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ABSTRACT. Suppose F is a polynomialand ) _ . F(bn)X"

represents a rational function. If the b, all belong to a
field finitely generated over Q, then it is a generalization
of a conjecture of Pisot that there is a sequence (cp) with
F(cp) = F(by) for h =0,1,... so that also tho cn XM rep-
resents a rational function. We explain the context of this
Hadamard root conjecture and make some suggestions that
might lead to its proof, emphasizing the apparent difficulties
that have to be overcome and the ideas that might be em-
ployed to that end.

1. Introduction. Suppose that a polynomial f(X) € Z[X] is a
cube for all integer values of X. In effect, by the Hilbert irreducibility
theorem, but in any case directly, it is easy to show that f is the cube
of a polynomial in Z[X].

In such a spirit, Pisot conjectured, see the remark in [1], that if a

power sum
m

a(h) =Y Ai(h)af,  h=0,1,2,...
i=1
is a cube for all h then there is a power sum b(h) = by, so that a(h) = b}
for all h. Here the roots «; are distinct numbers and the coefficients
A; are polynomials, say of respective degrees n; — 1. One says that the
power sum has order Y ;" | n; = n. We should recall that a generalized
power sum a(h) = aj, provides the sequence (ap) of Taylor coeflicients
of a rational function 7(X)/s(X) = Y ;- an X", with
s(X) =0 -aX)™ =1-5X — - — s, X",

i=1
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and degr < n. It is then plain that (ap) is a recurrence sequence,
satisfying

Ahtn = S1Qhtn—1 + S2Ah4n—2 + *** + Spap-

In slightly different language, if E denotes the operator E : f(h) —
f(h+ 1) one sees that the operator [[(E — a;)™ annihilates the power
sum a(h).

Thus, Pisot suggests that if ), b;o’LX his a rational function and
all the b, are integers, then also its Hadamard cube root Zh>0 b X"
is a rational function. The notion of Hadamard operation on a power
series seems to arise from a theorem of Hadamard of 1898, see [5], on
the singularities of the series ) anbpz" relative to those of > apz" and
Z bhzh.

This note was to have sketched a proof of Pisot’s conjecture. It does

not. It discusses the context of the problem and mentions some new
ideas that may bring us closer to a solution.

The genesis of problems of the present genre is Pélya’s theorem [8],
that if >~ hap X h is a rational function and the a; all are integers, then
also 3" ap X" is a rational function. This leads to the observation that
a rational function ), bpX h has no simple poles if and only if the
quantities by /h all belong to a ring finitely generated over Z. It is
easy to see, because the Taylor coefficients are given by a power sum,
that if a series > ap, X" is rational, then the a;, do all belong to a ring
finitely generated over Z. Of course, this evidently necessary condition
for rationality is generally far from sufficient.

Here, however, we shall sketch arguments that might lead to a
generalization of Pisot’s conjecture, whereby if there is a series _ b, X"
that is possibly rational, in the sense just alluded to, and ZbﬁX his
rational, then there exists a rational series Y ¢, X" with cf = b¥ for all
h=0,1,2,....

There are analytic analogues of the arithmetic conjectures and results
discussed here. Continued to C, the power sum a(h) becomes an
exponential polynomial

a(z) = Z A;(z) exp(zlog a;);

actually, one of infinitely many such functions, according to choice of
the logarithms. Theorems of Ritt say that if a quotient of exponential
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polynomials is entire then it is essentially an exponential polynomial
[16]; and if a zero of a polynomial

(1) F(2,Y) = a@)(2)Y* +amy(2)Y* T+ +ap(z),

with exponential polynomial coefficients is entire, then that zero is es-
sentially an exponential polynomial [15]. The qualification ‘essentially’
is required to cope with such exceptions as (¢* — 1)/z which may arise
from dividing by a polynomial, and can occur only if the divisor, re-
spectively the leading coefficient a(g)(2), have a polynomial factor in
the ring of exponential polynomials. Pisot’s root conjecture is the arith-
metic analogue of the case F(z,Y) = Y3 — a(z).

For an extensive survey of these and many related matters, see [10].

2. The dominant root case. Pisot’s conjecture seems peculiarly
intractable. However, suppose we order the roots «; so that

on] = ag| =+ = lou| > |appa] = -+ = foum].

When ¢ = 1, the ‘dominant root’ case, it is a general principle that
power sums are much less recalcitrant. Indeed, in this case there
is a relatively simple proof of the conjecture for kth roots [18]. We
need only the hypothesis that there is a field finitely generated over Q
containing a kth root of each a(h). Then an argument generalizing that
of Perelli and Zannier [7] shows one loses no generality in supposing
that the leading coefficient A;(h) is a constant, so after dividing
by the leading term if necessary, we lose no generality in writing
a(h) = ap = 1 + ¢p, with ¢, a power sum with roots all of absolute
value less than 1. Hence we may write

1 1
bh—a,ll/k—lﬁ—( {k>0h+"'+< {k>62+Rl(h)

= Ci(h) + Ru(h),

(2)

where the number of terms of the power sums C;(h) increases linearly
in [ as | — oo, and the remainder R;(h) is very small.

Because the C;(h) are power sums, there are polynomials P, indepen-
dent of h so that the operator P;(E) annihilates C;(h). That yields

(3) Pi(E)(bn) = P(E)(Ri(h)).
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The left-hand side of (3) has size O(e? T*") whereas the right-hand side
is as small as O(e~%"); here 6, x and § are positive constants. When
the data is algebraic, so the b, all lie in some number field, this is
absurd for [ and h sufficiently large unless P;(E)(by) = 0; that is, since
it is annihilated by a linear operator P(E), b(h) = by, is a power sum
and ) b, X" is a rational function. One deals with the nonalgebraic
case by a specialization argument detailed in [18].

For its dominant root case, a very similar argument proves a related
conjecture of Pisot to the effect that if a quotient ¢(h)/a(h) of power
sums is in Z for all A, then it is itself a power sum. That was shown by
David Cantor [2, 3] when a(h) has a dominant root. Eventually, the
general case required a rather different proof [9] seemingly relying on
quite other principles.

Naturally, I expected that the new ideas used to prove the Hadamard
quotient theorem could also be applied successfully to the present
problem. However, the late Philippe Robba alerted me to a seemingly
fatal obstruction. Namely, the binomial expansion (2), which relies in
an essential way on there being a dominant root with respect to some
absolute value | |, does more than just explicitly display the kth roots.
It actually guarantees that we are choosing those kth roots coherently.

In any event, the root problem presented other difficulties more
complicated than those of the quotient case, so I never had to meet
incoherence head-on. Then, recently, in sketching an elementary proof
[12] of the Lech-Mahler theorem on zeros of the Taylor coefficients of
rational functions to my student Sam Williams, I noticed a technique
that might lead around those other difficulties.

3. Principles. There is a well-known criterion for the rationality of
a power series Y b, X". Namely, the series is rational if and only if the
Kronecker-Hankel determinants

bo b1 by

b1 by -+ bnir
Kn(b) = |bitjlo<ij<n = ) }

by bng1 -+ ban

vanish for all N greater than some n. The recurrence relation for
the b, makes necessity obvious, and sufficiency follows by remarking
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that if K,_1(b) # 0 whilst K,(b) = 0, we may set ¢, = bpyn —
S$1bp4n—1 — -+ — Spbn, with certain constants si,... , s, so that ¢, =0
for h=0,1,...,n. Then K,11(b) = —c2,1K,_1(b), and K, ;1(b) =0
entails also ¢,4+1 = 0. So, by induction, K (b) = 0 for all N > n entails
cp,=0forall h=0,1,....

In his proof of the Weil conjecture on the rationality of the Zeta-
function of varieties, see [6], Dwork proves the vanishing of the Ky (b)
in effect by showing that closely related determinants |b;1;|ar<ij<n
are divisible by an arbitrary high power of a prime p. The chosen
prime p divides some root f; of the putative power sum b(h). In
contrast, following a suggestion of Pourchet [14], one may work with
a complementary set of primes. One uses a large set P of primes
all splitting completely in the underlying number field and eventually
shows that, for large IV,

H pLN(NJrl)/(p*l)J Kn(b),
pEP

or so. I add the ‘or so’ to acknowledge that the precise exponents for
the p need minor adjustment; see [18] for a very detailed discussion.
The p € P must be so that roots of power sums appearing amongst the
data all are p-adic units. The K (b) vanish because one may choose P
so that [],cp p'/P=1) is arbitrarily large.

However, working with more than one prime means one has to
combine p-adic data for different p. The trick is to be naive. One
chooses to deal just with congruences mod p™», for suitable integers
M, at least as large as 2N/(p—1). Then the Chinese remainder theorem
allows one to combine the data as information modulo Hpe’P pMr,

An effect of the naive approach is that power sums become polyno-
mials. Suppose that a; =1 (mod p) for all the roots of the power sum

221 Ai(h)a?. Then
a(h) =Y Ai(h)(1+ (o — 1))
(4) _ hY
= ;;%)(ai ) (J) ,

some thought and reorganization is required to obtain the polynomials
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2;, each again of degree n; — 1. Now the point is that
a; = Zmi(j)(ai - 1)/

satisfies a recurrence relation ap4,, = t10p4pn—1+- -+ +t,0a; with all roots
divisible by p, so ord ,t; > j. Hence the minimum g = min ord ,a; can
occur only for 7 < n. By renormalizing we may suppose that y = 0
and obtain

o) o= ¥ St -17 (1)

0<j<n 1

over the finite field F,,.

It is easy to pursue the preceding argument to see that the recurrence
relation entails ord ,a; > j — n. In particular, we may interpolate p-
adically and use (4) to view a(t) as a function of a p-adic variable,
convergent for all ¢ with ord ,t > —1+1/(p — 1). It now follows from
(5), in effect the Weierstrafl preparation theorem, that a(t) has fewer
than n zeros if p > n; for more on that topic see [13].

For our purposes it is helpful to notice that, if A = E — 1 is the
difference operator, then ord ,A*a(h) > k — n. Hence, by

Kn(a) = |a(i + j)lo<ij<n = A" a(0)|o<i j<n,

it follows that pV M+ | Ky (a). The marks the quantity on which A
operates.

In general, we don’t have a; =1 (mod p). But, if p splits completely
in the base field and is prime to the a’s, we may restrict to subsequences.
The roots af_l of the power sums

a(r+h(p—1)), 0<r<p-1

are all congruent to 1. The remarks above now hold only for each of
the p — 1 subsequences a(r + h(p — 1)), that is, we have

ord ,Afa(r+h(p—1)) >k—n

for each r. Mildly more complicated manipulations within the Kronecker-
Hankel determinants lead to ord ,Kn(a) 2 [N(N +1)/(p —1)].
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4. Short sketch of the proof of the Hadamard quotient
theorem. It may yield conviction to the eventual suggestions I
make for attacking the root theorem to provide first an analogous
sketch of an established argument, the proof of the quotient theorem.
Here, after specialization if necessary, we have power sums c(h) =
ch = ) C'j(h)fy]’f and a(h) = ap, and are given that the quotients
cn/ap = by, = b(h) all belong to a ring of S-integers of some number
field. As usual, S is some finite set of places including the archimedean
places. As in Section 3, we suppose first that for some prime p the roots
v; and «; all are congruent to 1 mod p. Then the quotient c(h)/a(h)
may be p-adically interpolated to yield a quotient c(t)/a(t) = b(t) of
p-adic exponential polynomials, converging for ord ,t > —1+1/(p—1),
other than for possible poles occasioned by the zeros of b(t). Since
there are at most n — 1 such zeros if p is larger than n, there is a
polynomial f,(¢) defined over Z,, and of degree less than n, so that
fp(t)b(t) has no such poles. Less technically, the point is, as above,
that multiplication by f,(h) yields ord ,A* f, (h)b(h) > k—n and hence
ord , Kn(fp-b) > N(N +1).

Of course, we cannot expect to have those useful congruence condi-
tions on the roots of the given power sums. Accordingly, let K be a
number field containing all the data, to wit the roots and the coeffi-
cients of the polynomial coefficients of ¢(h) and a(h), and thus also the
quotients b(h). We next choose rational primes p that split completely
in K and that are large enough to avoid the finitely many primes at
which any datum is nonintegral or at which a root of either power sum
is a nonunit. By Tschebotarev, there are finite sets P of such p so that
[T,ep P/ ® Y is as large as we wish.

Next we restrict to subsequences to get the congruence conditions on
the roots, at the cost of obtaining just

ordp Kn(fp-0) 2 IN(N+1)/(p—1)].

Now the problem is that we need such an inequality for all p € P,
of course with an fp common to all those p. As said above at Section
3, naivete comes to the rescue. We only ever use f, mod pM» . so no
harm whatsoever is done if we truncate the coefficients of f, modulo
pMr and allow abuse of notation to transform f, to a polynomial over
Z, mind you, with rather hefty coefficients since they are remainders
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mod pM». Now we can use the Chinese remainder theorem to concoct a
polynomial fp, with coefficients remainders modulo Mp = HpeP pMr,
to serve as the common multiplier.

Thus, finally we have ord ,Kn(fp -b) 2 [N(N +1)/(p — 1)] for all
p € P. This entails that K (fp - b) = 0 or, for all large N,

|Kn(fp-b)| = H PNV /(p=1)]
peEP

One would now like to conclude, because we are free to choose
[Ler pt/ =1 as large as we wish, that indeed Ky (fp -b) = 0.

That doesn’t work because of the coefficients of fp, which may be as
large as Mp, and thus depend on both P and N. Although I do not
believe that a proof of the root conjecture can involve a multiplier, for
completeness I explain the resolution of the difficulty just mentioned.
The idea, very obscurely suggested in [14], is that multiplication by
some polynomial f with integer coefficients, yielding gp = f - fp with
coefficients remainders modulo Mp, provides just as good a multiplier
as did fp. One applies the box principle to show the existence of
an f yielding a multiplier gp of rather larger degree than that of fp,
but with coefficients that are remainders modulo Mp fairly small in
absolute value when viewed as elements of Z. For quantitative details,
see [9].

Now one can prove K (gp - b) = 0 for a long range of N, sufficiently
long to allow the decision that > gp(h)by X" is a rational function.
Finally, the Poélya-Cantor lemma, David Cantor’s generalization of
Pélya’s result, permits the conclusion that also Y b, X" is rational,
as was to have been proved.

The complete argument is detailed in extenso by Robert Rumely [17].

5. Arguments that might prove a Hadamard root theorem.
Finally we are ready to consider the supposition that a(h) = b with
a(h) a power sum, and the by, all in some number field, after our having
specialized if necessary. Let K be a number field containing all the data,
namely the roots and coefficients of the polynomial coefficients of a(h),
and the sequence of given kth roots b,. Let p be a prime much larger
than n and k, and =1 (mod k). Then F,, contains the k different kth
roots of unity. Supposing that all the roots «; of a(h) are 1 mod p, just
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as we temporarily assumed above, we have (5) reporting that over F,,
the power sum a(h) is some polynomial Fj,(h) of degree less than n.
That is, over F), we have a curve

(6) v = Fy(e)

with lots of rational points, that is, points (z,y) in Fg, because for each
x there is a y € F, by the kth root data, and, therefore, because F,
contains the kth roots of unity, other than corresponding to the fewer
than n zeros of F},, there are k different such y.

It is hardly necessary to invoke Weil’s theorem on the number of
points on curves over a finite field, and of course weaker results will do,
but it suffices to remark that, with k& and n much smaller than p?, say,
an irreducible curve (6) of degree max(k,n) has genus much smaller
than \/p and cannot have many more than p rational points. Since
we have found almost kp rational points, it follows that (6) splits into
factors linear in y. That is, F),, which is just a(h) mod p, is a kth power
of a polynomial in F,[z].

Accordingly, we may choose an arbitrary kth root of a(h) mod p, and
endeavor to construct a kth root b, ¢ (k) mod pM» with ord ,AFb, o (h) >
k —n. Here the subscript C' alludes to the choice we have made of kth
root. Were our endeavor to succeed, we would obtain ord , Kn (by,c) >
N(N +1).

The realization that a(h) mod p automatically just had to be a kth
power, given the data, is the first of my new thoughts on Pisot’s
conjecture. I am indebted to Gerry Myerson for reminding me that
Weil’s theorem might be invoked to confirm that fact. I say ‘just had
to be’ because it had long been evident to me that in the root case
there is no analogue of the multiplier which is applied in the quotient
case to remove possible singularities. Thus, for the present approach
to work, all just has to be well. Unfortunately, all is not well.

The fact that a(h) is a kth power mod p does not automatically lift
to it being a kth power mod p?. With a little work one can show that
the remarks above entail that the p-adic power series by ¢ (t) have no
singularities in Z,. But, showing these functions have no singularities
for ord ¢t > —1 + 1/(p — 1), which is what is needed, requires an
additional idea allowing one to use the data that for h = 0,1,2,...,
the by ¢ (h) all lie in some number field. Nevertheless, for the next few
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paragraphs, let me suppose that, somehow, we have shown that the
bp,c(t) do converge for ord ,t > —1+1/(p —1).

Of course, generally we would not have the congruence conditions on
the roots of the given power sum. Accordingly, let K be a number
field containing all the data, to wit the roots and the coefficients of
the polynomial coefficients of a(h), and the given kth roots b,. Let (j
denote a primitive kth root of unity. We now choose rational primes p
that split completely in K((;) and that are large enough to avoid the
finitely many primes at which any datum is nonintegral or at which
a root of either power sum is a nonunit. Moreover, to sustain the
argument above, we require that the p be much larger than k and n.
By Tschebotarev, there are finite sets P of such p so that Hpe’P pl/ (=1
is as large as we wish.

Now we restrict to subsequences, as described above in Section 3, to
get the congruence conditions on the roots. The cost is that we obtain
just ord ,Kn(bpc) 2 [N(N +1)/(p —1)]. Here the subscript C' = C)
refers to the set of choices of kth root we have made for the p — 1
remainders r.

At this point we would have constructed sequences of rational integers
bp.c(h), strictly speaking, of remainders mod p™». Next we apply
the Chinese remainder theorem to piece together the information so
obtained. That yields sequences bc(h) of rational integers defined mod
Mp = Hpe’P pMr | with the property that the determinants Ky (bc)
satisfy ord ,Kn(bc) 2 |[N(N +1)/(p — 1)] for each p € P. By now,
C = Cp refers to the collection of choices made for all p € P and all
their respective r.

Now we would meet the next difficulty. We cannot allege ourselves to
have guaranteed any sort of coherence in our ‘choices.” Indeed, there
seems to be no a priori meaning at all for coherence in this context other
than to beg the question and to describe a sequence (by,) of kth roots
of a power sum a(h) as ‘coherent’ if and only if b, = b(h) does indeed
provide a power sum. To make the point, even our p—1 choices for each
p seem independent. So it does not make sense to claim that the bo(h)
p-adically, let alone globally, simulate kth roots of the a;, whatever our
good local planning for the subsequences given by b, ¢ (r +h(p—1)) for
fixed C, p and r. Locally, of course, each such subsequence is p-adically
close to a kth root of the power sum a(r+h(p—1)). But, not only have
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we no guarantee as r varies that we are close to the ‘same’ kth root of
a(h), because it is not completely clear what that might mean, all the
more for a given choice Cp yielding r + h(p — 1) = ' + h'(p' — 1), we
surely have no way of having forced the two values b, ¢(r+h(p—1)) and
by c(r' +h'(p" — 1)) to be close p-adically, and respectively p’-adically,
to the same kth root.

This fundamental incoherence seemed always to vitiate the present
line of argument. Nonetheless, I believe I can show that, given earlier
suppositions, there is a choice C in the collection of all choices so that
bc(h) does yield a power sum.

The idea is to embrace the incoherence. All said, for each p and r
there are just k choices. Denote the finite set of all choices by C. Set
P =[[,ep(p —1). We may then remark that there are just [C| = kr
choices all up.

Thus, if there were no gap in our argument, we would have shown,
for each choice C' € C, that we obtain a determinant Ky (bc) highly
divisible by the p € P, as explained above.

Now consider the product [[~co Kn(bc) of those determinants over
all the choices. This product is invariant under permutation of choice,
so by symmetry it must be a function Dy (@) of quantities @y, coinciding
modulo pM» with the original data as for each p € P; that is, the ay
coincide modulo Mp with the original data aj. But

ord, Dy (@) Z [CILN(N +1)/(p - 1)].
Thus, if the M), satisfy M, > |C|N(N +1)/(p — 1), then
ordpDn(a) Z [C[LN(N +1)/(p — 1)]

for each p € P. On the other hand, it is easy to see that there is a
positive constant A, depending only on the original power sum a(h),
which provides an evident upper bound of the shape AICIN(N+1)/k
for the height of Dy(a). Comparing the p-adic bounds with that
upper bound shows that taking sufficiently many primes in P forces
Dy (a) = 0. That shows that Kn(bc) = 0 for some choice C € C, and
some long range of IV, which is what we hoped to be able to show.
Finally, it is explained in [18] that if there is a power sum Hadamard
kth root then there is such a root with order bounded in terms of n
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and k. That suffices to prove that the vanishing of the Ky (bc) = 0 for
a sufficiently long range of N entails that bc(h) is indeed a power sum.

My suggestion that incoherence can be tamed, by avoiding the kth
roots as such and returning to the original data, is the second new
idea. That realization was not immediate. Several years ago I had
sketched a hopeless argument which ultimately I named, ‘A divergent
argument...” [11]. For a while I feared having to title this note, ‘An
incoherent argument...’.

I have pretended throughout that all the data lies in some number
field. In fact, for the kth root case Rumely and the author [18] have
proved that this loses no generality. That relies on a specialization
argument allowing one to revert to the algebraic case. Ultimately one
lifts back to the transcendental case.

Recall, however, that these fine ideas are relevant only if it is indeed
possible to show directly that the p-adic kth roots converge in a ‘large’
circle.

6. Discussion, remarks and acknowledgments. I have long
feared that the argument for the root case may turn out to be tech-
nically simpler than that required in the quotient case; and I think
so now. There will be no relatively delicate estimates or subtle con-
structions such as are needed to provide the multiplier in the earlier
case.

It also warrants remark that the present argument will be able to be
recounted so that the word ‘p-adic’ never occurs (I now realize that the
same holds for the quotient theorem). Thus, technically, the proof will
be able to be made elementary.

The argument suggested in Section 5 would provide the proof of the
following:

Hadamard Root Conjecture. Let k denote a positive integer and
suppose that Y ;< bﬁXh represents a rational function. If the by all
belong to a field finitely generated over Q, then there is a sequence (cp)
with CZ = bﬁ for h = 0,1,... so that also tho ch X" represents a
rational function.
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In fact, one could then claim a little more. With aj replacing bﬁ
above, the argument would not require that all the aj be kth powers,
but only that sufficiently many consecutive a;, be known to be kth
powers. The sufficient number would depend on k and the given
rational function and could be determined effectively, at any rate up to
estimates arising from the invocation of Tschebotarev.

Consequently, it is reasonable to suggest that if }°, . anX h repre-
sents a rational function and if, for some dense subset H C Zx, we
have ap, = bf with the by, all belonging to a field finitely generated
over Q when h € H, then there is a positive integer d and some r
with 0 < 7 < d, and a sequence (c;) with CZ = a,4nd SO that also
> hso ch X" represents a rational function. That would follow from the
above by virtue of Szemeredi’s result to the effect that H contains ar-
bitrarily long arithmetic progressions, on noting that Y, @r+rdX h
represents a rational function. -

Incidentally, in light of terms like ‘symmetric square’ currently
bandied about in relation to Fermat’s last theorem, it may be though
amusing to remark that what we are attempting to prove is inter alia
that if a rational function has too many consecutive squares amongst its
Taylor coefficients, then that rational function is the symmetric square
of a rational function.

One presumes that Pisot asked about cube roots because an integer
has just one real cube root and so, apparently, the Hadamard cube
root of a rational function with Taylor coeflicients in Z is therefore well
defined. The p-adic nature of our proposed argument is such that this
seems to bring no advantage, and in any case it can bring no advantage
in the general setting in which we try to argue. Indeed, our argument
clearly would allow a generalization to the case where F' is a polynomial
and Y, -, F(bp)X" represents a rational function. Namely, if the by,
all belong to a field finitely generated over Q, then there is a sequence
(cn) with F(cp) = F(bs) for h = 0,1,..., so that also Y ,~,cn X"
represents a rational function.

The argument proving such a result in the dominant root case was
first sketched for me by Graham Everest half a dozen years ago.

In justification of the opening allusion to the Hilbert irreducibility
theorem, I should also remark that a successful argument would en-
tail that if an equation F(y) = a(z), with F a polynomial and a an
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exponential polynomial, has a solution (z,y(z)) for sufficiently many
consecutive integer values of z, with the corresponding y(z) all belong-
ing to some field finitely generated over the rationals Q, then there is
an exponential polynomial b(z) so that a(z) = f o b(z). This is a weak
generalization of a result of Davenport, Lewis and Schinzel [4], and is
in the spirit of results proposed in [10].

It would be satisfying to be able to suggest a program for dealing
with the more general question concerning

(7) ]:(h, Y) = a(o)(h)Yk + a(l)(h)Yk’l 4+ -4 a(k)(h),

the power sum analogue of (1), given that for each h = 0,1,2,...,
there is a by, so that F(h,by) = 0, with the b, all in some ring finitely
generated over Z. The obstruction to such a generalization of the
sketched argument is that, to prove the existence of a linear factor over
F,, one seems to need to place restrictions on p that themselves depend
on p, whereas in the kth root case the restriction depends only on k.
At this time, I incline to the view that I am overlooking some simple
fact whereby a curve over a finite field F,, that has a rational point for
each ordinate x € F), necessarily has a linear factor. Of course, that is
not true as stated. But it should be true under conditions on p that
may be imposed in the present context, such as that p be sufficiently
large and is = 1 modulo some constant K depending only on (7).
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me about incoherence. Recently, Eric Liverance, Gerry Myerson,
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me to a fatal flaw in the complete argument I had hoped to be able to
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leap.
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