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1. Introduction and main results. We shall consider some
problems concerning parts of Conjectures (H), (I) and (L) posed by
Hardy and Littlewood [6], namely,

(H) Every large number is either a square or the sum of a prime and
a square.

(I) Every large odd number is the sum of a prime and the double of
a square.

(L) Every large number is either a cube or the sum of a prime and
a (positive) cube.

Concerning (H) and (L), bounds for exceptional sets were obtained by
Davenport and Heilbronn [4], and Miech [13]. The best known results
were obtained by Briinner, Perelli and Pintz [2], and Zaccagnini [24]
(Vinogradov [23] also gave a sketch of a different proof for the result
in Theorem BPP-Z). They proved:

Theorem BPP-Z. Let k > 2 be a fized integer. Then there are
positive effectively computable constants § < 1 and C depending on k
only such that

Card{n e N:n < X, n is not a sum of a prime and a kth power}
<cx’.

On the other hand, Schwarz [20] and Plaksin [17] considered similar
problems concerning (H) and (L), and could replace the kth power (of
an integer) in Theorem BPP-Z by a kth power of a prime. In particular,
it was proved:
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Theorem P [17]. Let k > 2 be a fized integer. Then the number of
positive integers b < X satisfying ged(b — 1, H(p—1)|kp) =1 such that
b is not representable by the form b = p; + pk, with p; and py prime,
is < X% where 0 < @ < 1 depends on k only.

Here and throughout < and > are the Vinogradov symbols.

In this paper, we shall present some generalizations of these results
to integers representable by binary sums with integer coefficients. Our
results contain Theorem BPP-Z and Theorem P as special cases. Our
investigation was motivated by the following work on equations with
integer coefficients.

(i) Pitman [16] and Schmidt [18, 19] considered the diagonal

equation, a;z¥ + --- + a,z® = 0 and obtained bounds in terms of
the integer coefficients, a1, ... , as for nontrivial small integer solutions,
L1yee 3 Tsy

(ii) Baker [1] considered the ternary equation, a;p; +asps+asps = b
and obtained a bound in terms of the integer coefficients, a1, as, a3
for small prime solutions, p;, p2, ps. Recent developments on Baker’s
problem show some interesting effects of these coeflicients (see Section 2
in [12] for the relations with Linnik’s theorem and the Linnik constant).

Following their direction, we shall consider the representations in
Theorems BPP-Z and P with integer coefficients a; and as and obtain
the best forms of lower bounds in terms of a1, as for X.

Assume k > 2 is a fixed integer and a1, a2 are any integers satisfying

1.1

( al)az #0, Max{aj,as} >1 and ged(ag,as):= (a1,a2) = 1.

For ¢ € N define

(1.2)

Ni(g) = Card{(n1,n2) € N?:nj,ns <gq,(n1,q) =1 and
ainy +azng =b (mod q)},

Na(q) := Card {(ni,n2) € N?:n; <q,(ni,q) =1,i=1,2 and
aini + anf = b (mod q)},

N3(q) := Card{(ni,n2) € N®:n;,n2 <gq,(n1,q) =1 and
ainy + axP(n2) =b (mod ¢)},

where P(z) = x? + dyz + dy with d; and dy being any integers. The
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method applied in most work in this field is the Hardy-Littlewood
method (or the circle method) and hence, by the nature of this method,
we shall restrict our attention to those b € N satisfying the condition
of congruent solvability,

(1.3) Nj(g) > 1 for each g € N.

For X > 1, and j =1, 2,3 define

(1.4) W;(X):={be N:b< X and (1.3) holds}
and
(1.5)
Ei(X) :={be Wyi(X):b=aip+ azn” is insolvable for p prime
and n € N},

Ey(X) :={b€ Wa(X):b=aip + azp} is insolvable for p;
and p, prime},

E3(X) :={be W3(X):b=aip+ a2P(n) is insolvable for p prime,
and n € N}.

We shall obtain the following bounds on the cardinality of the excep-
tional sets E;(X).

Theorem 1. There exist positive effectively computable constants A
and 0 < 1 depending on k only such that

Card B;(X) < X7, Card Ey(X) < X°?

whenever X > Max {3, |a1|, |az|}*. When k =2 and X > Max {3, |ay],
lazl, |d1], |d2|}#, we have

Card E3(X) < X°.

The following (Theorem 2) guarantees that there are many elements
in W;(X) so that the bounds in Theorem 1 are nontrivial. Let w(a) be
the number of prime divisors of the integer a.
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Theorem 2. We have

Card W1 (X) > Card Wa(X)
> X exp(—w(ay) log k)(log log(3|a1a2|))*1

where the implied constant in the > is effectively computable and
depends on k only. The above inequality also holds for Card W3 (X)
when k = 2.

Remark 1. The results on Card E; and Card E5 in Theorem 1 contain
Theorem BPP-Z and Theorem P, and the results on Card E; (when
k = 2) and Card E3 in Theorem 1 relate to Conjecture (I).

Proof. For any prime power p® and any pair (nj,ns) € N? with
ni,n2 < p*, we have that p { ny and ny + aanf = b (modp®) if and
only if agnk # b (mod p) and ny = b — aznf (modp®). So if a3 = 1,
then

Ni(p®) = Card {(ny,n3) € N?: ny,ny < p*,ptn; and
ni + aznk = b (mod p*)}
= Card {ny € N : ny < p® and agn # b (mod p)}
=0 if p|(az,b),
=p* —p* Yk,p—1) ifpfabanda;'bis a k-th
power residue modulo p,
> o(p®) otherwise
>1 whenever p{ (ag,b).

(1.6)

Here ¢ denotes the Euler totient function and a~! denotes the inverse
of the integer a modulo p. Hence, by the multiplicativity of Ni(q)
(which has a proof similar to that of Lemma 3.2 in [11], cf. Lemma 4.2
below), we have

(1.7) MNi(q) > 1 holds for all ¢ € N whenever (az,b) =1 and a1 = 1.

Set a; =1 = az. Then W1(X) = {b € N:b < X} and hence the set
E1(X) in (1.5) becomes the set in Theorem BPP-Z. So our result for
E;(X) in Theorem 1 contains Theorem BPP-Z.
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Proof. For a; = 1 and for given as and b with (ag,b) = 1,
we can obtain expressions for N2(p®) similar to those in (1.6); one
needs only to replace the only p* in (1.6) by ¢(p®). In particular,
No(p®) = é(p®) — p*~'(k,p — 1) if p | azb and a5 b is a kth power
residue modulo p. Then N2(p®) = 0 implies (k,p —1) =p—1, p{ asb
and a;'b = z* (mod p) for some z, and hence ¢(p)|k, p { azb and
play'd — 1. So, if a; = az = 1, and b satisfies (b — l,H(p_l)lkp) =1
then (1.3) holds for j = 2. Therefore, when a; = 1 = as, the set E5(X)
in (1.5) contains the set of b in Theorem P. So our result for F2(X) in
Theorem 1 contains Theorem P.

If we set a1 = 1 and ap = 2, then the b in the set Ey(X) are odd, since
(az,b) =11in (1.7). Then our result for £1(X) in Theorem 1 pertains
not only to (H) and (L), but also (I). Furthermore, when & = 2 and
dy = dy =0 (in P(x)), we have E5(X) = E1(X). So our result for
E5(X) in Theorem 1 concerns (H) and (I), too. O

Remark 2. The constant A in Theorem 1 must be larger than 1, and so
the forms of the lower bounds in the conditions X > Max {3, |a|, |az|}*
and X > Max {|ay], |az|,|d1],|d2|}* in Theorem 1 are the best possible
if we are not concerned with the exact value of each constant A.

Proof. We first consider E;(X). Suppose the constant A < 1. Let
a; = 1, az > 3 and put X = ay (> Max{3,a;1,a,}4). Then, for
each b with 1 < b < X, the equation b = p + ayn® is obviously
insolvable for prime p and n € N and so E;(X) = Wi1(X). On the
other hand, by (1.7) we have Card W1 (X) > ¢(a2) = ¢(X). It follows
that Card E;(X) > X/loglog X > X? for any given 6 with 0 < 8 < 1,
if aq is large. So we must have A > 1. The same argument works for
Es5(X), since we may consider d; = d2 = 0. And a similar argument
works for Fy(X) as well. O

The method applied in the proof of Theorem 1 is the Hardy-
Littlewood method with an application of Gallagher’s theorem [5, The-
orem 6] (see also [21, (3.7)]) on the density estimate of zeros of L-
functions. In the proof, we shall consider the existence of the Siegel
zeros (cf. (i) in [2, p. 348] and Lemma 3.1 in [24]). However, we need
not consider the Ps-excluded zeros which played an important role in
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[2] and [24] (see (iii) and (iv) in [2, p. 348] and [24, p. 403]). Therefore,
in principle, our proof is simpler than, and different from, [2] and [24].
On the other hand, our proof is along the same lines as [10, 11] and
[9] (which are developed from [15] and [22, Section 8.6]) but with a
number of technical differences.

In our proof, the “second main term” caused by the possible existence
of the Siegel zeros appears in M3 (see (6.1) below). As in the previous
works [9, 10, 11], we obtain an asymptotic form for M3 in our Lemma
6.2(a) and absorb efficiently the effect due to M3 by the “major main
term,” My, in the proof of our Lemma 6.3. In Lemma 6.4, the M,
in (6.1) is estimated with the essential help of Gallagher’s theorem in
the form of our Lemma 3.1 below. We can compensate for the effect
due to My by M; + M3 in (6.5), and hence prove our main results in
Theorem 1 without considering the Ps-excluded zeros.

In order to demonstrate in detail how we can prove Theorem 1
without considering the Ps-excluded zeros and also, in the interest of
clarity, we shall present all the essential lemmas which we have to apply.
On the other hand, we shall omit the proofs for many of these lemmas
when they can be proved by arguments similar to those employed in
our previous works [10, 11] and [9] (although there are, in fact, some
technical differences).

The proof for the upper bound of Card E5(X) in Theorem 1 is similar
to (but more complicated than) the proofs for Card E;(X), j = 1,3.
Therefore, in Sections 2-6 we shall only consider E2(X). In Section 7,
we shall give a proof for the lower bound of Card W5(X) in Theorem 2.
Some remarks on our proofs of Theorems 1 and 2 for the cases j =1
and 3 will be given in Section 8.

2. The unit interval’s dissection and the minor arcs. Let
X > 1 be a large number such that

(2.1) X > B0 where B :=Max{3,|a,|az}
and §(< 1) is a small computable positive constant depending on &
only, and define
(2.2) N :=2X,
(2.3)
Q := N?, T:= N‘/g, L= NQ_§/16, where ¢ :=47F,
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and

(2.4) 7= N"1TY4,

Then Q < T < L < N and, by (2.1),

(2.5) Q°>B

for § small enough. Let k&; =1 and ke = k > 2. For j = 1,2, we write
L;:= LY*i  and N; = Nk,

In the following, unless specified otherwise, the constants cy,cz,...
and the implied constants in the symbols <, > and O are effectively
computable, positive and depend at most on § and k.

We shall use X (mod ¢) and X, (mod ¢) to denote a Dirichlet char-
acter and the principal character modulo ¢, respectively. For any real y
and any positive integer g, we write e(y) for e>™¥ and e,(y) for e(y/q).
For j = 1,2, and any character X (mod g), define

(2.6) { S;(y) = X, <pen, (logp)e(p*ry) and
| Si(y) = Xp,<pen, X(p) (logp)e(p™y).

For any integers h,q such that (h,q) = 1, 1 < h < ¢ < @, let
m(h,q) := [(h —7)/q,(h+ 7)/q]. These intervals are mutually disjoint
and all lie in [r,1 4+ 7]. We call the intervals m(h, q) the magjor arcs.
The union of the major arcs is denoted by M and its complement
with respect to [7,1 + 7] is called the minor arcs, which is denoted by

M’ :=[r,1+ 7]\ M. Let

1+7
(2.7) Z(b):= / e(—bz)S1(a1x)S2(azz) d.

Then we can write

(2.8) </ /> —bx)S1(a12) Sz (azw) da

= T1(b) + I (b
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Lemma 2.1. We have
T2 (b)| < NY/kQ™3/2

except for at most XQ~¢/* values of b where £ = 47,

Proof. Following the same arguments as in the proof of Lemma 7.1
[10, cf. (7.5)], with the help of Theorem 1 in [7] we can obtain, for
k> 2, Sy(azz) < NY*Q-76/4, Then by Parseval’s identity,

> BOF < sw Seae)? [ [Si@o) do
zeM’ M

b=—oc0

< Nl—i-(Q/k)Q—7E/2 log N. O

3. Lemmas for the major arcs and a simplification of Z;(b).
In this section, we convert the integral on major arcs, Z; (b), to a simpler
form so that we can obtain a useful lower bound for it in Section 6.
To do this, we need the following well-known results on the exceptional
zeros and zero-free regions of the Dirichlet L-functions L(s, X).

It is known [3, p. 96] that there exists a small absolute constant c;
(< 1/2) such that for any T' > 1, L(o + it,X) # 0 whenever

C1

1
7= logT"’

1T
for all primitive characters X (mod q), ¢ < T, with the possible
exception of at most one real primitive character X (mod 7). If it
exists, L(s,X) has exactly one zero 3, called the exceptional zero (the
Siegel zero), which is real, simple and satisfies

C2 C1

<1-8<
- 'B_logT’

(3.1)

71/21og* 7

for some absolute constant ¢, > 0. Moreover, if 3 exists, the zero-free
region can be widened [5, p. 336].

For j = 1,2, any real y and any X (mod ¢) with ¢ < T', we define

Nj . Nj
Lwi= [ @b, L) = [ o ey do
L L

J
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and

Z / P Ye(abiy) de,

lv|I<T

where Z'|7|<T denotes the summation over all the zeros p = 8 + ¢y
of L(s,X) in the region 1/2 < 8 < 1, excluding .

Lemma 3.1. There is a constant c3 > 0 such that for any real
y > NY%% and any § > 0, we have

ST S < QP exp(—es/V),

q<T x(modgq) |y|<T

where Z*X(modq) is the summation over all primitive characters
X (modgq), and

(3.2) Q.= { (1—B)logT (<) if B emists,

1 otherwise.

Here c3 depends on k only while the implied constant in < s absolute.

Proof. This can be proved by the same argument as in the proof
of Lemma 2.1 in [10]. The proof depends essentially on Gallagher’s
theorem [5, Theorem 6]. O

Lemma 3.1 is applied mainly to the proof of Lemma 6.4 below.

For any character X (mod ¢) and any integer m, let

q
(3.3) Cx,qm, k) =Y X(le
=1

Hj(h7Q7 77) - C(X07Q7 ajh k; ) (aﬂl)
_6QC(XX07 q, ajh7 kj)Ij (%‘77) - G]'(ha q, 7])7
where

Gj(h’q’n) - Zx(modq) C( ’q)a]h k ) (X %77)
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and

(3.5) 5, = { 1 if X (mod 7) exists and 7 | g,

0 otherwise.

By the same arguments as used in [10, Section 3], we can generalize
all the results in Lemma 3.1 through Corollary 3.4 of [10] to any ks > 2.
As in the proof of Lemma 3.3 in [10] we need our above Lemma 3.1 for
the generalization. In particular, by a method similar to the proof of
Lemma 3.3 in [10], we can prove that

Ix(az2n), Iz(asn), I(z, azn) < NY*(Llagn|)~1/?

if |n| > 7/q, and that

|1y < sl NP L g N

—00

where Ey (¢ =1,2) is either
C(Xoa q, ajha kj)Ij (%’77) or -— 6110(50(’ q, ajhv k])fj (ajn)

or
_C(xa q, ajh7 kj)Ij (X7 (Lj’l])-

Following the same arguments as employed in deriving (3.15) in [10],
we can prove

(3.6)
LB =Y 6@ 3 ey(-bh)
<Q (h,q)=1
T/q
x [ el b (g, (k) + O (N/4Q ).

The next step is to extend the range of the integration in (3.6) to
(—00,00). Note that the product H;(h,q,n)Hz(h,q,n) is a sum of at
most (¢(q) +2)° terms, each of the form EyE,. Then,

“122 [T
I BB dy < (3@ Llaar/a) ) [ B an
R\[-7/q,7/4]

— 00

< N1+(2/k)Q—12‘
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For the last <, we also need (2.3) and (2.4). Thus by Parseval’s identity,
‘/ e(—bn)E By dn| < NYkQ~3
R\[-7/q,7/q]

except for at most < NQ 6 values of b. Therefore when the integration
in (3.6) is extended to (—o0, 00), the total error induced is

< Y 6(a) 260 (é(q) + 2)°NVEQH < NIFQ!

q<Q

except for at most > . #(q)(4(q) +2)°NQ 6 < INQ 2 < XQ !
values of b (by (2.2)). Hence, in view of (3.6), we have

Li(b)=> ¢(q) > > eq(—bh)

9<Q (h,q)=1
3.7 o0
3.7) < [ el-bn) g Hahy g,

+ O(Nl/kal) except for at most XQ ! values of b.

We shall use (3.7) to obtain a lower bound for Z; (b) in Section 6. By
this bound, (2.8) and the upper bound for Z,(b) in Lemma 2.1, we shall
prove Card E2(X) < X? in Section 6.

4. Lemmas for the singular series and the singular integral.
We are going to present some preliminary lemmas for the singular series
> A(q) (see (4.3)) and the singular integral (see Lemma 4.6).

We use ord,(n) to denote the largest integer w such that p | n. For
any prime p, we denote

(4.1) 1pi=ordy(k)+1 and 6,:=1+[2/p]

where [z] is the largest integer not exceeding z. For any characters
X1,X2 (mod q), define
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Z(q) = Z(q;X1,X2) 1= >4 q)=1 F'(R)
(4.2) and

Y(g) =Y(g;X1,X2) := ZZ=1 F(h),

where F(h) = eq(—bh) [T;_, C(X;,q, a;h, k;). Put
(4.3) A(g) = ¢(2) "> Z(g; Xo, Xo)-

Following the same arguments as those employed in proving Lemma 3.1
through Corollary 3.5, and Lemma 3.9 in [11], we can prove the fol-
lowing Lemmas 4.1 through 4.6, except for Lemma 4.1(b) and Lemma
4.3(b). So here we shall only provide a brief proof for these two parts
of the lemmas.

Lemma 4.1. Let X (mod p%) be any character with o« > 0. We have

(a) C(x,p*,m,k) =0 if X is primitive, « > 1 and p | m;

(b) C(XXo,pt,m,k) = 0 if X, is modulo pt, p t m with t >
7p + Max {0,, a};

(©) 00, p™ m k)| < (k,d(p™))(2,p)(m,p*)"/*p/2.

Lemma 4.1 is applied in the proofs of Lemma 4.3(a) and (b), and
Lemma 4.4(a) and (b).

Lemma 4.2. Z(q), Y(q), Na2(q) and A(q) are multiplicative func-
tions of q.

Lemma 4.3. For any X1, X2 (mod q) with ¢ < X, we have

(a) Z(g;x1,X2) < 6(q)gB;

(b) Lpex 1Z(a5X1,%X2) < X(a)'*aB.

Lemma 4.4. For j =1,2, let X; (mod p®i) be primitive characters

and o = Max {ay,as}. For any t > a, let Z(p') = Z(p*; X1X0, X2Xo)
and Y (p') = Y (p'; X1 X0, X2Xo) where X, is of modulus p*. We have
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(@) Z(p™) =Y (p*);
(b) Z(p*) =0 if t > 1, + Max {6,, a};

() X0_, o) 2Z(p") = (") *Y (p") for any n > a > 0.

Corollary 4.5. (a) A(p") =0 fort > 1, + 0;

(b) pt¢(pt)72Ng(pt) _ prp+€p—1¢(p-rp+9p—1)—2/\/'2(p-rp—i-ep—l) for t >
+0p,—1

Lemma 4.6. (a) For any complex numbers p; with 0 < Rep; <1,
j =1,2, we have

(4.4) /_Oo f[(/ " 2P te(ayne )dm)dn

= NYH(kjal) [ a9 T (0¥,
D

j=1

where x5 = (BNt —ayxy)ag* and D ={z;: L/N < xy,75 <1}.

(b) We have fD 2o 1T A/E) dry > Q¢/18 for all b such that 3BL <
b< X, where £ =4°F,

We now give a proof for Lemma 4.1(b) and Lemma 4.3(b).

Proof of Lemma 4.1(b). For 1 < I < pt let | = u + vp'~ .
Write ¢ = p™»~!. Then by t > Tp + 6, and repeated application
of Lemma 8.2 in [8] we have 19 = u? + qu?~lvp!~™ (mod p'). By
raising both sides of the congruence to the power of k/q, we get
I* = u + kuF~lvp!~™ (modp'). Using this and ¢t > 7, + «,

C(XXorp'smy k) = > X(we(u*m/p)
(u,p*~7P)=1

pP 1

X Z “lom/p™) =0

since the last inner sum vanishes. O
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Proof of Lemma 4.3(b). By (4.2) and Lemma 4.1(c),

q

2
Z |Z(q;X17X2)|2 = Z q H 1C (X}, 9, a;h, kj)|2 < ¢(a)g’ B

b=1 (ha)=1 j=1

The lemma follows by applying the Cauchy-Schwarz inequality. o

For any p, we define
1,1y —2 o0y
(4.5) 8(p) = p-rp+9p 1¢(p p+0p 1) N2 (p p+0p 1)'

By (1.2) and (4.2) we have ¢7'Y (¢; X0, Xo) = N2(g). Then, in view
of Lemma 4.4(c) with & = 0 and (4.3), we have

(4.6) s(p) =14 A(p) +---+ A(p™»To%1),

5. Lemmas for the transition from singular series to singular
products. The principal difficulty in treating the singular series arises
from the fact that 22021 |A(q)| is not convergent in general. We shall
apply the techniques in [22, Section 8.6] to overcome the difficulty by
approximating the singular series by a finite product in Lemma 5.5(b)
below.

Let
Ryp(m) =Y ep(im),  7(X) =Y x(I)eg(l)
=1 =1
and

Ay = {X(modp) : X =x,, X # Xo}-
For each X € A, let

and
gp = ¢(p)72Rp(a1)Rp(a2).

Using techniques similar to those used in the proofs of Lemmas 6.2
through 6.6 in [9] we can prove the following Lemmas 5.1 through 5.4.
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Lemma 5.1. We have

A(p) = > g(X)X(b) + gpRp(b).
XEA,

This lemma is used in the proofs of Lemmas 5.2 and 5.4. In the proof
of our Lemma 5.1, we need Lemma 4.3 in [22].

Lemma 5.2. (a)

2p—1)"" if ptas,
X)| <
st {3070 i
for any X € Ap;

(r—1) if ptaiay,
<
991 < {(p—l)_1 if p|aias.

|A( )‘ S {4kp1 Zf pjfala@}
2k if p|aiaz.

Lemma 5.2(a) is applied in the proof of Lemma 5.4.

Lemma 5.3.
(a) Forany U >1,

3" |A(g)| < US/% B2 where €= 47",
q<U

(b) Assume (1.3) for j =1,2. Then

I s > (log@)~* B>

p<Q
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Lemma 5.4. For any given U with 1 < U < @ and any positive
integer T, we have

>

b<X

I[Is) - Y. Alg) < XU 3Q/.

p<Q q<U
P)(T (er)zl

This implies that

except for at most XQ~¢/32 values of b with 1 <b < X.
For r > 1, define

(5.1) c:=o0(r):= Hpﬁp,
Pl

where 8, := 7, + Max {6,,0rd,(r)} — ord,(r) — 1, and 7, and 6, are
defined as in (4.1). Note that for any p | 7, if p { 2k then 7, =1 =6,
and B, = 0. Hence, p | o implies p | 2k and 5, < 7,+6,—1 < 20rd,(2k).
Thus

5.2 o divides 2ordp (2k) — g2,
(5.2) P
pl2k

Lemma 5.5. Let X; (mod 7;), j = 1,2, be primitive characters and
r=[r,me] < Q. Let € =47F. Then

(a)
2.

b< X

> 907 (q)‘ < XrmV2QE/6 g3,

q<Q
rlq
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(b)
YD b 2(a) — p(or) Y (or) [] s(p)| < XQ-/AHE/2 B,
b<X qg‘Q ppﬁ){Q

The implied constants in the above <K depend on k only.

Proof. (a) For any ¢ divisible by r, we write ¢ = ¢'¢” such that
(¢",7) =1 and every prime factor in ¢’ divides 7. Then by Lemma 4.2
and (4.3),

(53) > o) Z) =D o) 72(a) Y Ald").
qs‘f q’|S,Q <(1”SQ)/q1’
T T|q q"\r)=

For j = 1,2, write X; (mod r;) = [[,, X;, (mod p°rdr(r3)). Then
each X;, is primitive. By Lemma 4.4 (a) and (b), we see that

Z(pordp(T); X1, Xos XZPXo) = Y(pordp(r); X1, Xos X2PX0)
and
Z(pordp(q’)) # 0 implies
ord,(¢') < 7 + Max {6, 0rd,(r)} — 1 = 3, + ord,(r).

Thus by writing r = r'r” such that (r”,2k) = 1 and every prime factor
in 7’ divides 2k, and by Lemma 4.2, we have

(5.4) Zr") =Y (") .

And by (5.1), we have Z(¢') # 0 implies ¢’ | or (i.e., ordy(¢’) <
Bp + ord,(r) for all p | ¢’). Since 7 | ¢/, we conclude from this that

(5.5) Z(q') #0 implies ¢ =ur for some u | o.

Thus

(5.6) S o) 12D =Y éur) 2|z (ur).
q' <or ulo

’
rlq
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Recalling the definition of 7/, and by Lemma 4.2 and (u,r"”) = 1 (by
(5.2)), we see that (5.5), (5.4) and (5.1) give

S o) 2(q) =Y plur) P Z(ur)p(r") Y ()

q' <or ulo
rlq’

11

plr’

Bytord, (1) i
( ) ¢<p">22<p">)¢<r">‘ Y ().

v=ordp(r’)

By Lemma 4.4(c), the last product over p | r’ is

H¢(pﬂp+ordp(r'))fZY(plgijordp(r’)) _ (}25(0'7‘/)72}/(0'7‘/).

plr’

Hence, by Lemma 4.2, we have

(5.7) 3" 6(d)*2(d) = plor) Y (or).

q'<or
rlq’

Note that o < 4k? (by (5.2)) and then, if u|o, we have ur < 4k?Q < X
(by (2.2) and (2.3)). By (5.5), (5.6), Lemma 4.3(b) (with ur < X) and
o < k2, we have

ST o6@) 26 < 30D olur) EZ(ur))|

(5 8) b<X ¢'<Q b<X ulo
’ rlg

< Xr—(/D+E g

Hence by (5.3), Lemma 5.3(a), (5.8) and r < ¢’, we have

D,

b<X

> 45(‘1)22((1)‘ < Xr12QH/% B3,
q<Q

rlg
This proves part (a).

(b) We first consider 7 < Q%/°. Then by ¢ < 4k* we have or < Q
since @ is large. Hence by (5.5) the condition ¢’ < or in the sum in (5.7)



NUMBERS REPRESENTABLE BY BINARY SUMS 977

can be replaced by ¢’ < @, and (5.7) holds for Zq,SQ’qu, q,’)(q’)*zZ(q’),
too. In this case, by (5.3), (5.7), (5.5), Lemmas 4.3(a) and 5.4, we have

D,

S 6(0)22(q) - 8(or) Y (o) [ 50)

b<X 4@ <Q
rlq ptr
=> 1> ¢(q')2Z(q')< oAl -] S(p)>
b<Xlg'<Q "<Q/d’ a<Q
rld (¢"r)=1 pir
<X @By S aAw)- 0
ulor b<X " <Q/ (ur) a<Q
(q"",r)=1 ptr

<3 (ur)BX(Q/(ur)) T2 Q4/%

ulo

< XQ~-(/3+(E/60),.(1/3)+(E/32) .

which is < XQ~ /9+E/32) B if r < Q2/5.
If » > Q2/°, by part (a), we have

D,

b< X

) ¢(Q)_2Z(q)‘ < XQ~ /e

a<Q
rlq

since B < Q° (in (2.5)). Next, by (4.5) and Na(p') < ¢(p")” (by (1.2)),
we have s(p) < p»t%~1. Furthermore, if p { 2k then 7, = 1 = 6, and
hence we have s(p) = 1+ A(p) by (4.6). Therefore, by Lemma 5.2(b),
|A(p)| < ¢(p) (by (4.3)) and 7, + 0, — 1 < 20rd,(2k), so

I[Is) = 1] s [] st [] sk

p<Q P<Q P<Q P<Q

p_fr pf2kr pf2kr p|2k
ptaias plaias pir
< [Ta+4r™) TT @+o@) [Tpw*
p<Q plaias p[2k

< (log Q)**B2.
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Hence, by (5.7), (5.6), Lemma 4.3(b), 0 < 4k? and B < Q°, for
r > Q%/5, we obtain

> |olor) 2V (or) [T sto) < D2 D o(ur) *|Z(ur)|

I1 s

b<X P<Q b<X ulo P<@Q
ptr ptr
< 3 (ur)"WATEY X B1og @) B2
u<4k?
< XQ-UP+Ep
Then part (b) remains valid in the case r > Q%/°. O

6. The major arcs and the completion of the proof that
Card E;(X) < X% in Theorem 1. In this section, we shall use the
results in Sections 4 and 5 to obtain a lower bound (in Lemma 6.5) for
T (b).

From (3.4), we see that Hy(h,q,n)H2(h,q,n) is a sum of at most 9
terms which belong to 3 categories:

(T1) the term [[_, C(Xo,q; ajh, k;)I;(a;n);
(T>) the 5 terms each of which has at least one G (h, ¢,n) as a factor;
(T5) the remaining 3 terms.

Fori=1,2,3, let

oo

M= Y 6@ S0 eq(—bh)/ e(—br)

a<Q (h,a)=1 e
x {the sum of terms in (73)} dn.

Note that each M; is real and M5 = 0 if 3 does not exist or 7 > Q
(since d, =0 in (3.5)). By (3.7), we have

(6.1) Ty(b) = My + My + Ms + O(N'/* Q)

except for at most XQ ! values of b.

Let o = o(7) be defined as in (5.1) and X, be of modulo oF. Set

G(1) := (a7) 'Y (675 XXo, Xo),
G(2) := (67)"'Y (0F; Xo, XXo)
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and
G(1,2) := (o7) 'Y (0F; XXo» XXo)-

Also let E := NYE(klag|)~t, F = x;H(l/k), G = (Nzy)P,
H := (Nzy)#~1/k and

(6.2) Po:=E [, Fdxy,  P(l):=E [, FGdzy,
P(2):=E [, FHdz:,  P(1,2):=E [, FGHda:,

where 22 and D are defined as in (4.4).

Lemma 6.1. We have

=P, H )+ 0 Nl/kQ (1/3) (76/64))
p<@Q

except for at most XQ /32 values of b with 1 <b < X.

Proof. The lemma can be proved by techniques similar to those used
in the proof of Lemma 7.1 in [9], by our Lemma 5.4. mi

Lemma 6.2. Let o = o(7) be defined as in (5.1). If the exceptional
zero B exists and 7 < @, then

(a)
M; = qb(crf)—?m’«'(H ) < Z )+ G(1,2)P(1, 2)>
ppﬁ)(f) Jj=1

O(Nl/kQ—(1/5)+(§/8)B)

except for at most 3XQ~¢/32 values of b with 1 < b < X;

(b)
M3 < Nl/kf_1/2Q7€/64BB

except for at most 3XQ /32 walues of b with 1 < b < X.
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Proof. The lemma can be proved in a way similar to the proof of

Lemma 4.2 in [11], by our Lemma 4.6(a), and Lemma 5.5(b) and (a).

O

Lemma 6.3. Let ) be defined as in (3.2). We have

M, + M5 > Q*P, H ) + O(N'/kQ=(/9+(/9) p)
p<Q

except for at most 4XQ¢/32 values of b with 1 < b < X.

Proof. The lemma can be proved in a way similar to the proof of

Lemma 4.3 in [11], by our Corollary 4.5(b), Lemma 6.1, and Lemma

6.2(a). mi

Lemma 6.4. We have

My < Q2 exp(—c3/Vo)P, [] s(p) + O(NY*kQ=(/>+(E/5) p)
P<Q

except for at most 5XQ¢/32 values of b with 1 < b < X. Here c5 and
the implied constant in < are independent of §.

Proof. The lemma can be proved in a way similar to the proof of
Lemma 7.4 in [9], by our Lemma 4.6(a), Lemma 5.5(b), and Lemma

3.1. O

Lemma 6.5. Let Wy(X) be defined as in (1.4). We have

Ty (b) > NYRQ /8,
except for at most 10X Q~¢/32 values of b € Wy (X), where £ = 4,

Proof. Case 1. 3 does not exist or 3 exists with 7 > Q.
We have M3 = 0. Applying Lemmas 6.1 and 6.4 to (6.1) with a small
6 > 0, we have
(6.3) 17) H )+ 0 Nl/kQ (1/5)+(§/8)B)
P<@Q

[\)
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except for at most 6XQ ¢/3? values of 1 < b < X. Assuming (1.3),
and by (6.2), Lemmas 4.6(b), 5.3(b) and B < Q° (in (2.5)), we have

(64) Po H 5(p) > Nl/kalef/lﬁ(log Q)74k372 > Nl/kQ73§/32,
p<Q

except for at most 6BXQ ¢/16 (= 3BL by (2.2) and (2.3)) values of
b € Wa(X). The O-term in (6.3) can be neglected since ¢ = 4%, and
hence Z; (b) > NY*Q3¢/32 except for at most 7XQ ¢/32 values of
be W, (X)

Case 2. B exists and Q¢/2 < 7 < Q.

Applying Lemmas 6.1, 6.4 and 6.2(b) to (6.1) with a small § > 0 and
7> Q¢/?, we have

lp H +O Nl/kQ 95/6433)

p<Q

[\)

except for at most 9XQ~¢/32 values of 1 < b < X. Then by (6.4)
and B < Q°, we again have Z; (b) > N'/kQ~3/32 except for at most
10X Q~¢/32 values of b € Wo(X).

Case 3. f3 exists and 7 < Q¢/2.
Applying Lemmas 6.3 and 6.4 to (6.1) with a small § > 0,

(6.5) ) > 9279 I ) + o(N'EQ=-C/atH /8 By,
P<Q

except for at most 9XQ¢/32 values of 1 < b < X. Now by (3.2), (3.1),
< QY% and Q < T (in (2.3)),

Q=(1-8)logT > Q ¢*(logQ) "
Then by (6.4),

QZP H >> Q- 5/2(10gQ) Nl/kQ—3§/32 > Nl/kQ_5§/8,
p<@Q
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except for at most 6BX Q ¢/ values of b € Wy(X). Again, the O-term
in (6.5) can be neglected since ¢ = 4~* and hence Z; (b) > NY/*kQ~5%/8,
except for at most 10X Q~¢/32 values of b € Wy(X). u]

Combining (2.8), Lemma 6.5 and Lemma 2.1, we have
Z(b) = Ty (b) + Za(b) > NYkQ™5/8

except for at most X Q¢/33 values of b € Wy(X).

In view of (2.6), the integral Z(b) in (2.7) is equal to Y (log p1)(log p2),
where the summation Y is over all pq,ps satisfying L < p; < N,
LY* < py < NY*_ and the equation b = a1p; + agph. If #(b) denotes
the number of such pairs (p1,ps), then Z(b) is clearly < #(b)log® N.
That is,

#(b) > Z(b)(log N) > > NYkQ5%/3(log N) 2 > 0,

except for at most XQ¢/33 values of b € W(X). This completes the
proof of Card F5(X) < XY in Theorem 1.

7. The lower bound for Card W2(X) in Theorem 2. By
Corollary 4.5(b),
N2(p-rp+0p71) > 1

implies
No(p')>1 fort>1,+6,—1,

and, on the other hand, by (1.2),
N2(p-rp+9p—1) Z 1

implies
No(p')>1 for1<t<rt,+6,—1.

Therefore by Lemma 4.2, (1.3) holds for N3(q) if and only if
(7.1) Na(pmetf 1) > 1

for all primes p.
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In view of (4.5) and (4.6), for p { 2k (so 7, = 1 = 6, by (4.1)),
(7.1) holds if and only if A(p) > —1. By Lemma 5.2(b), we have
|A(p)| < 4kp~! < 1if ptajaz and p > 4k + 1. Hence

(7.2) (7.1) holds for those p > 4k + 1 satisfying p t a1as.

Let p1,... ,py and q1,. .. , g, be all those primes > 4k+1 which divide
a1 and ag respectively. Note that p; # g; for all ¢, j since (a1,a2) =1

(in (L.1)). Let
m:= [] p+ 1szHq]

p<4k

Lemma 7.1. There are at least
H ¢ pz H
=1 j=1

values of b (mod m) for which (1.3) holds for N3(q).

Proof. For each p;, 1 < i < u, the congruence in Na(p;) (see (1.2))
becomes

(7.3) b=ayn®  (mod p;).

Thus N3 (p;) > 1 if b satisfies (7.3) for some n with 1 < n < p; — 1. For
each gj, 1 < j < v, the congruence in N5(g;) becomes

(7.4) b=ail  (mod g)

and so N5(g;) > 1 if b satisfies (7.4) for some [ with 1 <1 < ¢; — 1. For
each p < 4k, (7.1) holds for those b satisfying

b=ai+ay (modp™tir1)

Note that 7, + 6, —1 =1if p > 4k + 1 (by (4.1)). Hence, in view of

(7.2), for each n¥ with1 < n; <p;—1,i=1,... ,u, and for each I; with

1< <q;—1,j=1,...,v, if b satisfies the system of congruences
b= azn;* (mod p;) fori=1,...,u,

(7.5) b=a1l; (mod g;) forj=1...,v,

b=a;+ay (mod p»t%~1) for p < 4k,
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then (7.1) holds for all primes p and so (1.3) holds for AV5(gq). Now by
the Chinese remainder theorem, the system of congruences (7.5) has
a unique solution b (mod m). Note that for each i = 1,...,u, there
are exactly ¢(p;)/ (k, ¢(p;)) (> ¢(pi)/k) incongruent n;* (mod p;); and
for each j = 1,...,v, there are exactly ¢(g;) incongruent {; (mod g;).
Thus, in total, there are at least

1%

v

gl

i=1
such systems of congruences for 1 < n; < p; —1,¢=1,...,u, and
1<1l; <¢qg;—1,j=1,...,v. Hence Lemma 7.1 follows immediately.

O
By Lemma 7.1 and noting that HpS4k p 01 depends only on k,

we have, for large X

v

I L
> x(IL o) 1k-w<a1)ﬁ¢@i) 90,

p<4k

Card Wo(X

SIN

Finally, by (1.4) and (1.2), obviously we have Card W;(X) >
Card W5(X). This proves the results for W;(X) and W2(X) in Theo-
rem 2.

8. Remarks on the proofs of bounds concerning E;(X),
j = 1,3 and W3(X). The proofs of Card F;(X) < X%, j = 1,3
in Theorem 1 are very similar to (and also simpler than) that for
Card E(X) < X. However, the following technical differences in their
proofs should be pointed out.

(i) For j = 1, instead of using Theorem 1 [7] in the proof of our
Lemma 2.1, we apply Weyl’s inequality (see, for example, Lemma 2.4
n [22]).

(ii) For j = 3, instead of our Lemma 4.1(c), we use Hua’s fundamen-
tal lemma [8, Theorem 1] to estimate Y [/ ; e;(a2P(l)). In the proof
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of the lemma corresponding to our Lemma 5.1, one writes P(I) in the
form of a completed square modulo odd ¢, then one applies Lemma 4.3
in [22].

Concerning the proof of the lower bound for Card W3(X) in Theo-
rem 2 we first apply Theorem 2.24 in [14] to prove that A (p°rdr(@)+1) >
1 for any prime p if (@) b = a; + axP(1) (mod p*™*!), where 7 =
ord,(P’'(1)) or if (8) pla; and the congruence b = a;P(n) (mod p) has
a solution n satisfying p{ P’'(n). One then uses these results to obtain
a lemma similar to our Lemma 7.1.
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