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ON MAHLER’S CLASSIFICATION
IN LAURENT SERIES FIELDS

EUGENE DUBOIS

ABSTRACT. In 1932, K. Mahler introduced his famous
classification for complex numbers in disjoint sets A, S,T,U
[9, 10]. In 1978, P. Bundschuh introduced a similar classifi-
cation for the field of formal Laurent series over a finite field K
and gave some explicit series in the class U. Here we consider
the case of an arbitrary field K and prove the existence of
U-numbers whose continued fractions verify additional prop-
erties.

0. Introduction. T. Schneider’s book [16, Chapter 3] is a complete
introduction to the subject, whereas A. Baker’s book [2, Chapter 8]
offers a general outlook. For a polynomial P = ¢,z + -+ ¢o in Z[X]
with ¢, # 0, we define the degree d(P) and the height h(P) by

d(P) =mn, h(P) = Max {|c;|,0 < j <n}.
For natural numbers n > 1, H > 1, we consider
(1) P,u={P€Z[X]:d(P)<n,H(P)<H}
and for any complex number £, we define w(n, H,§), w,(§), w(€) by
Min{|P(§)|: P€ Py u} = H—w(nH)

and

Wy, = wy(§) = limsup w(n, H, §);

H—o00

@) w=w(f) = lin sup wn (§)

v=2(§) =Inf{n: w,(§) = oo}

with v = oo if w,, < oo for all n.
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The classes A, S,T,U are defined by

€ is an A-number if w(€) =0, v(§) = o

¢ is an S-number if 0 < w(&) < o0, v(€) = 0
¢ is a T-number  if w(€) = oo, v(§) = oo

¢ is a U-number  if w(&) = oo, v(€) < oo.

(3)

In this case we say & is a U,-number.

The A-numbers are the set of algebraic numbers. Almost all com-
plex numbers and almost all real numbers are S-numbers (Lebesgue
measure). Liouville numbers are Uj-numbers. The existence of U,-
numbers of any degree, v, was proved by LeVeque [9], and the existence
of T-numbers was proved by W.M. Schmidt [15]. W.M. Schmidt gives
a recursive construction to prove the existence of T™*-numbers (with
Koksma’s classification [8], based on approximation of £ by algebraic
numbers, which is equivalent to Mahler’s classification). In the same
paper W.M. Schmidt shows that, for any irrational number « which
isn’t Liouville, there exists an irrational § which is not Liouville such
that «/@ is Liouville.

The basic results of diophantine approximation give few results on
the functions w(n, h,§), w,(€), w(§). Using Dirichlet’s theorem one
proves that w, > 1, for any n and £ transcendental, but also if &
is algebraic of degree d > n. Roth’s theorem gives w; < 1 for ¢
algebraic and Schmidt’s theorem gives w,, <1 for n < d and ¢ algebraic
of degree d. There is some correlation with the theory of continued
fractions. A. Baker [3] proved that there are U-numbers and also 7" or
S-numbers in the set of real numbers with bounded partial quotients
and that there are U-numbers and also T or S-numbers in the set of
real numbers with unbounded partial quotients. Moreover, techniques
using continued fractions were used by E. Burger and T. Struppeck
to prove the existence of Us-numbers whose partial quotients lie in a
given set and obey a given distribution (see [6]). For the field of formal
Laurent series a similar technique is used in the present paper and in
(5]

Let K((1/z)) be the field of formal Laurent series (in 1/z) over an
arbitrary field K. The sets 2 = K|[z], Q = K(z), R = K((1/2)) play
the analogous roles of Z, Q, R, respectively. We define the 0-adic
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absolute value | - |p on Z by

[f(2)o=¢" if f(z) = 2°f1(2)
with  fi(z) € Z, f1(0) #0; [0]p =0.

This absolute value is then extended to Q@ and to its completion
R = K((1/2)).

In this context Roth’s theorem was generalized by S. Uchiyama [17]
and Schmidt’s theorem by E. Dubois [7] and M. Ratliff [14] when
char (K) = 0. These theorems do not hold when char (K) # 0. Osgood
[13] and de Mathan [11] gave some counterexamples.

P. Bundschuh [4] extended Mabhler’s classification to the field of
formal Laurent series over a finite field K and gave some explicit
examples of U-numbers. The main result of this paper was announced
in the note [5], which contained a sketch of the proof when char (K) #
2. In the present paper we give the complete proof for any infinite field
K or any K with char (K) # 2.

1. Mahler’s classification. Let us consider polynomials
P(X)=c, X" +---4+¢co with ¢; =¢j(z) € K[z].
For convenience we denote the degree of P with respect to X by d(P)
and the degree of ¢; with respect to z by §(c;) (thus |cjlo = €¥(¢3)).
The logarithmic height of P is defined as

h(P) = Max {§(c;) : 0 < j < n}.
For integers n > 1, h > 0, we consider
(4) Pun ={P € Z[X],d(P) <n,h(P) < h}.
So when K is finite, one may easily define w(n, h, ) by
(5) Inf{|P(Q)]o : P € Pppn} = e mhwlmha)

In this formula e~ plays the role H did in the introduction. Then
formulas (2) and (3) determine a similar classification for S, T' and U.
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When K is infinite we use the same definition, but only after proving
that the infimum in (5) is positive.

Lemma 1. Let o be a transcendental number in R over Q. Then,
for any integers n > 1, h > 0, we have

(6) Inf{|P(a)|o: P € Ppp}t > 0.
If « is algebraic of degree d over Q the same result holds for h > 0 and

1<n<d.

Proof. If |alg > 1 we consider 3 = az %) (so |B]p = 1) and the
correspondence

P=c, X"+ - +cpe— P=c,2™@X" ... 4 ¢
so that P(a) = P(B) and h(P) < h(P) + nd(c). As we have
Inf{|P(a)|o, P € Pnn} = Inf{|P(B)]o, P € Pnn}
> Inf{|Q(8)l0, Q@ € Prpy }

where h; = h+nd(a), the lemma for 3, n, h; gives the lemma for a, n, h.
So it is enough to prove (6) when |a|y < 1.

Let « be such that |a|o < 1 and suppose that there exist integers n, h
such that
(7) Inf{|P(a)|o: P € Pop}=0.

We will now prove that there exists a polynomial P in P, ; such that
P(a) =0 and P # 0. We write

al = Zai,szk with a;, € K for k>0, i >0,
k>0

E CiXZ, c;i = E CijZJ with Cij € K.
0<i<n 0<j<h

pac}
ks
I

Then

Pla) = Z Z cijszaiyk,sz = Z ls(c)z7,

0<i<n 0<j<h k>0 s>—h
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where ¢ = (¢;;: 0 <i<n,0<j<h)and

(9) ls(c) = Z Z @i 545Ci ) s> —h

0<i<n 0<j<h

are linear forms in the (n + 1)(h + 1) unknowns c¢; ; with coefficients
Q545 in K.

From (7) there exists, for any r > —h, a polynomial P in P,, ;, such
that |P(a)|o < e~ ". This means that the system

Is(c)=0 for —h<s<r
has a nonzero solution ¢ in K™D+ Denote by M, the matrix
(@i s+;) with 7+ h rows indexed by —h < s < r and (n + 1)(h + 1)
columns indexed by 0 < ¢ < n, 0 < j < h. Then the rank of M, is
less than (n + 1)(h + 1). The nondecreasing and stationary sequence
rank (M,) has a maximum m less than (n + 1)(h + 1). From a basis
ls(1),--+ »ls(m) We get a nonzero solution ¢ such that l,4)(c) = 0 for
1 <t < m and then, Is(c) = 0 for any s. The corresponding polynomial
P (from (8)) satisfies P(a) = 0. This contradicts the fact that « is
transcendental or algebraic of degree d > n. ]

2. U-numbers. We say that « is Liouville if for any 2 > 0 there
exist ¢, p in Z such that |go — plo < |g|g®. Clearly « is Liouville if and
only if « is a Uy-number. Similarly, « is a Us-number if and only if
(10)

{VQ > 0,3¢,p1,p2 in Z such that |g + pra + paa?|o < |glp ™
3Q; >0,V ¢,p in Z we have |ga — p|o > |g|g ™.

Using the continued fraction algorithm, E. Burger and T. Struppeck
[6] in the real case and [5] in the formal Laurent series case announced
the existence of Up-numbers «, with the property that for by, bs,... in
Z or Z (with Char (K) # 2), (a4 b1)?, (a+ b2)?,... are Liouville. We
will now write the complete proof, replacing (a+b)? by a+b—1/(a+b)
and this is valid for any base field K.

Suppose A is a subset of Z\K and P : A — [0,1] is a proba-
bility measure on A. For a in R\Q with continued fraction o =
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[ag,a1,... ,an...] we say that the asymptotic density of partial quo-
tients of a agrees with P if for each a € A,

1
P(a) = lim N#{n, 1<n<N,a, =a}.

N —oc0

Theorem. Let ag € Z, B and A be subsets of Z\K. Further assume
that #A > 2 and ag + B C A. Let P be a probability measure on
A. Then there exist uncountably many Usz-numbers, a = [ag,a1,...] €
K((1/z)) such that

(i) any partial quotient a,, n > 1, is in A;
(ii) the asymptotic density of the partial quotients of o agrees with
P;
(iii) for any n large enough, |ax|o < e™;

(iv) for each b in B, a +b—1/(a + b) is a Liouville number.

When the 0-adic absolute values of the elements in A are bounded,
the theorem asserts that there exist Us-numbers a which are badly
approximable and for which a+b—1/(a+b) is Liouville (and therefore
very approximable) for each b in B.

To prove the theorem when B = {b}, we construct a sequence () >1
of quadratic irrationals over Q@ with partial quotients in A such that
the asymptotic density is close to P and such that a; +b—1/(a; + b)
is in Q and is a very good approximation of @ + b — 1/(a + b) where
o =lim;_, . a;.

2.1. Properties of continued fractions. In 1924, E. Artin [1]
introduced the continued fraction algorithm in a field of Laurent series
(see also [11]). For o € R we denote the partial quotients, the complete
quotients and the convergents of «, respectively, by a,,, a(™ and p,, /dn.-
We have the standard formulas

a:[a/Oaala"'an"']a anEZ, nZOa
|an|0 >1, n>1,
a(n) :[anaan-‘rla"']a n >0,
o™ =q, + 1/,
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p2=0, p1=1, Pn+l = Gni1Pn +Pn-1, 1= —1,
qg—2 =1, qg-1 =0, Gnt1l = Ony1Gn +qn_1, n 2> —1.

Many standard properties of continued fractions remain valid in this
context but there are differences. For example, if the sequence of partial
quotients of « is periodic, then « is quadratic over Q. (For a purely
periodic « with length | we have a = (pja+p—1)/(qia + ¢—1)). But
the converse does not hold when K is infinite. It is only true when
K is finite. (For example, a = [z, 2,2/2,2z,... ,2/2",2"2,...] satisfies
za? + (1 - 2%)a —22=0).

Since the absolute value is an ultrametric we get [11] the approxima-
tion

(11) |qn(Qna _pn)|0 = 1/|an+1|0a

(12)  |gno — palo = Min{|qa — plo : (p,q) € 2%, |qlo < |gns1lo}-

From (11) and (12) we can say that « is badly approximable if and
only if the absolute value of its partial quotients is bounded.

Lemma 2. Let ap be in Z\K and (ay,...,a:) be a symmetric
sequence in (Z\K)'. Then the quadratic number o defined by the purely
periodic continued fraction

[a07a17 e aataa0]

is such that o — 1/a € Q.

Proof. Using at*?) = o and the conjugate of the relation o™ =
a, + l/a("'H) for 0 < n < t+ 2, we easily get that the continued
fraction of —1/¢a/ is that of o with the period reversed (here o is the
algebraic conjugate of ). Using symmetry we have —1/a’ = «. Thus,
Tr(a)=a+ad =a—1/a€ Q. o

2.2 Proof of the theorem. First we suppose that B = {b}.

Let (¢j);>1, (€;);>1 be two monotonic sequences of positive real
numbers with lim; ;. €; = 0 and lim;_,, 2; = co. Denote by A* the
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set of words composed with the alphabet A. If W = (wy,... ,wy) € A*

with length N we use the notation = W, = (wn,...,wy),
WML — WMW for M a natural number. The density of s € A
with respect to W is

(s, W)=#{n:1<n< N,w, =s}/N.

We now recursively define an infinite sequence (7)) j>1 of quadratic
irrationals. We select a word W in A* which satisfies #W; > b/e; and

|0(a, W1) — P(a)| <e1/3 foralla e A

Let a; be the quadratic [ao,VT}l,Wl,ao +b,a0 +b], and then B; =
a1 + b satisfies (from Lemma 2)

1
B1 B € 9, ged (71, 81)

We choose a natural number M; such that the convergent
p(W1, My) = [ao, (Wh le ag + b,ao + b)* 71, W}la Wl,ao + 0]

satisfies
lag — p(W1, My)o < [b%r1|5

We suppose that W;, ald), M; and p(Wj, M;) have already been
described and now we describe how to generate Wj+1,a(1+1), M;iq
and p(Wji1, Mj11). We select Wi, € A* such that

(13) #Wir = 6M;(1+ #Wj)/ej4a,
(14) 0(a, Wi, 1) —Pla)] <ejp1/3 forallac A,
and

W]' 41 contains a sequence which does not

occur in the sequence of partial quotients of o;.
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If I denotes the period length of «;, then there are only I sequences
of length ! in the sequence of partial quotients of a;. As #A4 > 2,
(13), (15) and (iii) are easy to get. For (14) we further require that the
density in any truncation of WJ’ 41 does not stray too far apart from P.
Next we define

(16) Wit = (W, W00 +b,ag + 5™, W}, ),

ajy1 = [ao, V_sz+1, Wﬂl,ao +b,a0 +b),

(17)
Bj+1 = a1 +b.

By Lemma 2, we find

1 r;
=220, ged(rj,s4) =1

( ) /BJ"I‘I ﬂj+1 5j+1

We choose a natural integer M, such that the convergent

(19)  p(Wjs1, Mj11) = [ao, (W41, W1, a0 + b, ag + b)Mier—1,

W}jﬂ, Wﬂ—l,ao + 0]

satisfies
(20) i1 — p(Wjs1, Mjga)lo < [bPrjqalp 7F"

Then the first #W; partial quotients of a; and «j11 are equal. Hence,
a =lim;_, a; exists. The continued fraction of a satisfies (i) and (iii)
and by (15) is not periodic.

To prove (ii) it is enough, with (14), to show that for any a € A we
have
(21) Max (I8(a, m(W1, Mj1)) — 8(a, W),
16(a, Wjt1) = 6(a, Wi 1)l) <ejya/3,
where m(Wj1, M 1) is the word associated to p(W;1, Mj.1) without
the first ag. From (19), we have

(20(a, Wi 1) # W1 +2n) M1 —n
(2#Wjp1 +2)Mj41 — 1

6(0’7 m(Wj+17 Mj+1)) =
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where n = 1 if a = ap + b and n = 0 otherwise. Then, using (16) and
(13) we have

|6(a, m(Wji1, Mj41)) — 6(a, Wjt1)|
< 0(a, Wii1)(2 — 2n) M1 + [6(a, W) — 7l
- (Q#WJ+1 + 2)Mj+1 -1
B My + 1
= (@#Wi1 + 2) Mg — 1
2 S €j+1 )
#Wjn1 3

<

Similarly, from (16),

2M;(6(a, W;)#W,; +n) + 6(a, W;H)#W]{H
2M(#W; + 1)+ #W)

(5(0'7 Wj+1) =

|0(a; Wjt1) —6(a, Wi y)|
_ 2M;(#W;((a, Wy) — 6(a, W) +n—0(a, Wi
M (#W; + 1) + #W/,,

and with (13) we have

OM;(#W; + 1)
5 I‘r _ 5 I‘ﬂ < J J
‘ (a, J+1) (a, J+1)| = 2Mj(#Wj + 1) ~|—#W]{+1

€j+1
3

<

This proves (21) and condition (ii).

Now we prove that @ + b — 1/(a + b) is Liouville and that « is a
Us-number. By (19) and (17) we remark that the continued fractions
of p(W;, M;), a; and o have the same beginning. Since the number of
partial quotients which are the same for o and «; is greater than the
length of p(W;, M), we get

lo — ajlo < |aj — p(Wj, Mj)]o-
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Using (18) and (20), we have

1 ’I"j

a+b—
a+b s

0

(aaj)<1+ m>

Q.
= |a—ajlo < [b?rilo .

0

Hence, a + b — 1/(« + b) is Liouville.

To show that wa(a) = co (and then w(a) = co) we consider:
Q(a) = sja® + (2bs; —rj)a+ (b* —1)s; —br; and h = h(Q).

We have e = Max (|s;|o, |2bs; — 7|0, |(b*> — 1)s; — brilo) < [b%rjlo,
and |Q(a)lp < [sj(a + b)|0.|b2rj\0_9j < \b%ﬂé_g" < (eM)1=%), From
e 2hw@ha) = Inf{|P(a)lo,P € Pon} < (e")17%) ) we easily get
w(2,h,a) > (Q; —1)/2. Since lim;_, o, ; = 0o, we have wy(a) = +o00.
So « is Uj if a is not Liouville.

We denote the convergent of a by p,/g,. For any g € Z, there exists
an n such that

|gnlo < lg| < lgn+1lo-
We have, for any n, |gnlo = |angn—1|o so using (12) and the condition

(iii) we have |gn|o > €™ > |an+1]o for n large enough. So for any p € Z
we get

lga = plo > [gna — Prlo > [ant1@nlo* = lanlo? > lalo %
e hwi(Lha) Inf (|P(a)|o, P € P1,s) > |Oz|(2)e_2h.

Then wq (a) = limsupy,_, ., w(l, h, @) < 2. So a isn’t Liouville and is
Us.

To get infinitely many « it is enough to remark that at each step j we
have many choices for W}, ; such that (13), (14) and (15) hold. This
comes from #.4 > 2. From two different choices at one step jg, we get
two different numbers a. So we get uncountably many numbers « and
the theorem holds when B = {b}.

When B = {b1, ba, ... } we use the idea of [6]. We construct a sequence
of quadratic numbers az; for J > 1,1 < ¢ < J. For convenience, we
write the formulas (16) and (17) as

Wi = oW, Mj,Wj),  ajr=1%(Wjy1,b).
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We choose W7y 1, a1,1, My,1 as before to be W1, a; = (W1, b1) and M;
with b = bl. Then from ijl’i,a‘],Li,MJ,l’i, J Z 2, 1 S ) S J — ].,
we put

Wio=Wji_1,7-1, g0 =07_1,7-1, Mjpo=Mj_1,5-1.

Then for ¢ = 1,2,... ,J we choose WL’M with properties analogous to
(13), (14) and (15) for ay;—1 with

Wii=9oWri1,Myi 1, W), agi =YWy, b;).

We get
(22) g+ b — # = T €9,
’ agi+b sy
and we choose M ; such that
(23) lagi — p(Wriy Myiybi)lo < [b2rs]5 .
Hence o = limj_, o s,y exists and as before it follows that o is

U,. From (22), (23) and the construction we get as before that
a+b; — 1/(a+ b;) is Liouville for any b; in B. O

3.3. Remarks. We can focus our attention on the degree (in z) of the
partial quotients in the theorem.

Corollary. Let ag € K, A C N, P be a probability measure on A
and B C Z\K be such that the §(B) C A. Then there exist uncountably
many Us-numbers o such that

(i) for any n, é(ay,) € A and 6(a,) < n for n large enough;

(ii) the asymptotic density of (0(an))n>1 agrees with P;

(i) for any b in B, a +b—1/(a + b) is Liouville.

In [5], a result similar to the theorem for Char (K) # 2 is given
as well as a sketch of the proof of the existence of Us-numbers «
such that (a + b)? is Liouville. (The hypothesis 2(ap + B) C A
replaces the former ag + B C A; Lemma 2 is replaced by the following



MAHLER’S CLASSIFICATION 1015

property: For a symmetric sequence (ay, ... ,a:) the quadratic number
B = lap, a1, ...a,2ap] is such that 8% € Q.)

The more difficult question, “Do T-numbers exist?” is still open in
this context.
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