
0 ora € U(R).

Proof. (1) Suppose a # 0 and Ry(a,n) C Ry(b,m). Then (a,n) =
(b,m)(e,1). Now a = bc and ¢ cannot be a unit of R for this gives that
(¢c,1) € U(Ry). So Ra C Rb. Thus, if R has ACCP, every ascending
chain of principal ideals of R; containing a principal ideal of the form
R;(a,n) where a # 0 stops.

(2) (=). R, satisfies ACCP = R; satisfies ACCP on ideals of the
forms Ry(a1,0) C Ry(az,0) C --- and R;(0,n1) C Ry(0,ng)---. But

this gives that R satisfies ACCP and N satisfies ACCC.

(«<). Let Ry(a1,n1) C Ry(az,ne) C --- be an ascending chain. If
every a; = 0, the chain gives rise to the chain Rn; C Rny C - -+ which
stops by ACCC and hence the original chain in R; stops. If some
a; # 0, then (1) gives that the chain stops.
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(3) =. Clear. («=). Let (0,0) # (a,n) € R; be a nonunit and suppose
we have a factorization into nonunits (a,n) = (a1,n1)---(as,ns). If
a = 0, (0,n) = (a1,n1)---(as,ns) forces say a; = 0 and hence
n=ay --as_1nss08 < N(n). fa#0,a=a;---asso0s < N(a)since
R is a BFR.

(4) Let (0,0) # (a,n) € Ry be a nonunit. Suppose a # 0. By (1),
(a,n) is a product of irreducibles. Suppose a = 0. Then Rn C Rm
where Rm is a maximal cyclic submodule and n = am for some a € R*.
By Proposition 5.1 (0, m) is irreducible. Since (0,n) = (a,0)(0,m) and
(a,0) is either a unit or a product of irreducibles, (0,n) is a product of
irreducibles.

(56) Clear. O

We now use Proposition 5.1 and Theorem 5.2 to give some examples
of bad behavior of factorization in commutative rings with zero divisors.
It is well-known that an atomic LCM (or equivalently GCD) domain is
a UFD and hence satisfies ACCP. We first show this is not the case for

commutative rings.

Example 5.3. A one-dimensional quasi-local ring R; that is atomic
but does not satisfy ACCP. R; is an LCM ring but not a unique
factorization ring.

Take R = Z(z), N =25 ® Zs~, and Ry = R® N. Here Zs ® Zs~
does not satisfy ACCC, so R; does not satisfy ACCP. Now for any
a € Zo=, Z)(1,a) is a maximal cyclic submodule of Zy ® Zge. For
if Z(2)(1,a) C Zz)(c,d) first ¢ = 1 and then r(1,d) = (1,a) forces
r € U(Z(y)) and hence Z3)(1,a) = Z)(c,d). Thus, either Z)(1,a)
is a maximal cyclic submodule or Z)(0,a) C Z)(1,a/2) which is
maximal. Thus, by Theorem 5.2, R; is atomic.

The proper principal ideals of R; have the form:

(1) (0, (. 8)) B = 08 Z (01, B),
2) (2",(0,0) Ry = 2"Zi3 & (0 Zo=)

(fOI‘ (u2n+m’ (OHB)) = (2n, (07 a))(UQma (07 (ﬁfuzma)/zn))v ue U(Z(Q)))’
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and

3) (2" (L, a))Ry = {(u2",(1,8)) | u € U(Z)), B € Z=}
U 2n+1Z(2) ® (0D Za).

Clearly the intersection of two principal ideals of R; is principal; so R;
is an LCM ring. Note that a complete set of nonassociate atoms is

{(o, (1, ot z)) In> o} U{(2,(0,0)} U{(2", (1,0)) | n > 1}.

Example 5.4. A one-dimensional local weakly factorial (i.e., every
nonunit is a product of primary elements) LCM ring R; that is not a
unique factorization ring.

Take Ry = Z3) ® Zs (idealization), so every ideal of R; can be gener-
ated by two elements. Here ((0,1)) is the unique minimal prime of Ry
and it is principal. Let n > 1. Here (2",0)R; = 2"Z3) ® 0 and (2",0)
is irreducible <> n = 1. Also, (2", 1)R; = {(u2",1) | u € U(Z))} U
(271 0)Ry and (27,1) is irreducible for each n > 1. Moreover, since
V/(2",0)R; = 1/(2",1)R; is the maximal ideal of Ry, (27,0) and (2", 1)
are primary. So R; is a one-dimensional local weakly factorial ring
that is not a unique factorization ring. Moreover, the intersection of
two principal ideals of R; is principal: (1) (2",0)R; N (2™,0)R; =
(2maxinm} 0)Ry, (2) (27,0)Ry N (2™, 1)Ry = (2maxinmti} )R, and
(3) (2", 1)Ry N (2™, 1) Ry = (2max{ntlm+1} 0)\R, for n # m.

Example 5.5. A ring R; which is not atomic but 0 and every regular
element of R is a product of irreducible elements.

Take R = Z and N = Zo ® Q, so Ry = Z ® (Z2 ® Q). Note
that Z(1,0) is a maximal cyclic submodule of Zs ® Q, but no other
nonzero cyclic submodule is contained in a maximal cyclic submodule
since Z(1,a) C Z(1,a/3) and Z(0,a) C Z(0,a/3). Hence R; is not
atomic. Now (0, (1,0)) is irreducible and hence (0, (0,0)) = (0, (1,0))?
is a product of irreducibles. By Theorem 5.2(1), every element of the
form (a, (b, c)), where a # 0, # 1, is a product of irreducibles.

Example 5.6. A BFR in which 0 does not have a primary decom-
position.
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Let (R,M) be a local domain with dimR > 1, and let N =
®nyp—1R/P. Put Ry = R® N so M; = M & N is the unique
maximal ideal of R;. Now N2, M{* = 0; so R; is a BFR. But
Z(Ry) = Upt p=1 P @ N is not a finite union of primes, so 0 does not
have a primary decomposition.

Example 5.7. An irreducible element that is neither prime nor
m-irreducible.

Let R=72, N = Zy®Zy, and Ry = Z® N. Then (0,(0,1)) is
irreducible since ((0,1)) is a maximal cyclic submodule of N (Propo-
sition 5.1). R;(0,(0,1)) is certainly not prime. Also, R1(0,(0,1)) C
Ry(3,(0,0)) since (0, (0,1)) = (3,(0,0))(0, (0, 1)), so (0,(0,1)) is not
m-irreducible. In fact, the relation (0,1) = 3(0, 1) shows that (0, (0, 1))
is not even strongly irreducible.

6. Factorization in R[X| and R[[X]]. In this section we investigate
factorization in R[X] and R[[X]] where R is a commutative ring. If a
is an irreducible element of an integral domain D, then a is certainly
also irreducible in D[X] and D[[X]], and conversely. We show that
an element a of R is irreducible in R if and only if it is irreducible in
R[X] or R[[X]]. However, in Example 6.1 we give an example of a very
strongly irreducible (and hence m-irreducible and strongly irreducible)
element of R that is not even strongly irreducible in R[X]. Observe
that 0 is m-irreducible in K, K a field, but 0 is not m-irreducible in
K[X] or K[[X]]-

We first note how the three types of associate relations behave with
respect to elements of R when considered as elements of R[X] or R[[X]]
where R is a commutative ring with zero divisors. Let a,b € R. Then
a~rb<a~pgx) be a~pgxy bsince aR = bR < aR[X] = bR[X] &
aR[[X]] = bR[[X]]. Also, a ~g b+ a ~p[x] b a ~g[x] b. Now since
a power series is a unit precisely when its constant term is a unit, we
see that a 2 b < a =gy x b. Note that R is présimplifiable < R[[X]]
is présimplifiable. (For if 0 # f = gf where f = a, X" +--- , g € R[[X]]
with a,, # 0, then 0 # a,, = g(0)a,,. Thus, R présimplifiable gives that
g(0) is a unit and hence g is a unit.) Now a Zg(x] b = a =g b, but even
a =g a need not imply a =g[x) a. For if R is présimplifiable, a =g a
for each a € R, but for a # 0, a Zgx] a implies ann (a) C nil (R).
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(For b € ann (a) gives a = (1 — bX)a and thus 1 — bX € U(R[X]) gives
b € nil (R). Thus, a Zgx] a for each a € R < Z(R) = nil (R).) Thus,
R[X] présimplifiable = R is présimplifiable, but R[X] is présimplifiable
<> 0 is primary. Clearly the remarks of this paragraph may be extended
to arbitrary families of indeterminates.

Example 6.1. Let R = Z(3) © Z4 (idealization), so R is a one-
dimensional local ring. Now a = (0, 1) is very strongly irreducible and
prime in R. Hence a is prime and therefore irreducible in R[X]. But a
is not strongly irreducible in R[X]. Let f = (1,0) + (2,0)X. Note that
af2 = (0, 1)((170)+(4a0)X+(4)0)X2) =(0,1) =a,s0a = (af)f. Now
certainly f % a. Suppose af = a, so af = au for some unit u € R[X].
Then u =rg+7r X +-+-+7r;X° where rg is a unit of R and rq,... ,7;
are nilpotent and hence in 0 Z,4. Thus ar; =0fori=1,...,s. Hence
af = au = arg € R, a contradiction. Here a =g a, but a #g[x] a.
Also, a ~ af, but a % af.

We next show that if a € R is irreducible as an element of R,
then a is also irreducible as an element of R[X]. Thus the weakest
form of irreducibility is the only one preserved by adjunction of an
indeterminate. This gives some evidence that the weakest form of
being irreducible is indeed the correct generalization of “irreducible”
to commutative rings with zero divisors. Of course, if a is prime in R,
a is also prime as an element of R[X], and conversely.

Theorem 6.2. Let a € R. Then a is wrreducible in R if and only if
a is irreducible in R[{X,}].

Proof. (<). Suppose a = bc where b,c € R. Since a is irreducible in
R[{X.}], say aR[{Xs}] = bR[{X,]- But then aR = aR[{X,}] "R =
bR[{X,}] N R = bR. (=). Since any factorization of a involves only
finitely many indeterminates, we may assume that {X,} is finite. Then
by induction it is enough to show that a is irreducible in R[X].

If aR is idempotent, then a irreducible gives that aR is a prime ideal
(Corollary 2.7). Thus aR[X] is a prime ideal and hence a is irreducible
in R[X]. So we may assume that aR is not idempotent.

Suppose a = fg in R[X]| where f = by + by X + --- + b X® and
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g=co+c1 X +--+c: X' Now a = bycg and a is irreducible, so say
a ~ by. Let by = rpa; so a = roacy. Note that a 4 cg; for if a ~ ¢,
then we would have a = bycy ~ a2, contradicting our assumption that
(a) is not idempotent. It suffices to show that a | b; for each j, for then
a~byg+b X+ +0b,X°= f. Suppose that we have already shown
that a | b; for j =0,...,i — 1; say b; = r;ja. Equating the coefficients
of X% in the product a = fg gives 0 = cob; + c1bj_1 + - -+ + ¢;by. So

a = coroa = coroa + cob; + c1b;—1 + -+ - + ¢;bg
2
= coroa + cob; + c1ri_1roaco + - - - + CiToaCo

= Co(T‘oa +b; + eyri_1roa+ -+ Ci’l‘ga).

Now a is irreducible and a # cg, so a ~ roa+b;+c17;_1r9a+-- -+cir§a.
But then a | b;. u]

We next see how irreducibility extends from R to R[[X]]. We state our
theorem for the power series ring R[[{Xa}]]1 = U{R[[ X0y, -+ > Xa,]] |
{a1,...,a,} € A} where {X,}qca is a set of power series indetermi-

nates over R. Similar results may be given for the power series rings
R[[{Xa}]]2 and R[[{X4}]]s which are defined in Gilmer [32].

Theorem 6.3. Leta € R. Then a is irreducible, respectively strongly
irreducible, very strongly irreducible, or prime, in R if and only if a is
irreducible, respectively strongly irreducible, very strongly irreducible or
prime, in R[[{Xa}]]1-

But a is m-irreducible in R[[{Xa}]]1 if and only if a is m-irreducible
in R and (a) is not idempotent.

Proof. Again, it is enough to prove the theorem for R[[X]]. The case
where a is prime is well-known, and the proof given for a irreducible in
Theorem 6.2 works mutatis mutandis for R[[X]].

Suppose that a is strongly irreducible as an element of R. Again, we
can assume that (a) is not idempotent. The proof for R[X] shows, in
the notation of the previous theorem, but with f = by +6;X +--- and
g=co+c1X + - power series, that we can take a = by. So by = ary
where 79 € U(R). But then f = a(rg+r; X +---) where ro+7 X +- -
is a unit in R[[X]] and hence f =~ a. The converse is easily proved.
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Next suppose that a is very strongly irreducible as an element of
R. Here (a) cannot be idempotent unless a = 0, a trivial case. So
suppose a # 0. As before, let a = fg where f = by + b1 X + --- and
g = co+c1 X+--- are power series. Now a = bgcy and a is very strongly
irreducible, so say c¢g is a unit. But then g = cg+¢; X +- - is a unit, so
a is very strongly irreducible in R[[X]]. The converse is easily proved.

If a is m-irreducible in R[[X]], certainly a is m-irreducible in R.
Suppose that a is m-irreducible in R. If (a) is idempotent, then
aR = eR where ¢ = e. Then aR[[X]] = eR[X]]] € (e + (1 —
eX))R[[X]]] # R[[X]] so a is not m-irreducible in R[[X]]. So suppose
that a is m-irreducible in R and (a) is not idempotent. If aR[[X]] C
fR[[X]] # R[[X]] where f = by + b X + ---, then a = fg for some
g=c+c1X+--. Now a = bpcg gives aR C bR # R and hence
aR = bgR. Since aR = bgRcoR and aR is not idempotent, we must
have cpR = R. But then ¢ is a unit in R, so g is a unit in R[[X]] and
hence aR[[X]] = fR[[X]]- u]

We next consider the question of when X is irreducible in R[X] or
R[[X]]- Note that since X is regular, X is irreducible if and only if it
is very strongly irreducible.

Theorem 6.4. Let R be a commutative ring. Then X is a finite
product of irreducible elements of R[X] if and only if R is a finite
direct product of indecomposable rings. In this case, the number of
irreducible factors in any factorization of X into irreducibles is equal
to the number of factors in any decomposition of R into a direct product
of indecomposable rings. In particular, X is irreducible if and only if R
1s indecomposable. The previous statements of this theorem also hold if
R[X] is replaced by R[[X]].

Proof. We only prove the polynomial ring version; the proof of the
power series ring case is similar.

If R~ Ry x -+ X Ry, then R[X] & Ry[X] X -+ X Rp,[X] where
X — (X,...,X). Since an irreducible element of a direct product is
a unit in all but one coordinate, we see that if X is a product of n
irreducibles, then m < n. Thus, if X is a finite product of irreducibles,
R is a finite direct product of indecomposable rings.
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Next suppose that R is indecomposable. We show that X is very
strongly irreducible. Suppose that X = fg where f = ap + a1 X +
oo+ a,X®and g = by + b X + - + b, Xt. Then 0 = agby and
1 = agby + a1bg. Now both ag and by cannot be 0, say a9 # 0. Then
ag = ag(agb1 +a1by) = a2 + agboar = ab;. Thus (ag)* = (ap), so since
R is indecomposable, ag is a unit. Hence 0 = agbg gives by = 0. So
X =(ag+a1 X+ +asX*)X(by + b2 X +---+ b X" 1). Cancelling
X gives 1 = (ap+ a1 X +-+-+asX*)(by + b2 X +---+ b, Xt 1), 50 f is
a unit. Thus, X is very strongly irreducible.

Thus, if R = Ry X --- X R,, where each R; is indecomposable,
(X,...,X) =Xy X in Ry[X] X -+ X Rpp[X] where X; = (1,...,1,
X,1,...,1) (with X in the ith coordinate) is irreducible. Moreover,
since any irreducible element of R;[X] X -+ X R,,[X] is a unit in all but
one coordinate with that coordinate being irreducible, we see that any
factorization of X into irreducibles has exactly m irreducible factors.
The result follows since the number of indecomposable factors in any
decomposition of R into indecomposable rings is an invariant of R.
O

We next briefly investigate how certain factorization properties de-
fined on R extend to R[X] or R[[X]]. First suppose that D is an
integral domain. It is well known and easily proved that D satisfies
ACCP & D[X] satisfies ACCP < DJ[[X]] satisfies ACCP. Certainly if
D([X] is atomic, so is D. Anderson, Anderson and Zafrullah [7] raised
the question of whether D atomic implies that D[X] is atomic. Soon
afterwards Roitman [45] gave an example of an atomic domain D for
which D[X] is not atomic. (Thus, none of the forms of atomicity are in-
herited by R[X].) The relationship between D[[X]] and D being atomic
seems not to have been investigated. Of course, D is a UFD < D[X]
is a UFD. If D[[X]] is a UFD, so is D, but Samuel has given an exam-
ple of a Noetherian UFD D with D[[X]] not a UFD. Besides bounded
factorization domains (BFDs) which were briefly mentioned in Section
3, the previously mentioned paper [7] considered finite factorization
domains (FFDs). Recall that D is an FFD if one of the following three
equivalent conditions holds: (1) every nonzero nonunit of D has only
a finite number of factorizations up to order and associates, (2) every
nonzero nonunit of D has only a finite number of nonassociate divisors,
and (3) D is atomic and each nonzero element of D has at most a finite
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number of nonassociate irreducible divisors. It was shown that D is a
BFD < D[X] is a BFD < D[[X]] is a BFD and that D is an FFD
< D[X] is an FFD. Clearly, D an FFD = D is a BFD = D satisfies
ACCP. While any Noetherian domain is always a BFD, it need not be
an FFD. But a Krull domain is an FFD.

We have already defined (Definition 3.8) a bounded factorization ring
(BFR) in Section 3. For commutative rings with zero divisors, the three
equivalent conditions given in the previous paragraph to define the
FFDs are no longer equivalent. This leads to three different definitions.

Definition 6.5. Let R be a commutative ring. R is called a finite
factorization ring (FFR) if every nonzero nonunit of R has only a finite
number of factorizations up to order and associates; R is called a weak
finite factorization ring (WFFR) if every nonzero nonunit of R has only
a finite number of nonassociate divisors; and R is called an atomic idf
-ring if R is atomic and each nonzero element of R has at most a finite
number of nonassociate irreducible divisors.

Clearly, if R is an FFR, then R is a WFFR and if R is a WFFR
then R is an atomic idf-ring. However, R = Zs X Zg being finite is
certainly a WFFR, but (0,1) = (0,1)" is an infinite set of nonassociate
factorizations of (0,1). Next let R = Z(3) x Zz). Then R has only
four nonassociate irreducibles: (0,1), (0,2), (1,0) and (2,0). However,
(1,0) = (1,0)(0,2") for each n > 1. Thus, R is an atomic idf-ring that
is not a WFFR. Note that neither Zs x Z3 nor Zy) x Z(3) is a BFR or
is présimplifiable.

Proposition 6.6. For a commutative ring R, the following condi-
tions are equivalent.

(1) R is an FFR.

(2) R is a BFR and WFFR.

(3) R is présimplifiable and a WFFR.
(4)

(5)

R is a BFR and an atomic idf-ring.

R is présimplifiable and an atomic idf-ring.
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Proof. The implications (1) = (2) = (3) = (5) and (1) = (2) =
(4) = (5) are immediate, so it suffices to prove (5) = (1). However
the proof of Theorem 5.1 [7] (which shows that an atomic idf-domain
is an FFD) may be easily adapted to show that (5) = (1). Just use
the hypothesis of présimplifiable rather than cancellation to yield a
contradiction. |

Since an FFR is présimplifiable, all the forms of associate coincide.
However, in the definitions of WFFRs and atomic idf-rings, we could
get variations of these definitions by replacing “nonassociate” by “non
strongly associate” or “non very strongly associate.” In the definition
of an atomic idf-ring we could replace the atomic hypothesis by strongly
atomic, very strongly atomic, etc.

It is an open question whether R satisfies ACCP implies R[X] or
R[[X]] satisfies ACCP. See Heinzer and Lantz [34] for a discussion of
this question. They do show that if a zero-dimensional ring R satisfies
ACCP then so does R[X]. For the related question of when R[X]
inherits the ascending chain condition on annihilator ideals, see Camillo
and Guralnick [27] and Kerr [38].

Z, is a unique factorization ring and a Fletcher unique factorization
ring, but neither Z4[X] nor Z4[[X]] is a unique factorization ring or a
Fletcher unique factorization ring. This example also shows that R p-
atomic does not imply that R[X] or R[[X]] is p-atomic. Using Theorem
4.4 we see that R[X] is a unique factorization ring if and only if R is a
UFD, and, using Theorem 4.9, we see that R[X] is a Fletcher unique
factorization ring if and only if R is a finite direct product of UFDs.
Also, R[[X]] a unique factorization ring forces R to be a UFD while
RJ[[X]] a Fletcher unique factorization ring forces R to be a finite direct
product of UFDs.

Let R be a local ring with 0 not primary. By Theorem 3.9 R is a
BFR since it is présimplifiable, but R[X] is not a BFR because it is not
présimplifiable. However, R[[X]] is a BFR. In fact, for R Noetherian, R
is a BFR < R[[X]] is a BFR. More generally, for any commutative ring
R, R is présimplifiable and satisfies ACCP < R[[X]] is présimplifiable
and satisfies ACCP. We conjecture that R is a BFR < R[[X]] is a BFR
and that R[X] is a BFR < R is a BFR and 0 is primary.

We next show that R an FFR need not imply that R[X] or R[[X]] is
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an FFR. Let (R, M) be a quasi-local ring with M2 = 0. Then certainly
R is an FFR. Now for m,n € M — {0}, mX? = mX(n + X) in R[X]
and R[[X]]. Since n; + X and ne+ X are associates < nj = ng, we see
that if M is not finite, then R[X] or R[[X]] is not an FFR. The same
example shows that for any commutative ring R, if R[X] or R[[X]] is
an FFR, then for 0 # m € R, ann (m) must be finite.

We can also consider when the various factorization properties ascend
to or descend from the rings R(X) and R(X). For a discussion of the
rings R(X) and R(X), the reader is referred to [6].

Note added in proof. The question mentioned in Section 6 of whether
R has ACCP implies R[X] has ACCP has been answered in the
negative by W. Heinzer and D. Lantz, ACCP in polynomial rings: a
counterezample, Proc. Amer. Math. Soc. 121 (1994), 975-977.
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