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RESOLUTIONS OF HILBERT MODULES

VERN I. PAULSEN

1. Introduction. In the Sz.-Nagy-Foias model theory for a Cyp-
contraction 7', all of the data for the model is contained in the es-
sentially unique characteristic operator function ©® and 7' is unitar-
ily equivalent to the compression of multiplication by Z to the space
HZ%(D) © ©H%(D). Here E and F are Hilbert spaces and Hz(D) de-
notes the Hardy space of F-valued analytic functions on the unit disk
D. If T acts on a Hilbert space H, then we may regard H as a con-
tractive module over the disk algebra A(D) with the module action
given by f-h = f(T)h. If we regard H%(D) and H%(D) as modules
over the disk algebra via pointwise multiplication, then the fact that
T is unitarily equivalent to the compression of multiplication by Z to
HZ%(D)©©H%(D) means that we have a short exact sequence of Hilbert
A(D)-modules,

0 — H2(D) -5 HA(D) % H — 0,

where 6 is the isometric inclusion induced by multiplication by © and p
is unitarily equivalent to the quotient map. Conversely if we are given
a short exact sequence of A(D)-module maps as above with 6 isometric
and P unitarily equivalent to the quotient map, then necessarily 6 is
given by multiplication by a function © and we are back in the situation
given by the Sz.-Nagy-Foias model theory.

Thus, the Sz.-Nagy-Foias model theory can be regarded as a state-
ment, about the existence and uniqueness of certain special resolutions
of the Hilbert A(D)-module H. In [9] we call these Silov resolutions
for reasons which will be explained later.

Abrahamse and Douglas [1] succeeded in generalizing some of this
theory to the case of contractive Hilbert modules over other function
algebras. Let Q be an m-holed analytic Cauchy domain, that is, € is
an open connected subset of the complex plane which is bounded by
n + 1 nonintersecting analytic Jordan curves. Let C(92) be the space
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of continuous functions on the boundary of 2, and let R(Q2) C C(02)
be the uniform closure of the set of rational functions with poles off
Q~. If H is a Hilbert space, then Abrahamse and Douglas define a
unital contractive homomorphism o : R(2) — B(H) to be Cyo if it is
continuous from the topology of bounded pointwise convergence to the
double strong operator topology. They prove [1, Theorem 2] that every

such Hilbert R(£2)-module has a resolution, 0 — Hz () 4 HL(Q) B
H — 0.

Here E' and F are a special type of complex analytic vector bun-
dle over Q, called Hermitian holomorphic bundles, H%(f)) denotes a
“Hardy” space of square-integrable sections of E, # is an isometric
inclusion induced by multiplication by © which is a bounded holomor-
phic bundle map from E to F with isometric boundary values, and p
is unitarily equivalent to the quotient map.

However, even under reasonable minimality conditions, these res-
olutions are far from unique. We will see later that even the
one-dimensional modules which arise from a fixed homomorphism
o(f) = f(w), for some w € Q, have a family of resolutions naturally
parametrized by an n-torus. Ball [4] shows that even the ranks of the
vector bundles is not uniquely determined.

The purpose of this paper is to attempt to describe the set of all
possible resolutions of a given module, which satisfy some additional
minimality hypotheses, modulo a natural equivalence relation. We
accomplish this by applying some of Arveson’s ideas for studying
dilations of subalgebras of C*-algebras [3]. We call a subalgebra A of a
C*-algebra B sub-Dirichlet if the linear span of the set {a*b: a,b € A}
is dense in B. In particular, every function algebra A C C(X) is sub-
Dirichlet on C'(X). When A is sub-Dirichlet on B, we can describe the
set of equivalence classes of minimal resolutions as a fibered set over
a base space which consists of a set of completely positive mappings.
This base space is a convex compact set in a topological vector space.

Reconciling our description of the set of all resolutions with the
Abrahamse-Douglas description leads to interesting analytical ques-
tions. For example, if Q is an m-holed analytic Cauchy domain and
we consider o(f) = f(w), w fixed, then our description yields the set
of all resolutions as a space fibered over an n-dimensional compact
convex set of positive measures, i.e., topologically a ball in R™; while
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Abrahamse-Douglas realize it as an n-torus. Thus, the projection map
from the total space to the base projects an n-torus onto a closed ball
in n-space. Thus, we would expect the variation in the behavior of
the fibers above measures to be quite complex. When 2 is an annu-
lus, we are able to describe this fibering quite concretely. Our space
of measures is represented by a closed interval, and the map from the
Abrahamse-Douglas parameter space, which is a circle to our interval,
is two-to-one over the interior of the interval and one-to-one at the
endpoints. Clancey [8] using the theory of Riemann surfaces and theta
functions is able to better explain this fibering.

Our paper is organized as follows. Section 2 contains some prelimi-
nary results on semi-invariant subspaces together with some key ana-
lytic examples. Section 3 contains a careful discussion of resolutions,
equivalence of resolutions and sub-Dirichlet algebras. Section 4 con-
cerns Cyg-representations.

2. Semi-invariant subspaces. Let K be a Hilbert space, H a
closed subspace and Py the orthogonal projection of IC onto H. If A is
an operator on /C, then the operator on #H defined by Ay, = Py A |3 is
called the compression of A to H.

Let L£(K) denote the algebra of bounded linear operators on K, and
let A C L(K) be a subalgebra. A closed subspace H of K is said to
be invariant for A if AH C H for all A € A. A closed subspace H of
K is said to be semi-invariant for A if the compression map A — Ay
is a homomorphism from A into L(#). Sarason [13] showed that a
subspace H is semi-invariant for A if and only if there exists a nested
pair of invariant subspaces M C A for A such that M & H = N. We
shall call (M, N) a representing pair for H.

In general, this representation of H is not unique, and the purpose
of this section is to give a complete description of the distinct pairs
(M, N) of invariant subspaces that give rise to such a representation
of H. We close this section with a number of examples motivated by
complex analysis. We begin by noting that if 7 is a semi-invariant
subspace for A, then the set of all nested pairs (M, N) of invariant
subspaces for 4, M C N such that M @ H = N, forms a lattice
under the partial ordering (M, N) < (M’,N”) if and only if N' C N'.
If {(Mqy,No)} is any family of such pairs, then (Ng Mg, NaN,) and
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(VaMa, VaN,,) are also representing pairs for H, where N and V denote
the intersection and span, respectively. Setting

Mm:mMaa Nm:mNa

My =\ Mo, Ny =\/Na

where {(M,N,)} is the family of all representing pairs for H, we
obtain two distinguished representing pairs for H, (M, N;n) and
(M, Nyr) called, respectively, the minimal and mazimal represent-
ing pair of H. Clearly, if (M, N) is any representing pair for H, then
Mm QMQMM ande QNQNM

We begin by characterizing these minimal and maximal elements
of the lattice of representing pairs for H. For A C L(K) we let
A* = {A* : A € A} and let AH denote the closed subspace spanned
by the vectors Ah, A € A, h € H.

Proposition 2.1. Let A C L(K) be an algebra, and let H C K be
a semi-invariant subspace for A, with (M, Ny) and (M, Nag) the
minimal and mazximal representing pairs for H; then

Now = AH  and My = [A*H] .

Proof. Sarason [13] shows that if N' = AX and M = N N (H1),
then M and N are both invariant subspaces for A. Thus, (M, N) is a
representing pair for H. Clearly, if N’ is any invariant subspace for A
containing H, then AH C N, so that N,,, = AH.

On the other hand, note that if A is any invariant subspace for A,
then N'* is an invariant subspace for A*. Thus, if (M,N) is any
representing pair for 7, then N’ C M= is a pair of nested invariant
subspaces for A* with N+ @ H = M=L. Hence, H is also semi-invariant
for A* and (N+, M*) is a representing pair for H with respect to A*.

Clearly, if (M, Nps) is the maximal representing pair for H with
respect to A, then (Nj;, M3;) is the minimal representing pair for %,
with respect to A*. Thus, by the above argument, M7, = A%,. O
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Now that we have identified the two extreme representing pairs for
a semi-invariant subspace, it is possible to describe all representing
pairs. Note that if H is a semi-invariant subspace and H C A an
invariant subspace, then M = N'NH~ is not necessarily invariant. So,
in general, choosing an invariant subspace containing H is not sufficient
to determine a representing pair. However, in some cases it is.

Theorem 2.2. Let A C L(K) be an algebra, and let H C K be
a semi-invariant subspace for A, with (M, Ny,) and (M, Npr) the
corresponding minimal and mazimal representing pairs for H. Then
the following are equivalent:

(i) (M, N) is a representing pair for H.

(ii) N s an invariant subspace for A, with N, C N C Ny and
MOH=N.

(iii) M is an invariant subspace for A, with M,, C M C My and
MOH=N.

Proof. That (i) implies (ii) is clear from the definition. To see that
(ii) implies (iii), note that

My =Ny NHECNNONHE =M C Ny NHE = My,

Now if h € M and A € A, then Ah € Mj; NN since both spaces are
invariant and contain M. But M C My NN C H*NN =M, so
Ah € M and M is invariant.

Finally, to see that (iii) implies (i), it will be enough to show that
N is invariant for A. So assume that k € A and A € A. Then
k=ki+h ke M,he€ HCN,,. Thus, Ak = Ak1+Ah e M+N,, =
M+ M,, +H =N, from which it follows that N is invariant. o

In order to identify all of the invariant subspaces for A between N,
and Ny, the following observations are useful. Note that the space
D=Nuyn ./\/’,f; = Mupyn Mﬂ,‘l is also semi-invariant for A, so that
compression yields a homomorphism p : A — L£(D). The following
result is easily checked.

Proposition 2.3. Let A C L(K) be an algebra and H be a semi-
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invariant subspace for A with (M, Ni) and (Mar, Nar) the minimal
and mazimal representations of H, respectively. Then a subspace
N, N,y €N C Ny is invariant for A if and only if N = N,,, @ L

where L C D is an invariant subspace for p(A).

We shall call D the defect space for A with respect to H. The following
result gives an estimate of its size.

Proposition 2.4. Let A C L(K) be an algebra, and let H be a
semi-invariant subspace for A with (M, Ny) and (M, Nyr) the
minimal and mazimal representing pairs for H, respectively. Then

dim (D) = dim (Mpr/M,,) = dim (Nag /Nyy) = dim ([AH + A*H] ).

Furthermore, if B is the C*-algebra generated by A and n =
dim (B/[A+ A*]7) and BH = K, then dim (D) < n - dim#.

Proof. [AH + A*H]* = (A*H)t N (AH)LT = My N (NL) =
Ny N (NE) = D = My n (ML), from which the first equalities
follow. The inequality is obvious. o

Note in particular that if A + A* is dense in B, then the above
result shows that dim (D) = 0 and, consequently, there is a unique
representing pair for H.

We now wish to illustrate these concepts with some examples mo-
tivated by complex analysis and the theory of subnormal models. In
what follows, €2 denotes a bounded open set in the complex plane whose
boundary T' consists of m + 1 disjoint, simple, closed, analytic curves.
We shall call such a set an m-holed analytic Cauchy domain.

Example 2.5. Fix zy € ), and let w denote harmonic measure for
the point zg. It is well-known that w and arc-length measure ds are
mutually bounded absolutely continuous, and in fact that

dw  —10g(-,A)
ds 2 on
where g is the Green’s function for {2 and n is the outward normal.

Consider the Hilbert space of square-integrable functions on I' with
respect to harmonic measure at zp, L?(I',w), and for f € L>(T,w) let
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My € L(L*(I',w)) be the operator of multiplication by f. Let R(£2)
denote the closure of the algebra of quotients of polynomials p/q where
the zeros of ¢ lie off 2, and finally let A = {My: f € R(Q)}. Let X
be the one-dimensional subspace of L2(I',w) spanned by the constant
function 1. Note that H is semi-invariant for A since compression to
‘H is given by

P%Mf |7.¢: <Mf . l,].> = /fdw = f(ZO)

which is clearly a homomorphism.

If (M, Ny) is the minimal representing pair for #, then N =
A-17 ={f: f € R(Q)}~ = H*(I',w), which is commonly called the
Hardy space on I'. We also have M,, = {f € H*(T,w) : f(z0) = 0},
which we denote by HZ(T,w).

To identify the maximal representing pair for H we need to first
recall [10, p. 94] that there is a subspace N such that L?(T,w) =

H?(T,w)® HZ(T,w)® N, where HZ(T', w) denotes the space of complex
conjugates of functions in HZ(I',w). The space N is the complex
span of n real functions [10, p. 93], and consequently, N = N and
also L?(T,w) = [H?(T,w) ® N & HZ(T,w).Thus, if (Mp,Np) is
the maximal representing pair for % we have, by Proposition 2.1,

that My = [A* - 1]+ = [H2(T,w)]* = N @ H(T,w)and so Ny =
H*(I',w) ® N.

To complete the description of all representing pairs for #, we apply
Proposition 2.3. First we note that the defect space D = N, and so we
need to find all invariant subspaces of the representation f — Py M |n
for f € R(2).

By [10, Theorem 4.8], [HZ(T,w)]* = {f € L*(T,w) : f = F/P,F €
H?(T,w)}, where P(2) = (2 — 21)--- (2 — 2p,) and 21,... , 2, are the
critical points of the Green’s function, g(z,29) counted with multiplic-
ity. If we assume that these points are distinct, then H?(I',w) & N =
[H}(T,w)]*t = H*(Tyw) +spn{l/(z —z;) : j = 1,...,m}. Let
fi = Pn(1/(z — z)), so f; = 1/(z — zj) + hj, h; € H*(I',w), and
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calculate, for f € R(2),
PyM;fj = Pn(f/z - 2;)

Z =z Z—ZzZj
= f(z) - fi-
Thus, the representation of compression to NV is diagonal with respect
to the (nonorthogonal) basis {f1,..., fim}. The invariant subspaces of

this representation are clearly determined by choosing some subset of
the basis.

In conclusion, we see that there are 2™ possible representing pairs
for this one-dimensional semi-invariant subspace and that the lattice of
representing pairs is isomorphic to the lattice of subsets of {1,... ,m}
with containment for the order.

When the critical points of the Green’s functions are not distinct, the
lattice is more complicated.

Example 2.6. Fix zy € (2, and let ds denote arc length measure on
I'. Again we consider the Hilbert space of square-integrable functions
on I" with respect to arc length measure, L?(T', ds), and we let H*(T, ds)
denote the closure of the analytic functions on Q7. It is well known
that the map f — f(z0) defines a bounded linear functional on
H?(T',ds) and hence there exists a function k,, € H%(L',ds) such that
f(20) = (£, kzy) = [ fkso ds. We shall call k,,(z) the Szego kernel.

The space H spanned by k., is semi-invariant for A = {M; | f €
R(2)}. To see this, note that if we set HZ(T',ds) = {g € H(T,ds) :
g(z0) = 0}, then H?(I',ds) = HZ(T,ds) ® H with HZ(T,ds) and
H?%(I',ds) both invariant for A. The homomorphism obtained by
compressing to # is easily seen to be My — f(zo) since if we let
h = k., /k,(20)}/? be a unit vector in H, then

Py Mj |u= (fh,h) = f(20).
We shall show that the representing pair for H, given by (HZ(T,ds),

H?(T',ds)) is in fact the maximal representing pair.

First, we use the fact that k., has m distinct zeros zi,...,%p,. In
fact, these can be seen to be the zeros of the Ahlfors function for €2 and
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20, with zg deleted. See [6, p. 87] and [10, Theorem 5.16]. From this,
we see that the minimal representing pair (M,,, N;,) satisfies

Ny =A-ky, ={ge€ H*,ds): g(z)=0,i=1,...,m},
M., ={g € H*(T,ds) : g(z;) =0,i =0,... ,m}.

The C*-algebra generated by A is clearly B = {M; : f € C(I')}.
Thus, the codimension of the closure of A+ .A* in B is the same as the

codimension of the closure of R(Q2) + R() in C(T'), which is m [10,
Theorem 4.21].

Applying Proposition 2.4, we see that dim (Nas/Ny) < m. Since
dim (H2(I',ds)/Ny) = m we must have that Ny = H?(I',ds). Thus,
(H2(T,ds), H*(T',ds)) is indeed the maximal representing pair.

In order to identify all representing pairs, we again need to identify the
invariant subspaces of the representation of A induced by compression
to the defect space. Clearly, H*(I',ds) = Ny, +spni{k,, :i =1,... ,m}.
Arguing as in Example 2.4, we see that the projection of k,, onto the
defect space is an eigenvector for the compression of M with eigenvalue
f(Zi), 1= 1,... ,m.

Thus, as before, the invariant subspaces of the compression of A are
2™ in number and correspond to the lattice of all subsets of {1,... ,m}.

3. Resolutions. Throughout this section B will denote a C'*-algebra
with unit 1, and A C B will denote an arbitrary subalgebra containing
1, but not necessarily norm closed or self-adjoint. By a representation
of A, we mean a unital, contractive homomorphism p : A — L(H),
where H is some Hilbert space. By a B-dilation (7, K) of p we mean a
*-representation (7, K) of B such that K contains H as a subspace and
p(a) = Pym(a) |y for all a € A, that is, X is semi-invariant for m(.A)
and p is the compression of m(A) to H.

Given a B-dilation (m,K) of p, if one sets X' = w(B)H, then K’
is a reducing subspace for m and so the compression 7’ of 7© to K’
gives another B-dilation (7', ') of p satisfying K' = 7'(B)H. We shall
therefore always assume that our B-dilations satisfy this minimality
condition.

For the purposes of this paper we shall only be concerned with
representations of A which have a B-dilation. A characterization of
these representations has been given by Arveson [3]:



280 V.I. PAULSEN

Theorem 3.1 (Arveson). Let p : A — L(H) be a representation.
The following are equivalent:

(i) p has a B-dilation
(ii) p is completely contractive,

(i) the map p: A+ A* — L(H) given by p(a + b*) = p(a) + p(b)*
is completely positive.

(iv) the map p extends to a completely positive map from B to L(H).

Let A C B, and let (p,H) be a representation of A which has B-
dilations (7, K) and (7', K'). We say that these B-dilations are unitarily
equivalent provided that there exists U : K — K’ unitary, such that

Uh = h for all h € H and Un(b) = n'(b)U for all b € B.

The following is elementary but plays a central role.

Proposition 3.2. Let A C B, and let (p,H) be a representation of
A which has a B-dilation. Then there is a one-to-one correspondence
between completely positive extensions of p, 7 : B — L(H) and unitary
equivalence classes of B-dilations (m, KC) of p, given by 7(b) = Pym(b) |n
for b e B.

Proof. Given a B-dilation (m,K) of p, setting 7(b) = Pym(b) |
defines a completely positive extension of p. It is easily checked that if
two B-dilations are unitarily equivalent then these extensions are the
same.

Conversely, given any completely positive extension 7 of p, by taking
its Stinespring representation one obtains a B-dilation of p. a

We note that when B is commutative, the word “completely” can
be dropped in the above theorem since by [14] every positive map is
automatically completely positive.

A representation (7,N') of A is called B-subnormal if there is a B-
dilation (m,K) of 7 such that A is an invariant subspace for m(A).
We shall call such a B-dilation a B-eztension of (1,N'). Let p be a
representation of 4 on #. Again we assume that all B-extensions are
minimal. By a B-resolution (1, M, N) of p, we mean that (1, N) is a
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B-subnormal representation of A, that M C A is an invariant subspace
for 7(A) (so that 7 compressed to M is also B-subnormal), and that
H C N with MdH = N and p(a) = Py7(a) |x. We call a B-
subnormal representation cyclic if 7(A)H is dense in N.

Note that having a B-resolution (7, M,N') of (p,H) is equivalent
to having a short exact sequence of contractive Hilbert .A-modules,

0 MINLH - 0, i.e., a resolution, where 6 is an isometry, p is
the quotient map, and M and N are B-subnormal. The terminology
B-subnormal comes from the case of a function algebra A C C(X)
for then a C'(X)-subnormal representation (7,') is subnormal in the
usual sense, i.e., 7(A) is a commuting family of subnormal operators
with normal extension 7(A).

When A is a function algebra and X is its Silov boundary, then A/
is a Silov module in the sense introduced by [9] exactly when (7,N) is
C(X)-subnormal, and consequently C(X)-resolutions are exactly what
we termed Silov resolutions in [9].

We say that two B-resolutions (3, M;,N;), i = 1,2, of a represen-
tation (p,H) of A are unitarily equivalent if there exists a unitary
U : N1 — Nj such that 7(a)U = Ury(a) for all a € A and Uh = h
for all h € H. Note that necessarily Uy = U |pq,: M1 — My is also
unitary and defines a unitary equivalence between the compression of
71 to M and the compression of 75 to M.

From the module viewpoint this means that we have a commuting
diagram,

0 M M T 0
0 Mo No H 0,

of isometric module isomorphisms where the last vertical arrow is the
identity map.

The goal of this section is to classify up to unitary equivalence
all “reasonable” B-resolutions of (p,H) of A in as great a generality
as possible. We begin with a couple of observations on subnormal
representations.
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Note that there are certain standard B-resolutions of (p, 7). First
choose a completely positive map v : B — L(#), which extends p
and consider its (minimal) Stinespring representation (m,/C). Since
p(a) = Pym(a) |y, for all a € A, we have that # is a semi-invariant
subspace for m(A). If (M,N) is any representing pair for H, then
clearly (7, M,N) is a subnormal resolution of (p,H). Where 7(a)
is the compression of 7(a) to N. We call these the canonical B-
resolutions of (p,H). To produce a noncanonical B-resolution, we
can simply start with a canonical B-resolution (7, M,A) and form

(teor, MON,NdN).

Let A* A C B denote the complex linear span of the elements of the
form a*b,a,b € A. Note that A+ A* C A*A since 1 € A.

Proposition 3.3. A representation (p,N) of A is B-subnormal
if and only if there is a completely positive map ¢ : A*A — L(N)
satisfying ¢(a*b) = p(a)*p(b), for all a,b € A. Moreover, there is
a one-to-one correspondence between the completely positive extensions
of ¢ from A*A to B and the unitary equivalence classes of B-extensions

of (p, ).

Proof. If (p,N') is B-subnormal there exists a B-extension (, ) of
p. Clearly, the map ¢ : B — L(N) defined by ¢(b) = Pyn(b) |n is
completely positive. Since A is invariant for m(A), ¢(a*b) = p(a)*p(b)
for a,b e N.

Conversely, given such a ¢ we may extend it to a completely positive
map on all of B, by Arveson’s extension theorem. Let (m,K) be the
minimal Stinespring representation of this completely positive map,
then p(a)*p(a) = ¢(a*a) = Pym(a*a) v and p(a) = Pym(a) |v
implies that A is invariant for 7(a).

Thus, given a B-subnormal representation (p, N'), we see that every
completely positive extension of ¢,v : B — L(N) gives rise to a B-
extension (m,K) of p, by taking its (minimal) Stinespring dilation.
Given distinct extensions ¢ and ' with Stinespring dilations (7, K)
and (7',K'), respectively, we have that these B-extensions are not
unitarily equivalent. For if they were, then there would exist a unitary
U : K — K’ such that Ur(b)U* = n*(b), Uh = h, for h € N. Hence,
P(b) = Pxm(b) [v=PxyUn(b)U* |y= Py7'(b)|xv = ' (b), for all b € B,
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a clear contradiction.

Conversely, every B-extension (, K) determines a completely positive
map ¢ : B — L(N) via ¥(b) = Pym(b) |x. Since N is invariant for
m(A), ¥(a*b) = p(a)*p(b), and so 9 is an extension of ¢. u]

We define an algebra A C B to be sub-Dirichlet in B provided that
the linear space A*A is dense in B. By the above result, if A is sub-
Dirichlet in B, then every subnormal representation of A possesses a
unique (up to unitary equivalence), (minimal) B-extension.

In particular, note that if A is a uniform algebra on Y, for a
compact Hausdorff space Y, then A is sub-Dirichlet (in C(Y)) by
the Stone-Weierstrass theorem. Other examples are the upper (or
lower) triangular matrices which are sub-Dirichlet in M,, and the upper
triangular matrices whose entries come from a fixed uniform subalgebra
of C(Y') which is sub-Dirichlet in M, (C(Y")). On the other hand, there
are many subalgebras of M,, which are not sub-Dirichlet.

Let A C B be sub-Dirichlet, (p,H) a representation, (1, M,N) a
resolution for (p,H) and (7, K) the (unique) B-extension of (7,N).
We say that (1, M,N) is a minimal B-resolution if m(B)H is dense in
K. That is, (1, M,N) is minimal exactly when (7, K) is a minimal
B-dilation of (p,H).

I do not know whether or not the hypothesis that (7, M,N) is a
minimal B-resolution of (p, H) is equivalent to assuming that A\ is the
smallest reducing subspace for 7(.A) that contains #.

Proposition 3.4. Let A be a sub-Dirichlet algebra of B, and let
(p,H) be a representation of A. If (1, M,N) is a cyclic B-resolution
of (p,H), then (1, M,N) is minimal.

Proof. Let [] denote closure; then [r(A*A)H] = [r(A)*T(A)H] =
[r(A)*N] = [r(A)*r(A)N] = K since 7(A)H is dense in N and
m(B)(N) is dense in K. O

While it is possible to restrict attention to the cyclic resolutions, many
natural examples are not cyclic as was seen in Example 2.6.
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Theorem 3.5. Let A C B be sub-Dirichlet, and let (p,H) be a
B-dilatable representation of A. Then every minimal B-resolution of
(p, H) is unitarily equivalent to a canonical B-resolution. Moreover, no
two distinct canonical B-resolutions are unitarily equivalent.

Proof. Let (1, M,N) be a minimal B-resolution for (p,H), and
let (m,K) be the B-extension of (7,N). Define ¢y : B — L(H) by
¥(b) = Pym(b) |5, so that 9 is a completely positive extension of p.
Since (7, M,N) is minimal (m, ) is the minimal Stinespring dilation
of %, up to unitary equivalence. Since M C N C K are invariant
subspaces for 7(A), under this unitary equivalence (7, M, ') becomes
a canonical subnormal resolution.

Now let ¢; be a completely positive extension of p, with (m;, K;)
the minimal Stinespring representation, and let M; C N; C K; be
invariant subspaces for m;(A) with M; @ H = N;, i = 1,2. Assume
that (i1, M1,N71) and (72, M2, N3) are unitarily equivalent where
7i(a) = Pp,mi(a) |n;, ¢ = 1,2. We must first show that ¢ = ts.
Let U : Ni — N> implement the unitary equivalence, so that uh = h
for h € H. Then for a,b € A,

$1(a’d) = Pymi(a)*mi(b) |n

= Py71(a)*m1(d) |n

= Py Ut (a)*m (B)U” |5
= Py2(a)"2(b) |5

= 12(a’b).

Since A*A is dense in B, this shows that ¥; = 5.

Define completely positive maps v; : B — L(N;) via y;(a*b) =
7i(a)*7;(b), then (m;, KC;) is the minimal Stinespring representation of
Yi, © = 1,2, and Uy1U" = 72. By the uniqueness of the Stinespring
representation, there exists U:Ki—Kza unitary, such that U m(b) =

mo(b)U for all b € B and Uh = Uh for h € Nj.

Thus, we may assume that 71 = 72 = 7 and K1 = K2 = K and that
U : K — K is unitary with Ur = #U, and Uh = h for h € #. This
implies that Un(b)h = w(b)Uh = n(b)h for h € H. Since the linear
span of these vectors is dense in K, U is the identity on K. Hence,
Ny = UN; = N from which the result follows. O
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Thus, we see that we can, for A C B sub-Dirichlet, identify the
unitary equivalence classes of minimal B-resolutions of (p,H) as a
fibered set. The base is the collection of all completely positive maps
¢ : B — B(#) which extend p. The fiber above a particular ¢ is the
lattice of representing pairs (M, N) for the semi-invariant subspace H
of m(.A) inside the Stinespring dilation (7, ) of ¢.

We have enough at the moment to classify the cyclic subnormal
resolutions in the sub-Dirichlet case.

Corollary 3.6. Let A C B be sub-Dirichlet, and let (p,H) be a
representation of A which has a B-dilation. Then there is a one-to-
one correspondence between unitary equivalence classes of cyclic B-

resolutions (1, M,N') for p and completely positive extensions of p to
B.

Proof. Consider the B-extension, (m,K) of (7,N'). We have that H
is semi-invariant for 7(A) and that N' = N,,, M = N, is the minimal
representing pair for %. Now apply Theorem 3.5. ]

To illustrate the above concepts, consider an m-holed analytic Cauchy
domain Q, zp € Q and R(Q) C C(T') where I' = 9Q. If we con-
sider the one-dimensional representation p : R(Q2) — C given by
p(f) = f(20) and 7 : R(Q) — L(H?*(T,w)) given by 7(f) = M—the
operator of multiplication by f, where w denotes harmonic measure
for the point 2o, then (7, H3(I,w), H3(I',w)) is a C(9€)-resolution of
p, provided that we identify C' with the space of constants. Similarly,
(r,H3(T,ds), H*(T,ds)), where dS denotes arc-length measure, is a
subnormal resolution of p, provided that we identify C' with the span
of the kernel function k,, and let 7 again denote the representation of
multiplication. Note that the first example is cyclic while the second is
not.

To see which canonical resolutions these resolutions correspond to,
we must first identify the completely positive maps that they lie in
the fiber over. To do this, note that the C(I')-extensions are given by
multiplication operators on L?(I',w) and L2(T', ds), respectively. Thus,
the positive maps are given by compression to the one-dimensional
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space spanned by 1 and k., respectively. Thus, the maps are

o(f) = / fdw and ¢(f):m / Pl |2 ds,

respectively.

Since the Stinespring representation of ¢ is given as multiplication on
L?(T,w) compressed to the constants, we see that the first resolution
is already canonical.

The Stinespring representation of 1 is given as multiplication on
L2(T, ), where du/ds = |k,|?/||kz||?, compressed to the constants.
Thus, the canonical resolutions above 3 correspond to all representing
pairs for the semi-invariant subspace spanned by the constants for the
algebra R(T'). Thus, we see that as R(I")-modules, H%(T, ds) is unitarily
equivalent to one of the R(Q)-invariant subspaces between H?(T', u)
and H%(T,u) ® N = (H2(T',du))*. Moreover, this unitary must carry
k., to a constant. From these considerations it follows easily that the
unitary can be taken to be multiplication by ||k, ||/kz,-

From Examples 2.4 and 2.5, we see that, inside the %-representations
7:C(T) = L(L*(T,w)),n : C(T) — L(L*(T,ds))

where 7(f) = M/, we generically expect to find 2™ C(T')-resolutions
of the above representation p of R(2). These lie above ¢ and %,
respectively. Since H%(I', ds) is the maximal of these, we have that as an
R(Q)-module it is isomorphic to H%(T, 1)@ N and hence k,, (H?(T, pn)®
N) = H2(T, ds).

Example 3.7. We wish to illustrate the above theory, again with
an example from complex analysis. Let Q@ = {z : r < |z| < R} with
boundary I' = T', UT'g. It is well known [15] that the closure of
R(Q) + R(Q) has codimension 1 in C(T"). In fact, if we set

+1/R SEPR,
h =
(s) {—1/7‘ sel,,

then h(s)ds is an annihilating measure for R(Q) + R(Q) where ds
denotes arc length measure. To see this, note that for f € R(Q),
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Jr F($)h(s)ds = 1/2x [ f(Re)df —1/27 [7™ f(re'®) df = ag —ap =
0, where ag is the constant term in the Laurent series expansion of f.

Fix a point A € Q and consider R(2) C C(I"). We wish to describe
all unitary equivalence classes of minimal C(I')-resolutions for the
representation p : R(2) — C given by p(f) = f(\). First, we need
to describe all (completely) positive extensions 3 : C(I') — C of p.
Note that if wy is an harmonic measure at A then v — @(\) = [ udw)y
gives a positive extension. To find all positive extensions, recall that
dwy/ds = P(s, ), which is just the normal derivative of the Green’s
function at ), is positive and bounded away from 0 on I'. Thus, if we
set Yy () = [ pn(s)(P(s, A) + th(s)) ds, we have that 1, (f) = f(A) for
f € R(Q) and 9, will be positive, provided that we pick ¢ sufficiently
small so that P(s,\) +th(s) > 0 for all s on T

Thus, we see that there is some closed interval about 0, a <t < 3,
such that 1; is positive in this interval. The endpoints «, 3 are the first
points where P(s, A) + th(s) is 0 for some s.

Let dm; = (P(s,A) + th(s))ds, a <t < (3, be the positive measure
which yields ¢;. The minimal Stinespring representation of v; is quite
concrete. Consider L?(I',m;) and represent C(T') by u — M, where
M, is the operator of multiplication by u, and C' is identified with the
subspace of constant functions. Indeed, since 1 is a unit vector,

Py, = (u-1,1) = /udmt — u(u).

Since m; is a regular measure, C(I') is dense in L?(T',m;) and so
the closure R(Q2) +R(2) can be at most codimension 1. Let H?(T', m;)
and H2 (T, m;) denote the closures of R(Q) and {f € R(Q) : f(\) = 0},
respectively. Note that H?(I',m;) and HZ(T,m,) are orthogonal. For
a <t < B, setgi(s) = h(s)(P(s,\)+th(s))~! so that g;(s) is continuous
and hence in L?(T',m;). Also, for f € R(Q),

/fgtdmt:/fhds:o.

Thus, we can see that L?(I',m;) = H*(T',m;) ® H3(T, m;) & N, where
Ny is the span of g;, a < t < .

Arguing as in Example 2.5, we have that in L?*(I',m;) there are
exactly two representing pairs for the semi-invariant subspace H, o <
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t < B. The minimal pair is Ny, = H%(L',m;), My, = HZ(I',m;) and
the maximal pair is A, = H2(T,m;) & Ny, Myr = HZ(T,m;) & N;.
Consequently, there are two unitary equivalence classes of minimal
resolutions above each point, a < t < f.

Recall that Ny = Ny © N, will also be semi-invariant for My,
f € R(2). Thus, compression to this one-dimensional subspace yields
a homomorphism of R(Q2), p: : R(2) — C. We have that

1 2
= . dm

= m/f(s)(P(s,A) + th(s)) th(s)? ds.

N

[a—y

Since this homomorphism is clearly weak*-continuous, this implies that
there exists a p; € Q such that p¢(f) = f(u:). Hence,

llgel| 72 (P (s, A) + th(s))~'h(s)* = P(s, ) + yh(s),

where P(s, p) = dwy/ds,w,, is harmonic measure at j, and -y is some
suitably chosen real number. Thus, we see that, for each (A,t), there
exists a (u,7) so that (P(s,\) + th(s))/(P(s,u) + vh(s)) is a constant
function of s on each circle.

It is difficult to derive this fact analytically.

We now wish to show that, for the two end points a and (3, that there
is only one unitary equivalence class of models above each point. We
argue for a.

We still have that H?(I',m,) and HZ(I',m,) are orthogonal. We
wish to show that their direct sum is all of L2. Suppose not; then there
exists g, € L*(T',m,) with

/ (f + 9)goc dimie = / (f + 9)9a(P(5,)) + ah(s)) ds = 0

for all f € H*(T',m,), g € HE(T,m,). Since h(s)ds is the unique
(up to multiples) annihilating measure for R(Q2) + R(2) we have
that go(s)(P(s,A) + ah(s)) = c- h(s), a.e. (ds), for some constant
c. This implies that the function h(s)(P(s,\) + ah(s))~! belongs to
L2(T, dmy).
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However, this implies that

h 2

(3.1) / (s)
(P(s,A) + ah(s))
must be finite, which we claim is a contradiction. To see this, recall
that there must exist so € I' with P(sg, A) + ah(sg) = 0. But since the

partial derivative in the tangent direction exists for P(s, \) +ah(s), we
have that there exists a constant M with

— dmg = /(P(m,)\) + ah(s))h(s)2ds

|P(s,\) + ah(s)| < M|s — sp|,

for s in some neighborhood of sy on I'. This clearly contradicts the
finiteness of (3.1).

Thus, the set of resolutions in this case can be naturally regarded
as two copies of the interval [, ], one copy for the minimal and
one for the maximal representing pair, with their endpoints identified,
i.e., topologically a circle. In Section 4 we’ll see how the Abrahamse-
Douglas theory gives another realization of the set of all resolutions as
a circle.

Example 3.8. Keeping the same notations as above, fix A\;, Ay € (2,

and consider
p:R(Q) — L(C?) = My,

=" 100)

We wish to describe the resolutions of p. Let w;,ws be the correspond-
ing harmonic measures, P(s, A1) = dw/ds, P(s,\s) = dwsy/ds, and let
H = H* be a 2 x 2 matrix. Note that, for H sufficiently small, the
function

defined by

Pz, M 0
GH(S):( (&2 20) P(S’)\Z))—i-h(s)-H,

will assume values which are positive matrices for each point s € T.
Thus, if for such an H we define

— My, via

Y : C(I)
Y (u) = /u(s) -Gg(s)ds
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then ¥y will be (completely) positive and, for f € R(Q), vu(f) =
p(f). Since any linear map from C(T') to My can be represented by
integration against such a matrix-valued function, we see that the set of
completely positive extensions of p is parametrized by a certain convex
set of 2 x 2 Hermitian matrices H, determined by the condition that
Gg(s) >0forall s el.

Again the Stinespring representation of ¢f is very concrete. Consider
the space of C?-valued functions on I' with inner-product,

() (3)) = [enor (F0))-(50)) ) g,
We denote this space by L2(T', Gy (s) ds). Embed C? inside this space

by identifying it with the constant functions, and represent C(I') on
this space by u© — M, where

h ) ( s )
M, = .
( fi ufa
If ey, eo are the canonical basis vectors for C2, then

(Myej, ei) = (Yu(u)ej, ei) oo

and so,
PcoM,, | 2= Yu(u).

Let

H2(T, G(s) ds) = { <£> fifa € R(Q)} ,

H{(T,Guls) ds)
B { <£> Ffis f2 € R(Q), (M) = fo(Ae) = 0},

so that L*(T', G (s)ds) = H*(T,Gu(s)ds) ® H3(T,Gp(s)ds) ® Ny,
where possibly Ng = (0).

Following the methods of Section 2, in order to understand all
possible representing pairs for the semi-invariant subspace C? of the
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algebra of My, f € R(£2), we must find all invariant subspaces of the
representation of R(§2) obtained by compressing M to Ng.

Assume that G g (s) is invertible for all s, i.e., the “generic” case, then

Ny is spanned by
w1 h
Guls) < (Os)>

i (1)

and so Ny is two-dimensional.

and

When H is assumed to be diagonal, say

_ €1 0
=(32)
it is possible to do a more detailed analysis. For H to satisfy Gg(s) > 0,
we must have that a3 < g1 < 81, ay < €3 < (o, where (ay,2)

and (ag,B2) are determined by A; and My, respectively, as in the
above example. When (£1,€2) is in the interior of this rectangle,

0
gz) where g;(s) =
h(s)(P(s,\;) + €:h(s))~t, i = 1,2, which are orthogonal. Thus, from
the above example, we see that compression of My, f € R(Q2) to Ny

yields a homomorphism

Ny is two-dimensional and is spanned by (go1 ), (

5iR(Q) — My — £(Ni), ﬁ(f)—(f(“l) 0 )

for some p1, o in €.

When p1 # pe, then p will have exactly four invariant subspaces,
which corresponds to four representing pairs for our semi-invariant
subspace, and by Theorem 3.3, four distinct unitary equivalence classes
of minimal subnormal models for p above this particular extension.
However, when py = pg, which can occur, then g will have uncountably
many invariant subspaces.

Thus, we see that for a single completely positive map it is possible to
have uncountably many distinct unitary equivalence classes of minimal
resolutions, all lying above the same completely positive map. This
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is perhaps surprising, since for Dirichlet algebras we showed that the
fiber above a completely positive map is always a singleton, and this
algebra falls only one dimension short of being Dirichlet.

4. Cyo-representations. Let 2 be an n-holed analytic Cauchy
domain, and consider R(2) C C(92). Abrahamse and Douglas [1]
define Cyo-representations of R(2) and proved that every C(9NQ)-
dilatable Cgp-representation p : R(2) — L(H) has resolutions of the
form
(4.1) 0 — Hz(Q) — H#(Q) — H —0
where E and F are special types of complex analytic vector bundles over
Q. Thus, we see that some of the minimal C(9)-resolutions of (p, H)
considered in Section 3 have this type of realization. The principle
result of this section is to prove that every minimal C(0)-resolution
of a Cyp-representation has the form given by Abrahamse-Douglas.
We then apply this fact to obtain alternate descriptions of the set of
all unitary equivalence classes of minimal C(92)-resolution for some of
the examples studied in Section 3.

Recall that a representation p : R(Q) — L(H) is called a Cgo-
representation if it is continuous from the topology of uniform conver-
gence on compact subsets of €2 to the double strong operator topology.
Let 7 : C(0Q) — L(K) be a *-homomorphism, and let NV C K be
a subspace which is invariant for 7(R(Q)). If N reduces m(C(09)),
then N is called 9Q-normal. If no subspace of N (other than (0)) re-
duces 7(C(0)), then N is called 9Q-pure or a pure C(ON)-subnormal

module.

It is well known that every C(9Q)-representation ¢ : R(Q2) — B(N)
decomposes as 9 = 1 D1y, N = N1 ® N> where N is 0Q-normal and
N is 0Q-pure [1].

Theorem 4.1. Let Q be an n-holed analytic Cauchy domain, and let
p: R(Q) — L(H) be a completely contractive Cog-representation. If
0> M—=> N —H — 0 is a minimal C(0Q)-resolution, then M and
N are 6Q-pure.

Proof. Since R(f?) is sub-Dirichlet and the property of being 9Q2-pure
is preserved under unitary equivalence, it will be enough by Theorem
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3.5 to prove that every canonical resolution has this property. To
this end, let ¢ : C(02) — B(H) be a completely positive map which
extends p, let 7 : C(9Q) — B(K), H C K be its minimal Stinespring
dilation, let N C K be a subspace which is invariant for 7(R(f2)), and
let N' = N7 @ N> be its decomposition into its Q-normal and dQ-pure
parts. Since Nj reduces w(C(99)), if we show that H C N3, then
7(C(0Q))H C Ni-, and since this set is dense in K we will have that
N1 = (0), i.e., that N is Q-pure. Clearly, if A is 9Q pure then M is
also.

Thus, it remains to show that # C N>. The key idea comes from
[5, Lemma 3.2]. Let f : @~ — D~ be the Ahlfors function (or any
nonconstant inner function). Then ¥(f) = ¥1(f) ® ¥2(f) = ¥(f) &
must be an isometry and v (f) must be a unitary. Hence, for any h €
‘H, writing h = h; @ h, relative to the decomposition of N' = N; BN we
have that, for all 7, |[hu]| = [J1(f)" hall < [0 ()" Rl = [lo(f)*" Rll,
but this last quantity tends to 0 as n — oo because f™ tends to 0
uniformly on compact subsets of 2. Hence, hy = 0 and H C N, as
desired. O

Remark 4.2. Let A C C(X) be a uniform algebra, and let S C X
denote the Silov boundary. We can define a representation p : A —
L(H) to be Cyp if it is continuous from the topology of uniform
convergence on compact subsets of X\S to the double strong operator
topology. We also can define S-normal and S-pure as above. It
would be interesting to know under what conditions the conclusions
of Theorem 4.1 hold. If A contains a function f with |f(z)| = 1 for all
z € Sand |f(z)] < Lifz ¢ S, then the same proof given above applies;
but it is not clear when this latter condition is met or if some weaker
condition might be sufficient. For example, is it sufficient to assume
that every point in S is a strong boundary point?

Remark 4.3. Abrahamse-Douglas [2] prove that every 0Q-pure
C(99Q)-representation of R(€2) is unitarily equivalent to the representa-
tion given by pointwise multiplication of sections on a space of the form
HZ(Q) for some Hermitian holomorphic vector bundle E over 2. Thus,
Theorem 4.1 shows that every minimal C(92)-subnormal resolution is
of the form (1) when H is given by a Cgo-representation.
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Before proceeding with our next results, it will be necessary to have
a very concrete realization of the spaces H%({2). For our purposes, the
description given by Ball [4] will be most useful. To this end fix cut
lines C1, ... ,C, which are disjoint and such that Qy = Q\Cy U---C,
is simply connected. Fix k, 1 < k < Ny and a Hilbert space Hy
of dimension k. Let U = (Uy,...,U,) be an arbitrary n-tuple of
unitaries on Hy. Given an analytic function f : ¢y — Hj, for each
j and each z € Cj, let f(zT) = lim,_,, f(w), f(z7) = lim,_,, f(w)
denote the limits as w € y where w is restricted to belong (locally)
to the clockwise and counterclockwise side of C;, respectively. We let
Hy Q) denote the set of analytic functions f : Q¢ — Hy, such that for
each j and each z € C; the limits f(z*) and f(z7) exist and satisfy
f(zT) =U;f(z7). Welet H(£2) denote the set of functions in Hy (Qo)
whose boundary values exist almost everywhere on 0Q2 and are norm
square-integrable with respect to arc-length measure. We let LZ(92)
denote the usual space of Hy-valued functions on 9€2 which are norm
square integrable with respect to arc-length measure. It follows from
the work of Abrahamse-Douglas [2] that HZ((2) is a closed subspace
of L?(9f) which is an R(2)-module under pointwise multiplication
and is a 0Q-pure C(0N)-subnormal module, i.e., a Silov module,
whose C(012)-extension is given by L2 (9f2). Moreover, every 9Q-pure
C(02)-subnormal module is unitarily equivalent to one of these. The
space HZ(Q2) can be identified with H%((2) where E is the Hermitian
holomorphic bundle over Q with fiber H; and “gluing” data given by
U. Moreover, two such spaces H7(Q), Hz,(Q), U = (Uy,...,U,),
W = (Wy,...,W,) are unitarily equivalent as R(£2)-modules if and
only if there exists a unitary V such that U; = VW;V* for all j
[2]. (Actually, Abrahamse-Douglas [2] and Ball [4] do not use arc-
length measure but instead use harmonic measure for a fixed point
t in Q2. However, these measures are mutually boundedly absolutely
continuous.)

Example 4.4. Consider the representation p : R(2) — C,
p(f) = f(w) for a fixed w € Q. We wish to describe all C(99)-
resolutions. Let C\,, denote C' with this module action. Clearly, p
is a Cyg-representation, so by Theorem 4.1 and the remarks above, ev-
ery resolution has the form 0 — HZ(Q) — HZ(Q?) — C, — 0 where
U = (Uy,...,U,) is an n-tuple of unitary operators on some space
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Hj,. Since L(09) is the C(012)-extension of HZ(f2) our minimality
assumption, i.e., C(0Q)H dense in L?(99), and the fact that in this
case #H = C,, is one-dimensional implies that K = 1. Hence, each U;
is a point on the unit circle. Conversely, if we start with a U; on the
circle, then HZ(f2) is a reproducing kernel Hilbert space, and we have
a resolution 0 — {kY}+ — HZ(Q2) — C, — 0 where kY denotes the
reproducing kernel function for the point w.

It is easily seen that two m-tuples U = (Uy,...,U,) and V =
(Vi,...,V,) of points from the unit circle are unitarily equivalent if
and only if they are equal. Thus, we have a parameterization of the set
of all C(9%2)-resolutions of C,, by the n-torus.

Our other realization of the set of all C(92)-resolutions of C,, is
as a fibered set over the set of all (completely) positive extensions
¢ : C(0Q) — C of p. Since C, is being identified with the span
of k¥ /|k%| = h, in the above resolutions, we see that the associated
positive map is given by

&(f) = Pn My |n,= (Mghy, hy)

/f|h |2 ds

where ds denotes arc-length measure.

In the case when (Q is an annulus, i.e., n = 1, we saw in Example 3.6
that the space of positive extensions was a closed interval with two
resolutions above each interior point and one above each endpoint.
Thus, we see that, with the exception of two distinguished points on
the circle for every other point u, there is exactly one point v such
that |hy| = |hy|. Moreover, for each representing measure, one of these
resolutions must correspond to the cyclic (i.e., minimal representing
pair) and the other to the maximal representing pair. Thus, either
R(Q)kY is dense in HZ () or R(Q)kY, is dense in HE ().

Let’s say that R(Q)kY is dense in H%(£2) and, returning to the nota-
tion of Example 3.6, let dm; = |h,|?> ds = |hy|? ds. The two resolutions
above m; are given by the representing pairs (H2 (92, m;), H2(0Q, m;)),
which is the cyclic one, and (HZ (02, m;) ® Ny, H2(0Q, m:) ® Ny), both
inside L2(09, m).

Consider the unitary © : L%(0Q,m;) — L?(09,ds) given by multi-
plication by h,. Since this is a C(9)-module map, C,, is identified
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with the span of 1 in the first space and the span of h, in the second,
we get that

O - H*(0Q, m;) = H(Q).

Similarly, looking at the maximal representing pair and letting ® denote
the unitary obtained as multiplication by h,, we find ®(H?2(0Q, m;) ®
Ni) = Hy ().

Finally we see that the unitary operator on L2(9S2, ds) given by multi-
plication by h,,/h, carries HZ () to HZ(2) ® © N; while multiplication
by hy/h, carries H%(£2) to the cyclic subspace of Hz () generated by
By

When n > 1, the problem of understanding how the n-torus of all
C(02)-resolutions fibers over the space of all (completely) positive ex-
tensions, i.e., positive representing measures for p(f) = f(w), requires
considerably more sophistication, but it is worked out in [8].

REFERENCES

1. M.B. Abrahamse and R.G. Douglas, Operators on multiply connected domains,
Proc. Roy. Irish Acad. Sect. A 74 (1974), 135-141.

2. , A class of subnormal operators related to multiply connected domains,
Adv. in Math. 19 (1976), 106-148.

3. W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

4. J.A. Ball, Operator of class Coo over multiply connected domains, Michigan
Math. J. 25 (1978), 183-195.

5. ———, A lifting theorem for operator models of finite rank on multiply-
connected domains, J. Operator Theory 1 (1979), 3-25.

6. S. Bergman, The kernel function and conformal mapping, Math. Surveys
Monographs 5, 1950.

7. K. Clancey, The geometry of representing measures and their critical values,
Oper. Theory: Adv. Appl. 41, 1989.

8. , Representing measures on multiply connected planar domains, Illinois
J. Math. 35 (1991), 286-311.

9. R.G. Douglas and V.I. Paulsen, Hilbert modules over function algebras, Long-
man Scientific & Technical, Essex, England, 1989.

10. S. Fisher, Function theory on planar domains, Wiley-Interscience, New York,
1983.

11. D. Sarason, The HY spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965).

12. , Representing measures for R(X) and their Green’s functions, J.
Funct. Anal. 7 (1971), 359-385.




RESOLUTIONS OF HILBERT MODULES 297

13. , On spectral sets having connected complement, Acta Sci. Math. 26
(1965), 289-299.

14. W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc.
6 (1955), 211-216.

15. J.L. Walsh, The approximation of harmonic functions by harmonic poly-

nomials and by harmonic rational functions, Bull. Amer. Math. Soc. 35 (1929),
499-544.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HoOUsTON, HOUSTON, TEXAS
77204-3476
E-mail address: vern@math.uh.edu



