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SMALL SALEM NUMBERS, EXCEPTIONAL UNITS,
AND LEHMER’S CONJECTURE

JOSEPH H. SILVERMAN

ABSTRACT. Lehmer’s conjecture says that there is an
€ > 0 so that if an algebraic integer o is not a root of unity,
then its Mahler measure M(a) is greater than 14 e. This
suggests that if M(a) > 1 is small, then a should behave
like a root of unity. For example, there might be many small
values of n such that 1 — a™ is a unit; that is, such that a™ is
an exceptional unit.

The smallest Mahler measures currently known occur for
Salem numbers, and Boyd has constructed a table of small
Salem numbers. We verify experimentally that many powers
of the numbers in Boyd’s table are exceptional units. We also
show that if « is an algebraic integer of degree d, then at most
O(d'*¢) powers of a can be exceptional units. Finally, we
consider the Mahler measure (canonical height) associated to
arbitrary rational maps ¢(z) and raise some questions related
to ¢-Salem numbers and the ¢-Lehmer conjecture.

1. Heights and Mahler measure. Recall that the Mahler measure
of an algebraic integer « is the quantity M («) defined by

M(a) = H max{|oal,1}.

0:Q(a)—C

Here the product is over all of the embeddings of Q(«) into C. Clearly
we always have M (a) > 1, and an elementary result of Kronecker tells
us when there is equality.

Theorem (Kronecker [8]). M(a) = 1 if and only if o is a root of
unaty.
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We also recall that the (absolute multiplicative) height of an algebraic
number « is the quantity

H(a)= [[ max{llaf.,1}""™,
vEMgk

where K is any number field containing « and M is an appropriately
normalized set of absolute values on K. The height and the Mahler
measure are related by the simple formula

M(a) = H(q)!Q@:Ql,

2. Lehmer’s conjecture. Kronecker’s theorem leads naturally
to the question of the minimum value of M(a) when a is not a
root of unity. This question has applications to, among other things,
finding multiplicative relations between units in number fields. It seems
natural to suppose that one could find a sequence of algebraic integers
a1, 09,... with M(ay,) > 1 and M(ay) — 1 as n — co. Lehmer [10]
raised the question of finding such a sequence, but the conjecture that
bears his name says that this question has a negative answer.

Lehmer’s conjecture. There is an absolute constant € > 0 so that
if a is an algebraic integer that is not a root of unity, then

M(a) > 1+e.

This conjecture is still open. It is clear that for all as of degree d,
there is a lower bound with ¢ = £(d) depending on d. This assertion,
which follows from the fact that there are only finitely many algebraic
numbers of bounded degree and height, gives a terrible bound for £(d).
The following finer results are known, where we write: « is an algebraic
integer which is not a root of unity, d = [Q(«) : Q] is the degree of «,
¢ > 0, an absolute (and effectively computable) constant.

(1) (Blanksby-Montgomery [2])

C
M(a)>1+4 ——.
(@) =1+ F15d
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The proof uses a Fourier averaging technique.

(2) (Stewart [19])
c
M) >1+—.
(@) =1+ dlogd
This is the same estimate as that obtained by Blanksby-Montgomery,
but the proof uses transcendence techniques. More precisely, the proof
involves the construction of an auxiliary polynomial and extrapolation
of zeros.

(3) (Dobrowolski [5])

log log d> 3

M(a) >1
(o) 2 +c< logd

The proof uses Stewart’s technique. The key new idea is to replace
the (trivial) Liouville lower bound with something larger by using
Frobenius. Thus for each prime p, the number of is congruent to
one of the conjugates of . Hence if F(a) = 0 for some F €
Z[X], then F(a?) = 0 (mod p) for each prime over p, so one obtains
NQ(a)/Q (F(ap)) =0 (mod pd).

Another approach is to try to prove that Lehmer’s conjecture holds
for certain collections of a’s, as in the following two results.

(4) (Smyth [18]). If @ is not a reciprocal number, then
M(a) > B ~ 1.324718,

where (; is the real root of 3> — z — 1 = 0. (Recall that « is called
reciprocal if o~ is a Galois conjugate of a. Equivalently, o is reciprocal
if its minimal polynomial f(X) € Z[X] satisfies f(X) = X9f(X~1).)
Smyth’s result generalizes Siegel’s theorem [15] to the effect that 5y is
the smallest PV number.

(5) (Silverman). If there exist primes pi,...,ps in Q(a) satisfying
Np; < +/dlogd, then M(«) > 1+ c. In particular, this is true if there
exists a rational prime p < \/dlogd which splits completely in Q(a).

3. Salem numbers. The smallest value of M(a) > 1 currently
known was found by Lehmer. It is the largest real root oy of the
polynomial

x10+m9—m7—m6—x5—x4—x3+$+1.



1102 J.H. SILVERMAN

The Mahler measure of «y is

M(ay) = a; ~ 1.1762808.

Notice aq is reciprocal. Further, o is an example of a Salem number
according to the following definition:

Definition. Let o be an algebraic integer of degree d, and write its
conjugates as a = a® a®@ o@D Then ais a Salem number if

(i) a€eRand o > 1.
(ii) |a®| <1foralli=2,3,...,d.

(iif) |a(?| =1 for some i.

Example. David Boyd [13] developed a technique for constructing
Salem numbers and conducted a computer search to find small Salem
numbers. The first 24 small Salem numbers from Boyd’s list together
with their degrees over Q are listed in Table 1.

4. Exceptional units. Consider the following “syllogism.”

(1) If M(a) is close to 1, then Kronecker’s theorem says that « is
“almost” a root of unity.

(2) If ¢ is a root of unity, then 1 — (™ “tends to be” a unit.

(3) Ergo, if M(a) is close to 1, then 1 — a™ “should be” a unit for
many values of n.

Definition. A unit v in a number field is called an exceptional unit
if 1 — u is also a unit.

The syllogism suggests that if « is one of the small Salem numbers
from Table 1, that many powers of a will be exceptional units. Look-
ing at Column A of Table 2, we see that this is indeed the case. For
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TABLE 1. List of small Salem numbers from D. Boyd’s table.

g

minimal polynomial

© 00 N O Ot s W NN

NN N N DN = o e e e e e e e e
= W N =B O © 00 N O Ot s W N = O

10
18
14
14
10
18
10
20
22
16
26
12
18
20
14
18
24
22
10
26
14

26
20

1.176280818
1.188368147
1.200026523
1.202616743
1.216391661
1.219720859
1.230391434
1.232613548
1.235664580
1.236317931
1.237504821
1.240726423
1.252775937
1.253330650
1.255093516
1.256221154
1.260103540
1.260284236
1.261230961
1.263038139
1.267296442
1.280638156
1.281691371
1.282495560
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example, there are 22 values of n for which 1 — of is a unit, including
n = 74. Another interesting fact not listed in the table is that

2 3 4 5 6 7 8 9 10 : :
Qlag, Qiag, Olag, Qiag, Olag, Ciag, Olag, Qag, Olag, g are all exceptional units.

As far as I know, this is the current record for consecutive powers being
exceptional units (other than roots of unity, of course).

This naturally raises the question of how many powers (or consecutive
powers) of a given number can be exceptional units. The following
general result of Evertse provides one answer.

Theorem (Evertse [6]). Let K/Q be a number field of degree d.
Then K contains at most 3 x 73¢ exceptional units.

Looking again at Table 2, we see that for a few «y’s there are no
powers which are exceptional units. It’s clear what is happening. If
1 — « is not a unit, then 1 — o™ will never be a unit. More generally,
in order for 1 — a™ to be a unit, every factor in the product

1-a™= Hq)m(a)

m|n

must be a unit. Here ®,,(z) is the mth cyclotomic polynomial. So
possibly a better question is to ask for which ms is ®,,(«) a unit.

Looking at Columns C-F of Table 2, we see that an astonishingly
large proportion of the ®,,(ax)s are units. For most of the ays, ®,,(ax)
is a unit for close to half of the ms less than 100. Although the frequency
of such ms thins out for 100 < m < 200, the last column of Table 2
shows there are likely to be further ms greater than 200.

The condition that 1 — a™ be a unit is clearly stronger than merely
counting all of the exceptional units, so one might expect that it is
possible to improve on Evertse’s estimate. This is indeed the case.
Notice that if 1 — o™ is a unit, then ®,(«) is a unit, so the following
result also gives a bound for the number of ns such that o™ is an
exceptional unit.
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TABLE 2. Small Salem numbers and exceptional units.

k d A B C D E F
1 10 22 74 49 98 60 195
2 18 25 74 56 100 71 186
3 14 20 74 51 100 64 190
4 14 20 74 49 98 63 198
b) 10 16 43 43 92 49 170
6 18 19 91 48 100 59 183
7 10 11 39 40 94 48 186
8 20 13 73 50 96 59 198
9 22 22 91 49 99 60 170
10 16 14 67 45 100 55 180
11 26 17 98 49 98 62 192
12 12 11 47 43 96 48 150
13 18 0 0 45 98 56 174
14 20 0 0 44 98 54 192
15 14 16 41 42 99 50 192
16 18 15 47 38 84 51 184
17 24 9 27 44 100 55 186
18 22 16 61 45 99 53 200
19 10 13 46 34 94 39 156
20 26 19 74 44 95 58 198
21 14 13 59 42 90 45 126
22 8 8 23 31 88 35 140
23 26 0 0 47 96 55 198
24 20 10 41 44 96 54 174
d = degree of k*" Salem number a3, from Boyd table
A = number of n <200 with 1 — o} a unit
B =largest n < 200 with 1 — o} a unit
C = number of m < 100 with ®,, () a unit
D =largest m < 100 with ®,,(ay) a unit
E = number of m < 200 with ®,,(ax) a unit
F =largest m < 200 with ®,,(ax) a unit

1105
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Theorem (Silverman). Let a € Q" be an algebraic unit of degree d
which is not a root of unity. Then for any e > 0,

#{m>1: &, () is a unit} < d**e,
where the < constant depends only on €.

(It is probably possible to replace the d* by d¢/l°slogd )

Proof sketch. The proof involves a number of steps. Let ai,...,aq
be the conjugates of «. Assuming that ®,,(«) is a unit, one begins by
writing

0 = log Ng(a)/Q(Pm())

d
= ¢(m)log M(a) + 3 _log|®m (8:)],

where each 8; € C is equal to either «; or ozi_l and satisfies |5;| < 1.
If none of the (3;’s are close to a primitive mth-root of unity, then one
uses a lower bound |®,,(53;)| > m™° and a lower bound for M(a),
e.g., Dobrowolski’s, to bound m. Next one shows that the ms such
that some 3; is close to a primitive mth-root of unity satisfy a sort
of “super-gap” principle. This is combined with a linear-forms-in-
logarithms lower bound for |3; — (x| to show that for each §;, only
a bounded number of ms need to be eliminated.

5. Canonical heights for rational maps. The Mahler measure M
has the property that (for most as)

More precisely, this will be true provided that Q(a”) = Q(«a). It is
easier to work with the height H(«) which satisfies

H(a") = H(a) forall ac€ Q.

Note, however, that since the absolute height H involves taking a root,
Lehmer’s conjecture acquires an extra d—!. Thus in terms of height
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functions, Lehmer’s conjecture is the assertion that there is an absolute
constant € > 0 so that

H(a) >14ed™?,

provided a is not a root of unity. As usual, d = [Q(«) : Q] is the degree
of a.

The height H behaves nicely with respect to the polynomial ¢(z) =
z™, in the sense that H(¢(a)) = H(a)™. We now want to define a height
function which behaves nicely for an arbitrary rational function ¢.

Definition. Let ¢(z) € Q(z) be a rational function of degree n > 2.
The ¢-canonical height of a number o € Q is the quantity

7 . r 1/n"
() Hy(a) = lim H(¢"(a)""".
Here ¢" = ¢pogo---0¢ is the composition of ¢ with itself r times. Also,
if ¢ is not a polynomial, then we treat it as a map ¢ : P*(K) — P!(K)
and define H(o0) = 1.

This construction is due to Tate in the context of abelian varieties,
and it has been observed over the years by various people that Tate’s
construction works also in this setting. For details and a proof of the
following result, see, for example, Call-Silverman [4].

Theorem (aprés Tate).

(a) The limit (+) defining Hg(a) converges.
(b) Hy(pa) = Hy(a)".

(c) Hy(a) >1forall a € Q.

(d) Hy

d) | (a) =1 if and only if « is pre-periodic for ¢.

(Recall that « is called pre-periodic for ¢ if its forward orbit
a,da, ¢y, ... contains only finitely many points, or equivalently, if
there are integers ¢ > j such that ¢'a = ¢’ a.)

There is a natural generalization of Lehmer’s conjecture to this more
general setting. As far as I am aware, this question was first raised by
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Moussa et al. [12] when ¢ is a polynomial map with integral coefficients,
in which case they defined the ¢-Mahler measure as a product of values
of Green’s functions. See also Moussa [13] for a further report.

Lehmer question for rational maps. Let ¢(z) € Q(z) be a
rational map of degree greater than or equal to 2. Does there exists
a constant £(¢) > 0 so that if « € Q is not pre-periodic for ¢ and has
degree d, then

Hy(a) > 1+¢e(p)d™'?

It is not clear how to generalize the notion of Salem numbers for
arbitrary rational maps, but there is a natural generalization for poly-
nomial maps. It is easiest to give the definition using some of the basic
concepts from the theory of dynamical systems.

Definition. Let ¢(z) € Q[z] C Clz] be a polynomial of degree
greater than or equal to 2, and let a be an algebraic integer of degree d.
Then « is a ¢-Salem number if

(i) « is in the attracting basin of co.
(ii) Every other conjugate of a is in the filled Julia set of ¢.

(iii) Some conjugate of « is in the Julia set of ¢.

These three conditions translate into:
(i) |¢p"a| = oo as r — oo.

(ii) Every other conjugate o’ of o has the property that the quantity
|¢" | is bounded as r — oo.

(iii) Some conjugate o’ of a has the property that for every neigh-
borhood U of o,

¢ @) =c.

r>1

Example 1. Let ¢(z) = z™ for any n > 2. Then the attracting
basin of co is {|z| > 1}, the Julia set is {|z| = 1}, and the filled Julia
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set is {|z] < 1}. So in this case a ¢-Salem number is just an ordinary
Salem number.

Example 2. Let ¢(z) = T),(z) be the nth Tchebycheff polynomial.
This is the polynomial defined by the relation

T, (2 cos z) = 2cos(nz),

or, equivalently,
To(z+2"Y=2"+2""

(We are using a slightly nonstandard normalization, the usual Tcheby-
cheff polynomial would be 27'7,,(2z).) For example,

Ty(z) = z° — 2, Ts(z) = 2* — 3z,

and
Ty(z) = 2* — 42® + 2.

The Julia set for every T'(z) = T, (x) is the closed interval [—2,2],
and a number a € Q is pre-periodic for ¢ if and only if it has the form
a = 2cos(nt) for some t € Q. Using the fact that z — 2 + 2z~ ! maps
the exterior of the unit circle onto the complement of [—2,2], we see
that if « is a classical Salem number (that is, for "), then o + a~!
will be a Tchebycheff-Salem number. In particular, we can use Boyd’s
list (Table 1) to produce small Tchebycheff-Salem numbers, such as

o + at ~ 2.02641795.

The Tchebycheff polynomials commute with one another, so they all
give the same canonical height, which we will denote by Hr. One can
use the fact that Hr(o) = 1 if and only if « is pre-periodic for T to
rederive another classical result of Kronecker.

Theorem (Kronecker [8]). Let a« € Q be a totally real algebraic
integer all of whose conjugates lie in the interval [—2,2]. Then o =
2cos(mt) for some t € Q.
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The fact that T, (z) = 2P (mod p) allows one to apply the Dobrowolski-
Stewart method to obtain an approximation to the Lehmer conjecture.
Alternatively, one can easily show that

Hrp(a) = H(B)? where § satisfies a =+ 37"

and then apply Dobrowolski’s result directly. In any case one obtains

. e (loglogd 3
H. >1+—-- .
rl@) 2145 ( log d >

(Remember that the extra 1/d just reflects our use of absolute heights.)

Example 3. Consider the rational map

(x? —1)

o) = 43 4+ 4z

It is a classical fact that the Julia set for ¢ is all of P1(C). This map
corresponds to the duplication map on the elliptic curve

E:y* =23+

In other words, we have a commutative diagram

(2]

EFE — F

Pl — —P.
Hence the canonical height associated to ¢ is the (exponential of the)
usual canonical height on the elliptic curve E. For this rational map,
or more generally for the rational map corresponding to multiplication

on an elliptic curve with complex multiplication, Laurent has proven a
Dobrowolski-style estimate.

Theorem (Laurent [9]). Let E/K be an elliptic curve with complex
multiplication given by a Weierstrass equation

E:y* =2+ Az + B,
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let m > 2 be an integer, and let ¢p(z) € K(x) be the rational map
satisfying
z([m]P) = ¢(x(P)) for all P € E(C).

There is a constant €(E) > 0 so that for all nontorsion points P €

E(K),

- e(E) (loglogd\®
Hy(P)>1 . .
s(P) 21+ =7 < log d

Up to now, Dobrowolski’s method has not been successfully applied
to general elliptic curves, so the resulting estimates are weaker.

Theorem. Let E/K, m > 2, and ¢ be as in the statement of
Laurent’s theorem, except that we no longer require E to have complex
multiplication.

(a) [11, 20]. There is a constant e(E) > 0 so that for all nontorsion
points P € E(K),
; e(E)
Hy(P)> 1+ 5.
s(P) 21+ d3(log d)?

(b) [7]. If j(E) is nonintegral, then there is a constant e(E) > 0 so

that for all non-torsion points P € E(K),

Hy(P)>1+ %.

For each of the preceding examples, there is a group variety underly-
ing the given rational map. If such a group variety is not present, then
the dynamics are much harder to analyze and little is known of the
arithmetic. Of course, one can find a lower bound for ﬁ¢(a) by using
an elementary bound for the number of points in P1(Q) of bounded
degree and height. This leads to the following horrible estimate.

Trivial bound. Let ¢(z) € Q(x) be a rational map of degree n > 2.
There is a constant £(¢) > 0 so that if @ € Q has degree d and is not
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pre-periodic for ¢, then

Hy(a) > 1+ =(@)

= 642 °
n2

Neither the transcendence theory methods of Dobrowolski-Stewart
nor the Fourier averaging techniques of Blanksby-Montgomery are
directly applicable to this general situation, so it would be interesting

if one could prove a lower bound for Hy(c) even as weak as 1+ C/(¢)~%

Example 4. An interesting example to consider is ¢(x) = z2 +1/4,
or equivalently ¢(z) = z* + z. The Julia set is then connected, and its
complement consists of two connected components. Thus the picture
in some ways resembles the case 2, so possibly there is some hope of
analyzing the dynamics closely enough to obtain a good lower bound
for H¢,. The inherent instability of the situation is illustrated by the
fact that the Julia set for (say) ¢(x) = 22 + x + 1/1000 is totally
disconnected!

Some other examples with interesting Julia sets which might provide
good testing grounds for studying Hy include

¢(x) :x2 73/57 ¢(x) :x2 73/45
d(z) = 2% — 1, b(z) = 2* — 7/4.

Question 1. Let ¢(z) be one of the quadratic polynomials described
in Example 4. Are there any ¢-Salem numbers? Are there infinitely
many? Does every polynomial ¢(z) € Q[z] have at least one ¢-Salem
number? infinitely many?

If a polynomial ¢(x) € Q[z] has a filled Julia set whose interior is
non-empty, then we can also define -PV numbers. Thus we will say
that o € Q is a ¢-PV number if o is in the attracting basin of oo
and every other conjugate of « is in the interior of the filled Julia set.
Notice for ¢(z) = 2™ we get the usual PV-numbers.

Question 2. Let ¢(z) € Q[z] be a polynomial whose filled Julia set
has a nonempty interior. Does there always exist at least one ¢-PV
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number? Is the set of ¢-PV numbers closed and countable? If so, what
is the smallest ¢-PV number for the polynomials in Example 4, such
as £+ x or 2 — 1?7
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