ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 26, Number 3, Summer 1996

BASES OF NUMBER FIELDS WITH SMALL HEIGHT
DAMIEN ROY AND JEFFREY LIN THUNDER

ABSTRACT. For every number field viewed as a vector
space over the rational numbers, we prove there exists a basis
with height that is small in comparison to the absolute value
of the discriminant. We get best-possible results in the case
of a totally real number field and other cases as well.

0. Introduction. Let K be a number field of degree d, and suppose
that ai,...,aq are elements of K which are linearly independent over
Q. A more general result due to J. Silverman (Theorem 2 of [10]) gives,
in this instance,

Hg(ay, ... aq) > d~Y?D(K)|/?,

where Hk is a standard multiplicative field height (defined below)
and D(K) is the discriminant of K. This inequality has connections
with Siegel’s lemma over number fields (see [1 and 8]) and Northcott’s
theorem on points of bounded height in Q" (see [9]).

Among all bases {a1,...,aq} of K viewed as a d-dimensional vector
space over Q, there is one with smallest height. We denote this smallest
height by B(K). Silverman’s result implies

B(K) > d~*?|D(K)|"/.

In this paper we deal with upper bounds for the quantity B(K). The
obvious question here is whether, for all d > 1, there is a constant c(d)
such that B(K) < ¢(d)|D(K)|*/? for all number fields K of degree d.
Alternatively, one may wish to consider some family of fields with
infinitely many members of degree d and ask for the same type of bound
for those K in the family. Also, any basis {aq,... ,aq} of a number field
K of degree d viewed as a vector space over Q determines a fractional
ideal Ogay + - -+ Ogay, where O denotes the ring of integers in K.
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Another question is whether or not, for each K of degree d (or of
degree d in some given family), there is a basis {a1, ... ,aq} of K with
Hk(as,... ,aq) close to B(K) and Oga; +---+9Okaq = Ok. Here by
“close” we mean within some constant multiple depending only on d.

If one restricts attention to totally real number fields, the answer to
both the above questions is yes (see [8] for other examples). Specifically,
we have the following result.

Theorem 1. Let K be a totally real number field of degree d. Then
B(K) < Ci(d)|D(K)['?,

where C1(d) = 2%G4D/2 " Moreover, there is a Z-basis {b1,... by} of
DK with
Hg (b1, ... ,ba) < (d/2)*C1(d)|D(K)|/.

For number fields with complex places these questions become more
difficult. Following Masser and Wiistholz (see [7]), we define the class
indez of K to be the smallest positive integer i(K) such that each ideal
class contains an ideal of O with norm no larger than i(K). We will
prove the following.

Theorem 2. For arbitrary number fields K of degree d, we have

B(x) < cuap D),

where C1(d) is as above in Theorem 1.

Fix ¢ > 0 and an integer d > 1. The Brauer-Siegel theorem (see
Chapter XVI of [4]) shows that, for any number field K of degree d,
the class number h(K) and the regulator R(K) of K are related to
the discriminant D(K) by h(K)R(K) >4. |D(K)|'/?~¢, where the
implicit constant depends only on d and ¢ and is ineffective. On the
other hand, D. Masser in [6] shows that h(K) < i(K)(1 +logi(K))41
for all number fields K of degree d. By virtue of Theorem 2, this gives
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Corollary. For any number field K of degree d and any e with
0 <e <1, we have

B(K) <4, R(K)"*|D(K)['/*+%,

where the implicit constant depends on d and € and is ineffective.

In particular, for imaginary quadratic number fields K we get
B(K) <. |D(K)|*/?*¢ for all ¢ > 0, where the implicit constant de-
pends (ineffectively) only on €. We will show in Section 3 that these
fields also satisfy B(K) > |D(K)|/(4i(K)). So the upper bound given
by Theorem 2 is essentially best possible for imaginary quadratic num-
ber fields. More generally, in view of Silverman’s lower bound for
B(K) above, the inequality in Theorem 2 is sharp (up to a factor
depending only on d) for families of fields K of degree d satisfying
i(K) >4 |D(K)|*/? with an implicit constant depending only on d. In
private communication with the authors, D. Masser has shown how to
construct such families of fields for all even degrees. We give his con-
struction explicitly in Section 3 below. In [6] he also constructs, for any
€ > 0 and integer d > 1, infinitely many number fields K of degree d
with i(K) 4. |D(K)|*/?>7¢, where the implicit constant depends only
on ¢ and d (though again ineffectively).

1. Definitions. For K a number field we let M (K) denote the set
of places of K. For each v € M(K), let | - |, denote the absolute value
on K that extends the usual absolute value on Q if v|oco, or the usual
p-adic absolute value on Q if v|p. Let n, denote the local degree of K

at v. We define a norm || - ||, on K™ for each place v by
(s enllle = mas (i)

With this notation we define the height of a nonzero vector x € K™ by

Hx(x)= [[ Ikl

veEM(K)

For K of degree d, we write d = r1+2rs, where r; is the number of real
places and r5 is the number of complex places. Denote the embeddings
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of K into C by o — ¥ and order them so that the first r; are real
and a? is the complex conjugate of a("2% for 1y < i < r; 4+ 75. Let
p: K — R? be defined by

p(a) = (@M, ... al™) Re(altV) ... Re(alm*r2)),
Im (O‘(TI-H))a ..., Im (a(rﬁ‘rz))),

where Re and Im denote the real and imaginary part, respectively.
Then for 2 any fractional ideal of K we have that p(2) is a lattice in
R? of determinant 2-"2 N ()| D(K)|'/? (Lemma 2, Section 2, Chapter
V of [4]).

2. Proof of Theorems 1 and 2.

Proof of Theorem 1. Let K be a totally real number field of degree d
and let p : K — R% be as above. Then A = p(Dg) is a lattice of
determinant |D(K)|'/2. Let \; < Xy < --- < A4 be the successive
minima of A with respect to the unit cube [—1,1] of R4

By a result due to J.H. Evertse (Lemma 3.3.5 of [3]), there exist
linearly independent lattice points x1 = (z11,...,%1,d),...,Xd =
(Zd1,...,24,4) € A and a permutation o of {1,...,d} that satisfy

i < 2777 min{A;, Ap5)}

for all ¢ and j. Write x; = p(a;) with a; € Ok for each i. We then
have

d d
Dy — Ny

[T max a1y = T] o {le 1)
j=1 j=1
d

d+o

< H 9d+o(5) ) )

j=1
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By the definition of height, we get Hg (a1, ... ,aq) < C1(d)|D(K)|'/2.
This proves the first part of Theorem 1.

For the second part, note that the successive minima of the convex
body

Co ={(y1,.-.,ya) €R: ly;| < 2d+"(j))\o.(j) for 1 <j<d}

with respect to A are all no greater than 1. By a result of Mahler
(Lemma 8, Chapter V of [2]), there is a basis {p(b1),...,p(ba)} of A
that satisfies p(b;) € (i/2)C, for each i > 1 and p(b;) € C,. Whence

Hi (b, .. bg) ax {|pY)|}

i<d

IN
—
INE

<
Il
—

IN
.z&

(d/2)2447 D )

<
I
—

d
2
— (d/2)d2d +d(d+1)/2 H )‘j

j=1

< (d/2)4Cy(d)|D(K)["/?

by Minkowski’s theorem. This completes the proof of Theorem 1. O

Lemma. Let K be a number field and let 2 be an ideal of O g with
smallest norm among all ideals in the same class. Then

min{[N(a)[} = 1,
where the minimum is over all nonzero o € A~1L.

Proof. Let a € 271, a # 0. Let B = (a)2. Then B is an ideal of
Ok and B is in the same ideal class as 2. Since N(B) = |N(a)|N (),
we get [N(a)| > 1. Finally, as 1 € A~!, we get an equality for this
minimum. |

Proof of Theorem 2. Let K be a number field of degree d = ry + 2rs.
Choose an ideal 2 of Ok, a representative of its ideal class with
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smallest norm, satisfying N(2) = i(K). Let A = p(27!) C R?. Let
A1 < --+ < Ay be the successive minima of A with respect to the unit
cube. Choose o € A~ with ||p(a)|| = A1, where ||p(a)|| denotes the
maximum norm of p(a). By the lemma we have |[N(a)| > 1. On the
other hand, we find that |N(a)| < (v/2A1)%. Thus, A; > 1/4/2, so that
A; > 1/4/2 for all 4.

Using Evertse’s result again, we choose linearly independent x; =
p(ay),... ,xq = p(aq) € A and a permutation o that satisfy

@3] < 2+ min{A;, Ay (j)}-

Using this together with the lower bound on the successive minima
above, we get

TG, aa)lze =

v|oo
1 ritr2
legagcd{lwz,gl} T e flis + wignal)
J= j=ri+1
T1
< H(2d+0(j))\g(j))
j=1
(1) T1+7T2
% H 2d+a(])>\ ) (2d+a(]+r2)>\o(j+r2))2)
j=ri+1
d
H 2d+o’ j))\

(2d2+dd+1 /2 (ﬁ >2
< C1(d)’| D(K)|N ()~

by Minkowski’s theorem.
Let B = Oka1 + -+ +9Oxag. Then B C AL, so that

[T, aa)llye = N(B)™! < N(Q).

vtoo
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By this and (1) we have

B(K) < HK(al,. e ,ad)
< Cy(d)?[D(K)|N(2)
2| D(K)|

= O

3. Imaginary quadratic fields and class indices. For the case of
imaginary quadratic number fields, we get a very explicit relationship
between B(K) and the class index.

Theorem 3. Let K be an imaginary quadratic number field. Then

D)) [D(K)|
4w =P =

Proof. We prove the upper bound in Theorem 3 in a similar fashion
as above. Let K be an imaginary quadratic number field and let
p: K — R? be defined as above. Choose an ideal 2 of Ok which is a
representative of its class with least norm that satisfies N(2() = i(K).
Let A\; < Ay be the successive minima of p(2~!) with respect to the
unit disk in R?. Note that the Euclidean norm of p(a) is |N(a)|'/?
for any a € K, so that A\; = 1 by the lemma. Let a,b € 2A~! be
linearly independent and satisfy |a| = 1, [b| = X2. Since p(%71) is a
two-dimensional lattice, we have a and b form a Z-basis for 207!, Using
the known value v2 = 2/1/3 of Hermite’s constant (see page 318 of [5]),
we have

Hp (a,b) = N(2) max{a|*, [b]*}
= N(2)X3
N(A)AIA;
N <2det (p(ml))>2
V3

1/2 -1\ 2
e e Ty

V3

IN
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As for the lower bound in Theorem 3, let B(K) = Hk (a,b) and write
Oxa+ Ogb = AL, Without loss of generality, 2 is an integral ideal
of smallest norm in its ideal class, so that N(2) < i(K). We have

B(K) = N(2) max{|al*, [b]*}.

Let A\; < Ay be the successive minima of p(2A~!) with respect to the
unit disk. Again we have A\; = 1, and by Hadamard’s inequality
A2 = Ao > det (p(A~1)). But since a and b are linearly independent
over Q, we must have

max{|al, [b]} > Az.

The lower bound in Theorem 3 follows. m]

We remark that the same reasoning shows that Hg (a,b) > |D(K)|/4
for any imaginary quadratic field K and any basis {a,b} of K over Q
with Oa + Oxb = Ok. In view of the lower bound for B(K) given
in Theorem 3, this implies that, for any ¢ > 0, there are only finitely
many imaginary quadratic number fields K which admit a basis {a, b}
over Q satisfying both Oga+9Oxb = Ok and Hk (a,b) < ¢B(K). This
answers, for these fields, one of the questions posed in the introduction.

As noted in the introduction, the upper bound for B(K) given in
Theorem 2 is sharp (up to a constant multiple depending only on the
degree) for all fields K satisfying i(K) > |D(K)|'/? with an implicit
constant depending only on the degree of K. In private communication
with the authors, D. Masser expanded on an argument in Proposition 3
of [8] and constructed, for all positive integers d, infinitely many
number fields K of degree 2d with this property. He was kind enough
to allow the authors to give his construction here.

Theorem 4 (D. Masser). Let d be a positive integer. There are
infinitely many number fields K (none totally real) of degree 2d and a
constant Cz(d) > 0, depending only on d, with i(K) > Ca(d)|D(K)|*/2.

Proof. Fix a totally real cyclic field F' of degree d with odd discrimi-
nant D(F'). We claim that there are infinitely many square-free positive
integers m which are relatively prime to D(F') and divisible by a prime
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number p with \/m/2 < p < /m, such that p generates a prime ideal
pDF of DF

To see this claim, note that the Chebotarev density theorem shows
that there are infinitely many prime numbers p such that pO is a prime
ideal in O g, these primes being those whose Artin automorphism in F
generates the Galois group of F' over Q. Choose such a p > D(F') and
put m = pq, where ¢ is a prime number with p < g < 2p. Then m and
its divisor p have the required properties.

For such an m, let K,, = F(v/—m). Note that the discriminant of
Q(v/—m) is —m or —4m, which in either case is relatively prime to
D(F). This shows that K, has degree 2d over Q and we have

(2)  |D(Kw)['/? = D(F)|D(Q(v=m))|** < D(F)(4m)?/>.

Let p be a divisor of m as above. Then p ramifies in Q(v/—m) and is
inert in F', so there is a unique prime 3 of K, that lies above p. It has
degree d and ramification index 2 over Q, so that its norm satisfies

(3) (m/2)¥? < N(P) = p* < m?2.

Let 20 be an integral representative of least norm in the ideal class
containing P!, Then 2 = (a)P~! for some nonzero a € P and
N(2) = |[N(a)|N(B)~'. Now, if o € F, then a belongs to pOr, so that
|N(a)] > N(p) = p*? > (m/2)%. On the other hand, if a ¢ F, then we
may write a = (a + by/—m)/2 with a,b € Op and b # 0. Arguing as in
the proof of Proposition 3 of [8], we get |N(a)| > N(b/2)m?¢ > (m/4)2.
We conclude that N () > (m/4)N (). Theorem 3 follows from (2)
and (3), using Cy(d) = (8¢D(F))~ L. o
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